
 1

© Copyright 1999-2011 Perfect Sync, Inc.

Alphabetical List of SQL Tools Functions

A »p6 B »p6 C »p6 D »p7 E »p7 F »p8
 G »p8 H »p9 I »p9 L »p9 M »p9 N »p9 O »p9

 P »p10 R »p10 S »p11 T »p12 U »p13

Error Codes »p14

Getting Technical Help »p25
New Features in Version 3 »p927

Copyright and Trademark Information »p16

License Agreement and Runtime File Distribution Rights »p18
SQL Tools Authorization Codes »p21

This is version 3.12 of the SQL Tools Help File

Build ID# 20120418

 2

USER'S GUIDE

Frequently Asked Questions »p27
What are the New Features in Version 3? »p927
What SQL Tools IS and ISN'T »p28
What's the Difference Between SQL Tools Standard and Pro? »p29
What Will SQL Tools Do For My Programs? »p31
What Will I Need To Use SQL Tools? »p32
What's the Difference Between SQL and ODBC? »p33
Can I Use SQL Tools to Write "Universal" Programs? »p34
Do All SQL Tools Features Work With All Databases? »p35
How Complete is SQL Tools? »p36
Exactly Which ODBC Features are Not Supported? »p37

Ready to Write Programs? Start Here! »p39

Conventions Used In This Document »p40

Variable Naming Conventions »p41
Signed and Unsigned Integers »p42

Installing SQL Tools »p44

Installing ODBC Drivers »p47

Installing ODBC Drivers from the Microsoft Internet Site »p50
Installing ODBC Drivers from a Database Product »p51

Updating SQL Tools to the Latest Version »p49

Terminology Differences »p52

Compliance Issues »p53

Two Of Everything: The "Abbreviated" and "Verbose" Functions »p55
Four of Many Things »p57
Eight or More of Some Things »p58

The Abbreviations »p60

Four Critical Steps For Every SQL Tools Program »p61
Special Considerations for DLL Programmers »p64

The SQLT3.INC Declaration File »p66
The SQLTv2-3.INC Declaration File »p67
Using the PBLIB (#LINK) Files »p68
The SQLT3StdDLL.INC and SQLT3ProDLL.INC Declaration Files »p70
Using the SQL Tools DLL Runtime Files »p71
The "No Trace" #LINK and Runtime Files »p72

A SQL Tools Primer »p73

What a Database Is »p74
SQL and ODBC »p75
ODBC Drivers, and the Driver Manager »p76
SQL Tools and ODBC Drivers »p77

 3

Opening a Database »p78
Using a DSN File to Open a Database »p79
Using a Connection String to Open a Database »p80
Manual Navigation: Using the SQL_OpenDB Function to Create a DSN File
»p81
Error Messages After Opening a Database »p82

Determining Database Capabilities »p83

Tables, Rows, Columns, and Cells »p85

Table Metadata »p86

SQL Data Types »p87

%SQL_CHAR »p88
%SQL_VARCHAR »p89
%SQL_LONGVARCHAR »p90
%SQL_INTEGER »p91
%SQL_SMALLINT »p92
%SQL_TINYINT »p93
%SQL_BIT »p94
%SQL_BIGINT »p95
%SQL_REAL »p96
%SQL_DOUBLE »p97
%SQL_FLOAT »p98
%SQL_NUMERIC and %SQL_DECIMAL »p99
%SQL_TIMESTAMP and %SQL_TYPE_TIMESTAMP »p100
%SQL_DATE and %SQL_TYPE_DATE »p102
%SQL_TIME and %SQL_TYPE_TIME »p103
%SQL_ODBCx_INTERVAL Data Types »p104
%SQL_BINARY, %SQL_VARBINARY, and %SQL_LONGVARBINARY »p105
Lengths of %SQL_CHAR and %SQL_BINARY Data Types »p106
%SQL_DEFAULT »p107
Datasource-Dependent Data Types »p108
Unicode Data Types »p109

%SQL_wCHAR »p111
%SQL_wVARCHAR »p112
%SQL_wLONGVARCHAR »p113

SQL Data Type "Properties" »p114

Concise Type »p115
Buffer Size »p116
Transfer Octet Length »p117
Num Prec Radix »p118
Display Size »p119
Decimal Digits »p120

BASIC Data Types »p121

SQL Statements »p123

Execution of SQL Statements »p124

Asynchronous Execution of SQL Statements »p125

SQL Statement Mode »p126

 4

Binding Statement Input Parameters »p128
Binding Numeric Parameters »p131
Setting a Bound Parameter to the Null Value »p136
Binding Fixed-Length String/Binary Parameters »p137
Binding Dynamic String/Binary Parameters »p138
Binding Long Parameter Values »p140
Arrays of Bound Parameters »p143

Result Sets »p144

Result Column Binding (Basic) »p145

Fetching Rows from Result Sets (Basic) »p146

Cursors »p147

Forward-Only Cursors »p148
Scrollable Cursors »p149
Problems with Scrollable Cursors »p150

Fetching Rows from Result Sets (Advanced) »p152

Determining Cursor Capabilities »p153

Using Bookmarks »p154

Binding Column Zero »p156

Relative Fetches »p157

Result Column Binding (Advanced) »p158

AutoBinding »p159
Other Binding Alternatives »p160
Proxy Binding »p161
Manual Binding and Direct Binding »p162
Direct Binding »p163
Manual Binding »p164
Row-Wise Binding »p165

Accessing Result Columns »p166

Long Columns »p167

"Data Truncated" Error Messages »p168
Possible Driver Restrictions on Long Columns »p169

Result Column Indicators »p170

Null Values »p171
Other Uses of Column Indicators »p172

Results from non-SELECT Statements »p173

Why You CAN'T Use SQL_ResRowCount for SELECT Statements »p174

Detecting the End Of Data »p175

Detecting "No Data At All" »p178

 5

Error Handling in SQL Tools Programs »p179
Error Codes »p180
Using Error Messages Instead of Error Codes »p181
Ignoring Predictable Errors »p183
Miscellaneous Error Handling Techniques »p185
SQL Tools Trace Mode »p186
ODBC API Tracing »p187
SQL Tools Audit Mode »p188

SQL Tools Utility Functions »p189

Database Information and Attributes »p190
Statement Information and Attributes »p191
Environment Attributes »p192
Info/Attribute Labels »p193

Manually Opening and Closing Databases »p195
Manually Opening and Closing Statements »p196

Using Database Numbers and Statement Numbers »p197

Statement Zero Operation »p199

Cached Information »p200

Indexes »p201

AutoColumns »p202
Unique Columns and Primary Columns »p203
Foreign Keys »p205

Table Privileges and Column Privileges »p206

Committing Transactions Manually »p207

Stored Procedures »p208

MultiRow Cursors »p210
Named Cursors »p212

Bulk Operations »p213

Using %BULK_UPDATE »p215
Using %BULK_ADD »p216
Using %BULK_FETCH »p217
Using %BULK_DELETE »p218

Positioned Updates and Deletes »p219

Using Long Values with Bulk and Positioned Operations »p220

"Cleaning Up" After a Bulk Operation »p222

Using SQL Tools with a Grid »p223

Multi-Threaded Programs »p224

SQL Handles »p228

 6

REFERENCE GUIDE

Reference Guide Format »p229

Functional Families »p230

Configuration Family »p231
Environment Family »p232
Use Family »p233
Database Open/Close Family »p234
Database Info/Attrib Family »p235
Table Info Family »p236
Table Column Info Family »p237
Statement Open/Close Family »p239
Statement Family »p240
Statement Info/Attrib Family »p241
Statement Binding Family »p242
Stored Procedure Family »p243
Result Column Binding Family »p245
Result Count Family »p246
Result Column Family »p247
Result Set Family »p244
Error/Trace Family »p248
Utility Family »p249
Get Info Family »p250
Handle Family »p251

A
SQL_AsyncErrors »p252
SQL_AsyncStatement »p253
SQL_AsyncStatus »p254
SQL_AsyncStmt »p256
SQL_Audit »p260 NEW
SQL_AuditStr »p262 NEW
SQL_Authorize »p263
SQL_AutoBindCol »p265
SQL_AutoBindColumn »p267

B
SQL_BinaryStr »p268
SQL_BindParam »p269
SQL_BindParameter »p272
SQL_Bkmk »p273
SQL_Bookmark »p275
SQL_BulkOp »p276
SQL_BulkOperation »p277

C
SQL_CloseDatabase »p278
SQL_CloseDB »p279
SQL_CloseStatement »p281
SQL_CloseStmt »p282
SQL_CurName »p284

 7

SQL_CurrentDB »p285
SQL_CurrentStmt »p286
SQL_CurrentThread »p287 NEW
SQL_CurrentTrace »p288 NEW
SQL_CursorName »p290

D
SQL_DatabaseAttrib »p291
SQL_DatabaseAttribStr »p292
SQL_DatabaseAutoCommit »p293
SQL_DatabaseDataTypeCount »p294
SQL_DatabaseDataTypeInfo »p295
SQL_DatabaseDataTypeInfoStr »p296
SQL_DatabaseDataTypeNumber »p297
SQL_DatabaseInfo »p298
SQL_DatabaseInfoStr »p299
SQL_DatabaseIsOpen »p300
SQL_DataSourceAdd »p301
SQL_DataSourceAdmin »p303
SQL_DataSourceCount »p305
SQL_DataSourceInfoStr »p306
SQL_DataSourceModify »p308
SQL_DataSourceNumber »p313
SQL_DataTypeStr »p320 NEW
SQL_DateTimePart »p314 NEW
SQL_DateTimePartStr »p315 NEW
SQL_DBAttrib »p322
SQL_DBAttribStr »p325
SQL_DBAutoCommit »p327
SQL_DBDataTypeCount »p328
SQL_DBDataTypeInfo »p330
SQL_DBDataTypeInfoStr »p334
SQL_DBDataTypeNumber »p337
SQL_DBInfo »p338
SQL_DBInfoStr »p377
SQL_DBIsOpen »p383
SQL_DBMS »p384 NEW
SQL_DBMSName »p386 NEW
SQL_Diagnostic »p388
SQL_DirectBindCol »p392
SQL_DirectBindColumn »p394
SQL_DriverCount »p395
SQL_DriverInfoStr »p397
SQL_DriverNumber »p399

E
SQL_EndOfData »p401
SQL_EndTrans »p402
SQL_EndTransaction »p404
SQL_EnvironAttrib »p405
SQL_EnvironAttribStr »p407 NEW
SQL_EOD »p409
SQL_ErrorClearAll »p410
SQL_ErrorClearOne »p411

 8

SQL_ErrorColumnNumber »p412
SQL_ErrorCount »p413
SQL_ErrorDatabaseNumber »p414
SQL_ErrorFuncName »p415
SQL_ErrorFunction »p417
SQL_ErrorIgnore »p418
SQL_ErrorNativeCode »p420
SQL_ErrorNumber »p421
SQL_ErrorPending »p422
SQL_ErrorQuickAll »p423
SQL_ErrorQuickOne »p424
SQL_ErrorSimulate »p426
SQL_ErrorStatementNumber »p427
SQL_ErrorStr »p428
SQL_ErrorText »p430
SQL_ErrorTime »p432

F

SQL_Fail »p433 NEW
SQL_Fetch »p435
SQL_FetchPos »p437
SQL_FetchPosition »p440
SQL_FetchRel »p441
SQL_FetchRelative »p444
SQL_FetchResult »p445
SQL_FuncAvail »p446
SQL_FunctionAvailable »p449

G
SQL_GetDatabaseDataTypes »p450
SQL_GetDataSources »p451
SQL_GetDBDataTypes »p452
SQL_GetDrivers »p453
SQL_GetProcCols »p454
SQL_GetProcedureColumns »p455
SQL_GetProcedures »p456
SQL_GetProcs »p457
SQL_GetTableAutoColumns »p458
SQL_GetTableColumnPrivileges »p459
SQL_GetTableColumns »p460
SQL_GetTableForeignKeys »p461
SQL_GetTableIndexes »p462
SQL_GetTableInfo »p463
SQL_GetTablePrimaryKeys »p464
SQL_GetTablePrivileges »p465
SQL_GetTableStatistics »p466
SQL_GetTableUniqueColumns »p467
SQL_GetTblACols »p468
SQL_GetTblColPrivs »p469
SQL_GetTblCols »p471
SQL_GetTblFKeys »p472
SQL_GetTblIndexes »p473
SQL_GetTblInfo »p475
SQL_GetTblPKeys »p478
SQL_GetTblPrivs »p479

 9

SQL_GetTblStats »p480
SQL_GetTblUCols »p481

H
SQL_hDatabase »p482
SQL_hDB »p483
SQL_hEnvironment »p485
SQL_hParentWindow »p486
SQL_hStatement »p488
SQL_hStmt »p489

I
SQL_InfoExport »p490
SQL_InfoImport »p492
SQL_Init »p494
SQL_Initialize »p495
SQL_IString »p498

L
SQL_LimitTextLength »p501
SQL_LongParam »p503
SQL_LongParameter »p505
SQL_LongResCol »p506 (V2)
SQL_LongResultColumn »p507 (V2)

M
SQL_ManualBindCol »p508
SQL_ManualBindColumn »p510
SQL_MoreRes »p511
SQL_MoreResults »p513
SQL_MsgBox »p514
SQL_MsgBoxButton »p516

N
SQL_NameCur »p518
SQL_NameCursor »p520
SQL_NewDBNumber and SQL_NewDatabaseNumber »p521
SQL_NewStatementNumber »p523
SQL_NewStmtNumber »p524
SQL_NextParam »p526
SQL_NextParameter »p528

O
SQL_Okay »p529
SQL_OnErrorCall »p531
SQL_OpenDatabase »p533
SQL_OpenDatabase1 »p534
SQL_OpenDatabase2 »p535
SQL_OpenDB »p536
SQL_OpenStatement »p541
SQL_OpenStmt »p542
SQL_Option »p544

 10

SQL_OptionResetAll »p546
SQL_OptionStr »p547

P
SQL_ParamCount »p549
SQL_ParameterCount »p551
SQL_ParameterInfo »p552
SQL_ParameterInfoStr »p553 NEW
SQL_ParamInfo »p554
SQL_ParamInfoStr »p556 NEW
SQL_ProcColCount »p558
SQL_ProcColInfo »p560
SQL_ProcColInfoStr »p564
SQL_ProcCount »p567
SQL_ProcedureColumnCount »p568
SQL_ProcedureColumnInfo »p569
SQL_ProcedureColumnInfoStr »p570
SQL_ProcedureCount »p571
SQL_ProcedureInfo »p572
SQL_ProcedureInfoStr »p573
SQL_ProcInfo »p574
SQL_ProcInfoStr »p576

R
SQL_ResColBInt »p578
SQL_ResColBLOB »p579 NEW
SQL_ResColBuffer »p581
SQL_ResColBufferPtr »p582
SQL_ResColChunk »p583 NEW
SQL_ResColCount »p584
SQL_ResColDate »p585 (V2)
SQL_ResColDateTime »p586 (V2)
SQL_ResColDateTimePart »p587 (V2)
SQL_ResColFloat »p588 (V2)
SQL_ResColIndicator »p589
SQL_ResColIndicatorPtr »p591
SQL_ResColInfo »p593
SQL_ResColInfoStr »p597
SQL_ResColLength »p600
SQL_ResColMemo »p602 NEW
SQL_ResColMore »p604
SQL_ResColNull »p605
SQL_ResColNumber »p606
SQL_ResColNumeric »p607 NEW
SQL_ResColRaw »p610
SQL_ResColSInt »p611 (V2)
SQL_ResColSize »p612
SQL_ResColStr »p613 (V2)
SQL_ResColString and SQL_ResColWString »p614 NEW
SQL_ResColText »p616 (V2)
SQL_ResColTime »p617 (V2)
SQL_ResColType »p618
SQL_ResColUInt »p619 (V2)
SQL_ResColWString: see SQL_ResColString
SQL_ResetStatementMode »p620
SQL_ResetStmtMode »p621

 11

SQL_ResRowCount »p622
SQL_ResSet »p623 NEW
SQL_ResSetArray »p623 NEW
SQL_ResSetSafeArray »p623 NEW
SQL_ResultColumnBInt »p630 (V2)
SQL_ResultColumnBLOB »p631 NEW
SQL_ResultColumnBuffer »p632
SQL_ResultColumnBufferPtr »p633
SQL_ResultColumnChunk »p634 NEW
SQL_ResultColumnCount »p635
SQL_ResultColumnDate »p636 (V2)
SQL_ResultColumnDateTime »p637 (V2)
SQL_ResultColumnDateTimePart »p638 (V2)
SQL_ResultColumnFloat »p639 (V2)
SQL_ResultColumnIndicator »p640
SQL_ResultColumnIndicatorPtr »p641
SQL_ResultColumnInfo »p642
SQL_ResultColumnInfoStr »p643
SQL_ResultColumnLength »p644
SQL_ResultColumnMemo »p645 NEW
SQL_ResultColumnMore »p646
SQL_ResultColumnNull »p647
SQL_ResultColumnNumber »p648 NEW
SQL_ResultColumnNumeric »p649
SQL_ResultColumnRaw »p650
SQL_ResultColumnSInt »p651 (V2)
SQL_ResultColumnSize »p652
SQL_ResultColumnStr »p653 (V2)
SQL_ResultColumnString and SQL_ResultColumnWString »p654
NEW
SQL_ResultColumnText »p655 (V2)
SQL_ResultColumnTime »p656 (V2)
SQL_ResultColumnType »p657
SQL_ResultColumnUInt »p658 (V2)
SQL_ResultColumnWString: see SQL_ResultColumnString
SQL_ResultRowCount »p659
SQL_ResultSet »p660 NEW
SQL_ResultSetArray »p660 NEW
SQL_ResultSetSafeArray »p660 NEW

S

SQL_SaveFile »p661 NEW
SQL_SelectFile »p664
SQL_SetDatabaseAttrib »p670
SQL_SetDatabaseAttribStr »p671 (V2)
SQL_SetDBAttrib »p672
SQL_SetDBAttribStr »p678 (V2)
SQL_SetEnvironAttrib »p679
SQL_SetOption »p681
SQL_SetOptionStr »p682
SQL_SetPos »p696
SQL_SetPosition »p699
SQL_SetStatementAttrib »p700
SQL_SetStmtAttrib »p701
SQL_Shutdown »p706
SQL_State »p707

 12

SQL_Statement »p708
SQL_StatementAttrib »p709
SQL_StatementAttribStr »p710 NEW
SQL_StatementCancel »p711
SQL_StatementInfoStr »p712
SQL_StatementIsOpen »p713
SQL_StatementMode »p714
SQL_StatementNativeSyntax »p715
SQL_Stmt »p716
SQL_StmtAttrib »p719
SQL_StmtCancel »p720
SQL_StmtInfoStr »p722
SQL_StmtIsOpen »p724
SQL_StmtMode »p725
SQL_StmtNativeSyntax »p732
SQL_StringToType »p734
SQL_SyncFetchPos »p736
SQL_SyncFetchPosition »p737

T
SQL_TableAutoColumnCount »p738
SQL_TableAutoColumnInfo »p739
SQL_TableAutoColumnInfoStr »p740
SQL_TableColumnCount »p741
SQL_TableColumnInfo »p742
SQL_TableColumnInfoStr »p743
SQL_TableColumnNumber »p744
SQL_TableColumnPrivilegeCount »p745
SQL_TableColumnPrivilegeInfoStr »p746
SQL_TableCount »p747
SQL_TableForeignKeyCount »p748
SQL_TableForeignKeyInfo »p749
SQL_TableForeignKeyInfoStr »p750
SQL_TableIndexCount »p751
SQL_TableIndexInfo »p752
SQL_TableIndexInfoStr »p753
SQL_TableInfo »p754 (V2)
SQL_TableInfoStr »p755
SQL_TableNumber »p756
SQL_TablePrimaryKeyCount »p757
SQL_TablePrimaryKeyInfo »p758
SQL_TablePrimaryKeyInfoStr »p759
SQL_TablePrivilegeCount »p760
SQL_TablePrivilegeInfoStr »p761
SQL_TableRowCount »p762 NEW
SQL_TableStatisticInfo »p763
SQL_TableStatisticInfoStr »p764 NEW
SQL_TableUniqueColumnCount »p765
SQL_TableUniqueColumnInfo »p766
SQL_TableUniqueColumnInfoStr »p767
SQL_TblAColCount »p768
SQL_TblAColInfo »p769
SQL_TblAColInfoStr »p772
SQL_TblColCount »p774
SQL_TblColInfo »p776
SQL_TblColInfoStr »p780

 13

SQL_TblColNumber »p783
SQL_TblColPrivCount »p785
SQL_TblColPrivInfoStr »p787
SQL_TblCount »p790
SQL_TblFKeyCount »p791
SQL_TblFKeyInfo »p793
SQL_TblFKeyInfoStr »p797
SQL_TblIndexCount »p800
SQL_TblIndexInfo »p801
SQL_TblIndexInfoStr »p804
SQL_TblInfo »p807 (V2)
SQL_TblInfoStr »p808
SQL_TblNumber »p810
SQL_TblPKeyCount »p812
SQL_TblPKeyInfo »p813
SQL_TblPKeyInfoStr »p815
SQL_TblPrivCount »p817
SQL_TblPrivInfoStr »p819
SQL_TblRowCount »p822 NEW
SQL_TblStatInfo »p824
SQL_TblStatInfoStr »p826 NEW
SQL_TblUColCount »p828
SQL_TblUColInfo »p829
SQL_TblUColInfoStr »p832
SQL_TextDate »p834 (V2)
SQL_TextDateTime »p835 (V2)
SQL_TextStr »p836
SQL_TextTime »p838 (V2)
SQL_Thread »p839
SQL_ToolsVersion »p842 NEW
SQL_ToolsVersionStr »p843
SQL_Trace »p845
SQL_TraceSInt »p849 (V2)
SQL_TraceStr »p850

U
SQL_UnbindCol »p852
SQL_UnbindColumn »p854
SQL_UpdateBLOB »p855 NEW
SQL_UpdateMemo »p857 NEW
SQL_UseDB »p859
SQL_UseDBStmt »p860
SQL_UseStmt »p861

 14

APPENDICES

Appendix A: SQL Statement Syntax »p862
Basic SQL Syntax Rules »p863
CREATE TABLE »p867
DROP TABLE »p868
INSERT INTO »p869
DELETE FROM »p870
UPDATE »p871
SELECT »p872
CALL »p875

Appendix B: ODBC Reserved Words »p876

Appendix C: ODBC Scalar And Aggregate (Set) Functions »p878

ODBC Aggregate Functions »p879
ODBC String Functions »p881
ODBC Numeric Functions »p884
ODBC Time/Date/Interval Functions »p886
ODBC System Functions »p889
Explicit Data Type Conversion »p890

Error Codes

Appendix D: SQL Tools Error Codes »p891

Appendix E: ODBC Error Codes »p895

Appendix F: SQL States (ODBC Error States) »p897

Other Topics

Appendix G: Connection String Syntax »p910

Appendix H: Logical True And False »p912

Appendix I: Internet Resources »p915

Appendix J: Using Bitmasked Values »p916

Appendix K: SQLSetEnvAttr »p918

Appendix L: Microsoft Access »p919
Appendix M: Microsoft Excel »p923
Appendix N through S: Reserved »p926

Appendix T: New Features in SQL Tools Version 3 »p927
Appendix U: Upgrading from SQL Tools Version 2 to Version 3 »p930
Appendix V: Other Changes in SQL Tools Version 3 »p931

Appendix Y: Using SQL_Test.EXE »p933

Appendix Z: Topics Not Covered »p935

 15

Sample Programs

A Simple Program, Step By Step »p936

Quick and Dirty: The SQL_DUMP Program »p937

SQL_DUMP Step 1: Link SQL Tools to Your Program »p938
SQL_DUMP Step 2: Open the Database »p940
SQL_DUMP Step 3: Tell the Database Which Data We Want »p942
SQL_DUMP Step 4: Retrieve the Data »p943
SQL_DUMP Step 5: Detect the End of the Data »p944
SQL_DUMP Step 6: Use the Data »p946
SQL_DUMP Step 7: Compile and Run »p948
SQL_DUMP Step 8: Add Error Checking »p949

For additional sample programs for PowerBASIC, see the \SQLTOOLS\SAMPLES\
directory.

 16

Copyright and Trademark Information

© Copyright 1999-2011 Perfect Sync, Inc.

All Rights Reserved.

No portion of this document may be reproduced
 without the written permission of Perfect Sync.

Perfect Sync and SQL Tools are trademarks of

6511 Franklin Woods Drive

Traverse City, Michigan
(USA) 49686

Internet: PerfectSync.com

EMail: Support@PerfectSync.com

Voice: +1 (231) 947-7700
SQL Tools support is not available via

telephone except on an hourly-fee basis.

See Getting Technical Help »p25

Microsoft ®, Windows ®, Windows 95 ®, Windows 98 ®, Windows ME ®,
Windows NT ®, Windows 2000 ®, Windows XP ®, Windows 7 ®

Visual Studio ®, Microsoft Access ®, Microsoft Excel ®, FoxPro ®,
SQL Server ®, Visual Basic ®, Visual C++ ®, QBASIC®, and MSFlexGrid ®

are trademarks of Microsoft Corporation.

PowerBASIC ®, PowerBASIC for Windows ®, PB/Win ®, PB/CC®, and PowerTime
are trademarks of PowerBASIC, Inc.

UltraEdit® is a trademark of IDM Computer Solutions, Inc.

InstallShield ® is a trademark of InstallShield Software Corporation.

 17

InstallBuilder ® is a trademark of Wise.Solutions, Inc.

Oracle ® and SQL*Plus ® are trademarks of Oracle Corporation.

Paradox ® is a trademark of Corel Corporation, and
Quattro ® Pro is a trademark of Corel Corporation Limited.

dBASE ® is a trademark of dBASE, Incorporated.

Delphi ® is a trademark of Borland Software Corporation.

Lotus Notes ® is a trademark of Lotus Development Corporation.

SQLBase ® is a trademark of Centura Software Corporation.

Spread® is a trademark of FarPoint Technologies, Inc.

DBGrid® and VSFlexGrid® are trademarks of ComponentOne, LLC.

UltraGrid® and DataTable® are trademarks of Infragistics, Inc.

SQLBase® is a trademark of Centura Software/Gupta Technologies, LLC.

Btrieve® is a trademark of Pervasive Software

Sybase® is a trademark of Sybase, Inc.

Adobe Acrobat® is a trademark of Adobe Systems Incorporated

All brand names and product names that are used

in this document are trade names, service marks, or
registered trademarks of their respective owners.

Other trademarks may have been inadvertently used in this document
without recognition here. Please contact Support@PerfectSync.com
and omissions will be corrected in future versions of this document.

 18

License Agreement & Runtime File Distribution Right s

PLEASE READ THIS ENTIRE SECTION. IT DESCRIBES YOUR LEGAL RIGHTS AND
OBLIGATIONS.

Software License Agreement
 and Runtime File Distribution Rights

SQL TOOLS STANDARD LICENSE

The SQL Tools Standard License allows you to install the SQL Tools Standard development
package (the contents of the SQL Tools Installation File as originally received from Perfect
Sync or an authorized distributor) on a single development computer, to use the package for
software development, and to distribute the SQL Tools Standard Runtime Files with
applications which you develop, which require the Runtime Files to operate properly, and
which add significant functionality to the Runtime Files.

SQL TOOLS PRO LICENSE

The SQL Tools Pro License allows you to install the SQL Tools Pro development package
(the contents of the SQL Tools Installation File as originally received from Perfect Sync or an
authorized distributor) on up to four (4) development computers, to use the package for
software development, and to distribute the SQL Tools Pro Runtime Files with applications
which you develop, which require the Runtime Files to operate properly, and which add
significant functionality to the Runtime Files.

IMPORTANT NOTE: Each SQL Tools Runtime File is serialized. The unique Authorization
Code that is embedded in each copy of the Runtime Files will allow Perfect Sync to attribute
unauthorized or improper distribution to the original licensee. Attempting to change the
embedded Authorization Code is a violation of U.S. and international law, and the Runtime
Files will self-deactivate or malfunction if tampering is detected. Perfect Sync cannot be held
responsible for damage to databases or other files that may be caused by a SQL Tools
Runtime File that has been intentionally altered. (See LIMITED WARRANTY below.)

If you have not purchased a SQL Tools Software License from Perfect Sync or an authorized
distributor then you are not legally entitled to use the SQL Tools Runtime Files for software
development or to distribute the SQL Tools Runtime Files in any manner whatsoever. You
may be violating the law and may be subject to prosecution if you distribute this product or
use it for software development. Please refer to the U.S. Copyright Act (and other applicable
U.S. and international laws and treaties) for information about your legal obligations regarding
the use and distribution of copyrighted and other legally protected works.

SOFTWARE LICENSE

This Software License is an agreement between the Licensee ("you") and the Licensor
(Perfect Sync, Inc.). By installing SQL Tools (the "software") on a computer system and/or by
using the SQL Tools machine-executable files (the "Runtime Files") for software
development, you agree to the following terms:

LICENSE

The software and documentation is protected by United States copyright law and international
treaties. It is licensed for use on a single computer system (SQL Tools Standard License) or

 19

on four computer systems (SQL Tools Pro License). If this software is installed on a
computer network, you must obtain a separate license for each network workstation (or group
of four workstations) where the software can be used for software development, regardless of
whether or not the software is actually used concurrently on multiple workstations.

DISTRIBUTION

Only individuals or corporations that have purchased a SQL Tools License from Perfect Sync
or from an authorized distributor may reproduce and distribute the SQL Tools Runtime Files,
and then only with applications that 1) are written by the licensee, 2) require the Runtime Files
to operate, and 3) add significant functionality to the Runtime Files. In that case, and
provided that your application bears your complete and legal copyright notice or the following
notice (in no less than a 10pt font)...

Portions © Copyright 2001 Perfect Sync, Inc.

...you may distribute the SQL Tools Runtime Files royalty free. The SQL Tools DLL Runtime
Files may be reproduced and distributed as separate files. The SQL Tools PBLIB and SLL
Runtime Files may not be distributed as separate files; they may be reproduced and
distributed only when they are linked to, and become part of, an executable program.

The Perfect Sync Authorization Code which is provided in human-readable form with the SQL
Tools installation package is also embedded in the SQL Tools Runtime Files and is
considered to be part of the Runtime Files. The Authorization Code may be distributed as
part of a machine-readable computer program that meets the requirements above, but it may
not be distributed in human-readable form (including source code), disclosed physically,
electronically, or verbally to any third party, or distributed in any other form. Disclosure or
improper distribution of the Authorization Code would allow the unauthorized use of the SQL
Tools Runtime Files by others, and is legally equivalent to the unauthorized distribution of the
Runtime Files themselves.

No other portion of the SQL Tools package, including documentation, header files, and
sample program code, may be distributed in any form except by Perfect Sync or an
authorized distributor.

LIMITED WARRANTY

Perfect Sync, Inc. warrants that the physical disks (if any) and physical documentation (if any)
are free of defects in workmanship and materials for a period of thirty (30) days from the date
of purchase. If the disks or documentation are found to be defective within the warranty
period, Perfect Sync, Inc. will replace the defective items at no cost to you. The entire liability
of this warranty is limited to replacement and shall not, under any circumstances, encompass
any other damages.

PERFECT SYNC, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES,
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO , ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTIC ULAR PURPOSE.

GOVERNING LAW

This license and limited warranty shall be construed, interpreted, and governed by the laws of
the State of Michigan, in the United States of America, and any action hereunder shall be
brought only in Michigan. If any provision is found invalid or unenforceable, the balance of
this license and limited warranty shall remain valid and enforceable. Use, duplication, or
disclosure by the U.S. Government of the computer software and documentation in this
product shall be subject to the restricted rights under DFARS 52.227-7013 applicable to

 20

commercial computer software. All rights not specifically granted herein are reserved by
Perfect Sync, Inc.

If you have any questions about your rights and responsibilities

under this Software License, please contact

Perfect Sync, Inc.
6511 Franklin Woods Drive

Traverse City, Michigan
(USA) 49686-1908

You can reach us by electronic mail at

Support@PerfectSync.com

For additional information visit
PerfectSync.com

 21

SQL Tools Authorization Codes

This is a topic that all SQL Tools programmers shou ld read and understand
thoroughly. If you have any questions about it, pl ease contact
Support@PerfectSync.com

Unfortunately, not everybody is honest and not everybody obeys the law. That's the reason
that our houses have locks on their doors.

We at Perfect Sync have every expectation that you, as a SQL Tools licensee, intend to
comply with the terms of the SQL Tools License Agreement »p18. But it would be very difficult
for you to guarantee that everybody who uses your program will be equally honest, especially
if your program is widely distributed or if it is available for download from the internet.

Like many programming tools, SQL Tools contains certain security measures that make it
more difficult for people to use it illegally. Notice that we said "more difficult", not
"impossible". Frankly there is no such thing as 100% security when it comes to protecting a
computer program from illegal use. If a "cracker" is determined enough, and has enough
time, they can bypass virtually any security system. Just as a determined thief can break into
your home, office, or car.

Every SQL Tools Runtime File is serialized. That means that your copies of the Runtime
Files contain a unique, embedded key number called an Authorization Code. Nobody else's
SQL Tools Runtime Files have the same Authorization Code as your copies of the Runtime
Files. This allows Perfect Sync to identify a SQL Tools Runtime File that is being used
illegally (i.e. distributed in violation of the SQL Tools License Agreement »p18) and to
determine the identity of the original licensee.

In order to use a SQL Tools Runtime File, you must prove to the Runtime File that you know
its correct Authorization Code by using the SQL_Authorize »p263 function. This is done so
that when you distribute the SQL Tools Runtime Files legally, nobody else will be able to
remove them from your program and use them illegally. They won't have the correct
Authorization Number, and the Runtime Files will not function properly without it.

Protect Your Authorization Code!

Your Authorization Code must be treated as confiden tial information. If your
Authorization Code becomes known to other people, i t will allow them to use your
copy of the SQL Tools Runtime File(s) illegally. Y OU are legally responsible for
preventing that from happening!

Using the SQL_Authorize Function

If you don't use the SQL_Authorize function at all, the SQL_Init »p494 and
SQL_Initialize »p495 functions will refuse to work, making it impossible for your program
to use SQL Tools in any way.

If you use the SQL_Authorize function with the Authorization Code that matches your
Runtime File -- using the exact Code that was provided with the Runtime File -- it will work
normally.

But it's not quite that simple...

 22

It would be relatively easy for somebody to write a program that used the SQL_Authorize
function to test all of the possible Authorization Codes one by one, until it found one that
worked with your Runtime File. The SQL_Authorize function returns %SQL_SUCCESS
when it accepts an Authorization Code, so all it would take would be a simple "loop" program
that stopped when the correct Code was found.

So the SQL_Authorize function also returns %SQL_SUCCESS when certain other codes
are used.

There are approximately 4.2 billion possible Authorization Codes. Of those, only one is the
correct Code for your Runtime File, but about 64,000 "Dummy Codes" will also cause the
SQL_Authorize function to return %SQL_SUCCESS. This makes it much more difficult to
use the SQL_Authorize function to determine the correct Authorization Code for a given
Runtime File.

THIS IS A VERY IMPORTANT POINT: If one of the 64,000 Dummy Codes is used instead of
the correct code, the SQL_Authorize function will return %SQL_SUCCESS, the SQL_Init
and SQL_Initialize functions will work properly, and all other SQL Tools functions will
appear to work properly. But in reality, the SQL Tools Runtime File will purposely
malfunction. At random intervals, many different SQL Tools functions will produce results that
are completely or partially incorrect. For example, every so often a SQL Statement like
SELECT might not return all of the rows that it should. Or an UPDATE statement might return
%SQL_SUCCESS when it actually -- purposely -- failed. Or certain values might be set to
zero. This will make the SQL Tools Runtime Files seem to work properly most of the time,
but they will be unreliable.

Don't worry, the SQL Tools Runtime Files have been tested extremely thoroughly to make
sure that no random errors will be produced when the correct Authorization Code is used.

And we have taken great care to make sure that a simple typo will not result in a SQL Tools
program that malfunctions unexpectedly. Among other things, the code numbers have been
chosen so that accidentally mis-typing any single digit of a valid Authorization Code will never
produce a Dummy Code that SQL_Authorize will accept. If you mis-type two of the eight
digits of a valid Code there is less than a one-in-10,000 chance that you will accidentally type
a Dummy code that SQL_Authorize will accept. If you mis-type three out of eight digits...
well, you should probably take typing lessons before attempting to use SQL Tools.

With just a little bit of care when you type the Authorization Code into your program, you can
rest assured that SQL Tools will work properly from that point forward.

IMPORTANT NOTE: Be sure to test the return value of the SQL_Authorize »p263 function
to make sure that it is %SQL_SUCCESS. This will virtually guarantee that you typed the
Authorization Code correctly, and that the SQL Tools Runtime File will work properly.

Please see Four Critical Steps For Every SQL Tools Program »p61 and SQL_Authorize »p263
for more information.

 23

Troubleshooting Your Programs

Nobody's perfect. Anybody who writes computer programs is bound to make a few mistakes.
Finding and correcting those mistakes -- the process of troubleshooting your program -- can
be as time-consuming as writing the original program. Fortunately, SQL Tools provides
several very powerful features that can make troubleshooting much easier and faster.

Surprisingly, the most common mistake that people seem to make is not even checking for
errors! Virtually all SQL Tools functions provide a way for you to determine whether or not
they worked correctly. You may need to check a function's return value to make sure that it is
%SQL_SUCCESS, or you may need to use one of the many SQL_Error functions that are
provided. The use of these functions is covered in the section of this document that is titled
Error Handling In SQL Tools Programs »p179.

For example, many of the "problem" programs that are submitted to our Technical Support
department look something like this:

lResult& = SQL_OpenDB("MyData.DSN")
lResult& = SQL_Stmt("SELECT * FROM MYTABLE")

DO
 lResult& = SQL_Fetch(%NEXT_ROW)
 '(etc.)
LOOP

The problem with that code is that none of the result values are being checked! That may be
acceptable once your program is working properly, but during development and debugging
your program should look more like this:

lResult& = SQL_OpenDB("MyData.DSN")
IF NOT SQL_Okay(lResult&) THEN
 MSGBOX "ERROR A:"+FORMAT$(lResult&)
 EXIT FUNCTION
END IF

lResult& = SQL_Stmt("SELECT * FROM MYTABLE")
IF NOT SQL_Okay(lResult&) THEN
 MSGBOX "ERROR B:"+FORMAT$(lResult&)
 EXIT FUNCTION
END IF

...and so on. It's very important to check those return values! (Actually we recommend that
you leave the debugging code in place whenever possible, even when you finish a project.
You never know when you will need to fix a well-hidden bug.)

SQL Tools also has the built-in ability to automatically display a message box whenever a
runtime error is detected. It can't automatically EXIT FUNCTION like the code above does,
and it is only intended for debugging purposes, but it can be a very powerful tool when you
are not sure where your program is failing. For more information about this, see
Miscellaneous Error Handling Techniques »p185.

Another often-overlooked troubleshooting technique is the Trace File. SQL Tools has the
ability to create a text file that can show you exactly where an error is taking place, and often,
what is causing it. For more information, see the SQL Tools Trace Mode »p186.

 24

The great majority of the questions that are received by Perfect Sync Technical Support can
be answered almost instantly if you use the troubleshooting tools that SQL Tools provides. In
fact, when we respond to most questions, we usually have to ask "What does the
SQL_ErrorQuickAll function tell you?" or "What does the Trace File tell you?" When we get
the answers to those questions, then we can begin analyzing the problem.

So if you check those things before contacting Technical Support, you will save yourself (and
us!) a lot of time!

 25

Getting Technical Help

To save time, please read the page titled Troubleshooting Your Programs »p23, which contains
general troubleshooting guidelines, before you contact Perfect Sync.

We have worked very hard to make sure that this document contains everything that you'll
need to know about using SQL Tools. Before contacting Perfect Sync for help, please search
this document for words and phrases that might be related to your question. (For example,
when this document is presented as a Help File, use the Windows Help Contents, Index, and
Find features.) Almost every SQL Tools topic is covered twice in this document: once in the
User's Guide and once in the Reference Guide.

If you don't find an answer in this document, Perfect Sync provides free Technical Support via
electronic mail to all developers who license SQL Tools. Please send all pertinent technical
questions to Support@PerfectSync.com. Be sure to include your SQL Tools Serial Number,
an email address where we can send our response, and a detailed description of the problem.
If possible please include sample source code and Trace Files.

If you contact us and it turns out that the answer to your question is given in this document,
that is probably the answer that you will receive: a polite suggestion that you read a particular
section of the Help File. After all, an informal email message from our Tech Support
department wouldn't be able to explain a topic nearly as thoroughly as this document. If you
feel that the SQL Tools documentation does not explain a topic well enough, please cut and
paste the unclear help text into your message, and ask a specific question. We'll be glad to
try to clarify!

If the answer to your question is not covered in this document but does fall within the bounds
that we have established, we will do our best to 1) answer your question quickly and
completely via email and 2) add the answer to the next release of this document, so that
others can benefit.

If your question is outside the bounds that we have established, we reserve the right to
decline to provide an answer. For example, if a SQL statement does not produce the results
that you think it should, it is probably safe to assume that SQL Tools is functioning correctly
and you are not using the SQL language correctly. (SQL Tools simply submits SQL
statements to the ODBC driver without modifying them, so it is virtually impossible for SQL
Tools to interfere with the proper execution of a SQL statement.) We will be very pleased to
confirm that you are using the SQL_Stmt function correctly, but that is where our
responsibility ends: providing a reliable function and an accurate explanation of what it does.

Another general area worth mentioning is "ODBC Error Messages". Each ODBC Driver »p76
provides a set of Error Message that are very specific that that driver and database. SQL
Tools supports well over 50 different ODBC Drivers, not to mention the many different
versions of each driver that are available. If we are not familiar with a particular Error
Message that your program is generating, we will direct you toward the appropriate database-
specific documentation.

In the end, a SQL Tools function either works properly or it doesn't. If it doesn't work, we will
endeavor to provide a bug fix for the SQL Tools Runtime File(s). If it does work, you are
responsible for investigating the meaning of database-specific error messages or figuring out
why a particular SQL statement (or other operation) does not give you the results that you
expect.

As the president of PowerBASIC, Inc. is fond of saying, "When you buy a hammer it doesn't

 26

come with instructions for building a house".

Don't get us wrong: we will be very glad to help you learn to use our "toolkit"! But we can't
possibly provide free training in the rest of the skills that you will need to complete a project,
whether it's a birdhouse or a (data) warehouse.

Perfect Sync reserves the right, at our sole discretion, to charge hourly fees for technical
support that does not fall within the bounds of what we consider to be normal and reasonable.
(No fees will be charged without the prior consent of the SQL Tools Licensee.)

Questions about the licensing »p18 and distribution of the SQL Tools Runtime Files and other
components should be directed to Sales@PerfectSync.com.

PowerBASIC sponsors the PowerBASIC Peer Support Forums at
http://powerbasic.com/support/pbforums/index.php. Many SQL Tools users of all experience
levels frequent the forums. PowerBASIC also provides many different support files via their
web site, including current PB Help Files. If you prefer to receive PowerBASIC support via
email, contact support@powerbasic.com

And by the way, the Internet is an excellent source for general SQL and ODBC support. See
Appendix I »p915 for more information.

 27

Frequently Asked Questions

This section of this document is intended to answer basic questions like "What Is SQL
Tools?" and "How Complete Is SQL Tools?".

For more technical questions and answers, you should refer to the User's Guide (a detailed,
narrative-style explanation of SQL Tools) and the Reference Guide (which contains detailed
descriptions of every SQL Tools function).

What is SQL Tools? »p28

What's the difference between SQL Tools Standard and Pro? »p29

What will SQL Tools do for my programs? »p31

What will I need to use SQL Tools? »p32

What's the difference between SQL and ODBC? »p33

Can I use SQL Tools to write "universal" or "interoperative" programs? »p34

Do all SQL Tools features work with all database? »p35

How complete is SQL Tools? »p36

Exactly which ODBC features are not supported? »p37

 28

What SQL Tools IS and ISN'T

SQL Tools is a package of developer's tools that allow programmers to add high-
performance, low-overhead SQL database support to their 32-bit Windows programs. It was
specifically designed to be used with PowerBASIC, but it can be used with any 32-bit
computer language that can use functions in standard-format 32-bit DLLs.

SQL Tools is NOT a database-design program like Microsoft Access or Oracle's SQL*Plus.
In other words, SQL Tools does NOT provide a GUI environment for building databases from
scratch. (It would theoretically be possible, but extremely time-consuming, to use SQL Tools
and a programming language to create a full-featured database-design program like Access.
But when inexpensive, highly sophisticated database design tools are readily available, why
do it?)

Also, SQL Tools does NOT provide a "direct link" to a database in the same way (for
example) that the BASIC language's OPEN statement provides direct access to a disk file.
SQL Tools requires the use of ODBC drivers »p76 to provide the link between your program
and the database.

 29

What's the Difference Between SQL Tools Standard an d Pro?

Basically, the SQL Tools Standard Runtime Files contain all of the functions that you will need
to create programs that can read and modify SQL databases. The entire text-based, single-
statement SQL language is supported; SQL Tools does not impose any limitations on the
SQL language.

The Standard Runtime Files allow a program to have up to four (4) database/statements
open at the same time. For example you could have one database with four open
statements; or four databases with one open statement each; or two and two, etc.

Several basic Info functions are provided, such as API Info, Database Info, Database
Attributes, Table Info, Table Column Info, and Result Column Info. (The Database Attribute
function alone provides well over 200 different values.)

A powerful set of Error Handling functions is also provided, including two Trace Modes and an
"ignore specified error" system.

PLEASE NOTE: All of the SQL Tools functions that ar e described in this document are
subject to the limitations of the ODBC driver »p76 that you choose to use. SQL Tools
cannot support features that are not supported by y our ODBC driver. Most modern
ODBC drivers provide most of the functions that are described in this document, but
Perfect Sync cannot guarantee that every feature li sted here will be available to every
program. Think of it this way... Your word process or may support color printing, but if
your Printer Driver doesn't support color then all you will see is black lettering on white
paper. The same is true for your SQL Tools program s and your ODBC driver. SQL
Tools can't do things that your driver doesn't supp ort.

The Pro Runtime Files provide all of the Standard Runtime File(s) functionality, plus they
allow the use of up to 1,024 concurrent database/statements.

The Pro Runtime Files also include a large number of advanced features, including:

• Storage and retrieval of Long Binary Data (images, sounds, etc.)
• Enhanced support for Microsoft Access databases
• Statement Auditing (logging)
• Bookmarks
• Batched SQL Statements
• Bulk Operations
• Positioned Operations
• Named Cursors
• MultiRow (Block) Cursors
• Direct access to raw data, unusual and proprietary data types
• Multithreaded Operation
• Bound Statement Parameters, including Long values and arrays
• Stored Procedures
• Manual Commit/Rollback of Transactions
• Relative Fetches
• Connection Pooling
• Low level SQL/ODBC Diagnostics
• Extended date/time support: Julian Dates, Day Of Year, etc.
• Additional utility functions like SQL_SaveFile and SQL_TableRowCount.

Many different Info (catalog) functions are also included in the Pro Runtime Files, including

 30

Driver Info, Datasource Info, Data Type Info, Table Statistics, Table and Column Privilege
Info, Unique Column Info, Primary Column Info, AutoColumn Info, Index Info, Foreign Key
Info, Stored Procedure Info, and others.

The Pro Runtime Files also allows you to access low level functions that require ODBC
Handles and memory pointers to SQL Tools data buffers.

The SQL Tools Pro Runtime Files provide virtually 100% of the functionality that is included in
the ODBC 3.8, Level 2 specification.

For a very brief list of ODBC 3.8 features that are not supported by the SQL Tools Pro
Runtime Files, see Unsupported Features »p37.

For a function-by-function breakdown of the Standard and Pro Runtime Files, see Functional
Families »p230.

 31

What Will SQL Tools Do For My Programs?

SQL Tools will allow your 32-bit Windows programs to use the worldwide-standard Structured
Query Language (SQL) to read-from and write-to databases that have been created by other
programs. Within certain limits (imposed by the creators of the various types of databases
that SQL Tools supports) you can also create new databases.

SQL Tools Pro will also enable your programs to access many different types of information
about a database, such as Table Names, Index Names, and literally hundreds of other
"Catalog Info" functions.

 32

What Will I Need To Use SQL Tools?

You'll need:

1) A computer with a 32-bit Microsoft Windows operating system, such as...
• Windows 7, Vista, XP, or 2000 (preferred)
• Windows NT4
• Windows 95, 98, or ME

2) A 32-bit programming language such as...

• PowerBASIC's PB/Win or PB/DLL compiler
• PowerBASIC's PB/CC "console compiler"

If you are proficient at converting PowerBASIC-"declaration" syntax into other
languages, the SQL Tools Version 3 DLL »p71 Runtime Files can also be used
by:

• Microsoft Visual Basic version 4, 5, or 6
• Microsoft Visual C++
• Microsoft Visual Fortran
• Borland's C++ Builder
• Borland's Delphi
• Any other 32-bit language that can call functions in standard Win32 DLLs

3) The SQL Tools development package

4) The ODBC Driver(s) for the database(s) that you want to use. Drivers for more
than 100 popular databases are available from various sources, including the free
MDAC package from microsoft.com/downloads . See Appendix I :Internet Resources

»p915 for information about locating non-Microsoft drivers.

If you want to design a database in a "visual" environment (as opposed to working with an
existing database using a program that you write) you will also need the appropriate database
management software, such as Microsoft Access, Corel Paradox, or Oracle SQL*Plus.

We also strongly suggest that you acquire reference materials related to SQL programming.
While this document contains a lot of information, it could not possibly be all-inclusive. There
are literally thousands of SQL books available. As of this writing, Amazon lists over 8,000
books about SQL and ODBC.

In particular, we recommend that you acquire books related to 1) using SQL statement syntax
that is specific to the type of database that you are using, and 2) "good practice" in database
design. These are lengthy, complex topics that are well beyond the scope of this document.

Google lists well over 110,000,000 web pages related to SQL; see Appendix I: Internet
Resources »p915.

Finally, if you are going to use the most advanced features that SQL Tools provides, we
recommend that you download the (free) ODBC Software Developers Kit »p915 from Microsoft.
The ODBC SDK Help File, when printed, is well over 1350 pages long, and it is a rich source
of low-level details. It would not be possible (or legal, from a copyright standpoint) for Perfect
Sync to include that level of detail in this document.

 33

What's the Difference Between SQL and ODBC?

SQL is a standard language for accessing databases.

ODBC is an even broader set of standards that allow programs to access many different
types of databases with standard techniques. ODBC defines not only the language, but how
databases should be opened and closed, standard error messages, and many, many other
details.

SQL Tools is capable of "talking to" any ODBC-compliant database: Access, SQL Server,
Paradox, Excel, dBASE, FoxPro, Oracle, Lotus Notes... or any other type of database for
which an "ODBC Driver" is available. Even old-fashioned Flat Text Files can be used!

You can read SQL and ODBC »p75 later in this document for more details, but we recommend
that you read the introductory section titled A SQL Tools Primer »p73 first.

 34

Can I Use SQL Tools to Write "Universal" Programs?

Theoretically, yes. But some ODBC-compliant databases are extremely limited, so writing a
universal or "interoperable" application that would work with any ODBC-compliant database
would require you to write a "least common denominator" program.

For example, the absolute-bare-minimum ODBC specification requires that an ODBC-
compliant database support only one type of data. Bare-minimum databases have their
choice of supporting either a fixed-length or variable-length string, but they are not required to
support both. Of course it would be possible to use that one data type to "simulate" numeric
variables, TYPE structures, and strings of different types, but it probably wouldn't be worth the
effort.

Fortunately, most modern ODBC-compliant databases support at least a dozen different data
types, from single bits to huge BLOBs (Binary Large OBjects, which can store binary images
like sounds, pictures, or even entire programs).

Instead of writing truly "universal" programs, most programmers choose to write SQL Tools
programs that require a certain minimum ODBC functionality, such as that provided by
Microsoft Access 97.

For more information about the levels of functionality that different databases provide, see
Compliance Issues »p53.

 35

Do All SQL Tools Features Work With All Databases?

Absolutely not! SQL Tools can only support features that are supported by a given ODBC
driver »p77. It does not, for example, simulate Oracle features for Access databases.

If you choose to, you could use SQL Tools and your programming language to simulate those
features -- in fact that is a common programming practice -- but SQL Tools simply provide the
"raw" functionality that makes that possible.

 36

How Complete is SQL Tools?

SQL Tools supports virtually all of the major features in Microsoft ODBC 3.8, Level 2, which
(as of this writing) is the state of the art for ODBC.

SQL Tools supports 100% of the SQL statement syntax that is supported by the ODBC driver

»p77 that you use. Basically, SQL Tools allows you to access any ODBC-compatible database
for which you have an ODBC driver, and it allows you to use virtually all of the functionality
that is provided by the driver. (See Which ODBC Features are Not Supported? »p37)

The SQL Tools Standard Runtime Files »p29 support up to two (2) simultaneous database
connections, with up to two (2) concurrent SQL statements on each connection. (Within
certain limitations, three concurrent statements can be used.) Each database can have up to
999 tables, each table and/or result set can have up to 999 columns, and block cursors up to
256 rows are supported.

The SQL Tools Pro Runtime Files »p29 support up to 256 simultaneous database connections,
with up to 256 concurrent SQL statements on each connection. Each database can have up
to 9,999 tables, each table and/or result set can have up to 9,999 columns, and block cursors
up to 1,024 rows are supported.

 37

Exactly Which ODBC Features are Not Supported?

SQL Tools Version 3 does support Asynchronous Execution of SQL Statements »p125, but it
only supports one of the two available methods. Here is what the Microsoft ODBC Software
Developer Kit »p915 says about Asynchronous Execution:

"In general, applications should execute functions asynchronously only on single-
threaded operating systems. On multithread operating systems, applications should
execute functions on separate threads, rather than executing them asynchronously
on the same thread. No functionality is lost if drivers that operate only on multithread
operating systems do not support asynchronous execution."

The Windows operating system is capable of multithreading -- as are PowerBASIC and most
other 32-bit Windows programming languages -- so SQL Tools does not support ODBC-style
asynchronous execution. PowerBASIC and most other languages can create threads that
allow SQL statements to be executed asynchronously.

Microsoft Visual Basic does not support true multi-threading, but SQL Tools Pro includes
functions that allow SQL Tools itself to create threads which can execute asynchronous SQL
statements in VB programs.

To be clear, SQL Tools Pro does not support ODBC-style asynchronous execution, but it
does support thread-based asynchronous execution, exactly as recommended by Microsoft.

Descriptors

Here is what the Microsoft ODBC Software Developer Kit says about Descriptors:

"An application calling ODBC functions need not concern itself with descriptors. No
database operation requires that the application gain direct access to descriptors.
However, for some applications, gaining direct access to descriptors streamlines
many operations. For example, direct access to descriptors provides a way to rebind
column data that may be more efficient than calling"... [the SQL_ManualBindCol
function]... "again."

SQL Tools supports virtually 100% of the ODBC functions that can be performed without
descriptors. If you feel that your program would benefit from using them, we suggest that you
consult the Microsoft ODBC Software Developer Kit for more information. SQL Tools should
be completely compatible with any descriptor-API-based functions that you write, but (of
course) it is not possible for us to guarantee compatibility.

(By the way, "rebinding column data" was an interesting choice for Microsoft to use as an
example, because a very efficient alternate method -- which does not use descriptors -- is
provided via "statement attributes".)

We believe that only the most complex ODBC programs would require the use of descriptors,
and very few programs would benefit in any way from using them.

Deprecated Functions

As the ODBC specification has grown from version 1.0 to 2.0 to 3.0 to 3.8, a few functions
have been "Retired In Place" along the way. An "R.I.P." or "deprecated" ODBC function is

 38

one that has been replaced by a better, more powerful function, but is still available for older
applications to use.

SQL Tools does not support deprecated functions.

Duplicate Functions

In a very few cases where two or more ODBC functions can be used to perform the same
operation, SQL Tools does not support all of the different methods. Generally speaking, SQL
Tools supports the most sophisticated method that is available.

 39

Ready to Write Programs? Start Here!

Whether you're an experienced SQL guru or a novice, there are a few things that you really
need to know about before writing your first SQL Tools program. We'll try to be as brief as
possible, and to follow up later with more detailed information, but we strongly suggest that
you read these brief sections of this document:

Conventions used in this Document »p40

Variable Naming Conventions »p41

Installation of SQL Tools »p44

Installation of ODBC Drivers »p47

Terminology Differences »p52

Compliance Issues »p53

Two Of Everything »p55

Four of Many Things »p57

Eight or More of Some Things »p58

Four Critical Steps For Every SQL Tools Program »p61

 40

Conventions Used In This Document

Most of the text in this document will appear in a plain Arial font.

Important Warnings are shown in bold red . Less urgent warnings are shown in bold dark
red .

If this document is presented in electronic (Help File or online) form, clickable links look like
This »p40. The highlight color is determined by your Windows settings.

SQL Tools function names, source code, numeric values, string values, and BASIC keywords
are shown in the Courier New font.

SQL Tools functions start with the prefix SQL_ and appear in Mixed Case letters with
certain letters capitalized, such as SQL_OpenDatabase .

BASIC keywords appear in UPPER CASE letters, such as IF and THEN, to match the
PowerBASIC documentation.

Variable names also appear in mixed-case letters, but with the first letter in lower case, like
lResult& and sParam$. For information about the variable naming convention »p41 that is
used, see the next page.

Equates -- words that represent fixed numeric values -- appear in UPPER_CASE with a
leading percent-sign, like %SQL_SUCCESS, %IMMEDIATE, and %NEXT_ROW.

SQL statements like SELECT * FROM MYTABLE and individual elements of the SQL
statement syntax »p862 like SELECT are shown in bold green italics, to indicate that you
must use SQL syntax that is compatible with the ODBC driver that you are using. (It also
helps distinguish the BASIC keyword SELECT from the SQL SELECT keyword.) You
should think of the SQL syntax as a language that is separate from BASIC, C, or Delphi, so
the green italics are used as a visual clue to indicate a different kind of "source code".

While Microsoft prefers that "SQL" be pronounced "Ess Cue Ell", people that actually use
SQL in their work usually pronounce it like the word "sequel". This document uses the later,
more popular and casual pronunciation. This is only significant, and is only mentioned here,
because this document will refer to things like "a SQL database" while Microsoft
documentation »p915 will say "an SQL database".

 41

Variable Naming Conventions

Some programmers prefer to use explicit "type identifiers" in their variable names. An
example of this would be the addition of an ampersand (&) to the end of a variable name to
indicate that a variable like Something& is a Long Integer. Other programmers prefer a
convention called "Hungarian notation" where something is added to the beginning of the
variable name. The Hungarian notation version of Something& would be lSomething ,
with the lower-case L prefix standing for Long. (Hungarian notations vary. For example,
some people use i for Integer, others use n.)

For maximum readability by both groups of people, this document uses both prefixes and
suffixes, so every variable you see will look like lSomething& . The following prefixes and
suffixes are used in this document:

Signed Integer Variables

lSomething& LONG Integer
qSomething?? QUAD Integer
iSomething% INTEGER
bSomething? BYTE

Unsigned Integer Variables

wSomething?? WORD
dwSomething??? DWORD (Double Word)

Floating Point Variables

spSomething! Single precision floating point
dpSomething# Double precision floating point
epSomething## Extended precision floating point

Currency (Fixed-Point) Variables

curSomething@ CURRENCY
ecSomething??? Extended CURRENCY

String Variables

sSomething$ Dynamic (variable-length) String
lpzSomething Fixed-length or ASCIIZ string (no suffix defined)

Other

tSomething User Defined Type (UDT)
uSomething UNION
oSomething Object

See BASIC Data Types »p121 for more information about the individual data types. See the
PowerBASIC documentation for even more information.

 42

Signed and Unsigned Integers

The Windows operating system and the ODBC »p75 subsystem support several different data
types that are not supported by all programming languages.

If you are a PowerBASIC programmer you can to skip this section because all of the data
types that SQL Tools supports are also supported by PowerBASIC. Other programmers
should definitely read this section, and decide which of the information applies to you.

LONG Integers and DWORD Integers

LONG Integers are supported by virtually all 32-bit programming languages, including Visual
Basic. A LONG Integer is a signed integer variable that requires four (4) bytes of memory. A
LONG can store whole-number (i.e. non-fractional) values between -2,147,483,648 and
+2,147,483,647 .

It is also possible to use four bytes of memory to store a Double Word or "DWORD" value.
DWORD variables can store whole-number values from zero (0) to +4,294,967,295 .
That's exactly the same number of values as a LONG integer, it's just that LONGs take half of
the range and use it to specify negative numbers. That's the basic difference between a
"signed" and "unsigned" value.

As you probably know, "four bytes of memory" and "32 bits" are exactly the same thing.
Different patterns of 1 and 0 (On and Off) represent different numbers. One of the 32 bits --
also called the Most Significant Bit or the Sign Bit -- can be interpreted as meaning either "this
is a negative number" or "this is a number that is larger than +2,147,483,647 ". LONGs
interpret the last bit one way, and DWORDs interpret it the other way. The other 31 bits are
100% identical in LONGs and DWORDs. So unless a value is negative or greater than
+2,147,483,647 , there is no difference at all between a LONG and a DWORD. LONGs
and DWORDs "overlap" in the range from zero (0) to +2,147,483,647 .

Many different Windows API and ODBC functions actually do return DWORD values. For
example, all Windows and ODBC "handle" values are defined as DWORDs. So the fact that
Visual Basic and certain other programming languages do not support DWORDs can be
inconvenient. Fortunately, it is almost always possible to substitute a LONG variable for a
DWORD variable. That is possible because both LONGs and DWORDs are integers that use
four bytes of memory.

When you pass a LONG or DWORD variable to a function (such as a SQL Tools function) all
the function really sees is "four bytes of memory". It has no way of knowing whether your
program will interpret those four bytes as a LONG or a DWORD. So it will read a numeric
value from those four bytes, or it will place a numeric value into those four bytes, and it is up
to your program to determine how the value should be interpreted. In most cases it won't
make any difference at all.

For example, let's say that you have a database table that contains the descriptions of several
computer workstations. In addition to having columns for the CPU speed, the amount of
memory, and so on, you would probably want to include a column for the hard-drive size. If
that column was defined as a %SQL_INTEGER »p91 it could be used for either a LONG value or
a DWORD value, depending on how the database designer decided to use it. If it was used
as a LONG integer, you could store numbers up to +2,147,483,647 , which would
correspond to a hard drive size of 2.1 gigabytes. But if you tried to enter a record for a 3.0
gigabyte drive, it would be stored in the table as a negative number, and that would probably
cause unexpected results.

 43

Again, this is caused by a limitation in the way Visual Basic and certain other languages
interpret 4-byte integer values. It is not a limitation of Windows, ODBC, or SQL Tools.

The largest value that can be stored in a LONG integer is +2,147,483,647 . If you try to
add one to that value and store +2,147,483,648 then the value will appear to "roll over" to
negative 2,147,483,648 . If you add one more (+2,147,483,649) then you will add one
to that negative value, resulting in -2,147,483,647 . If you keep adding one, the resulting
negative value will get closer and closer to zero. When you reach +4,294,967,295 (the
largest value that a DWORD can hold) the corresponding number will be negative one.

You can look at the relationship between LONGs and DWORDs this way, using pseudo-code:

IF LONG => 0 THEN
 'values => zero are identical
 DWORD = LONG
ELSE
 'values < zero represent large positive values
 DWORD = LONG + 4,294,967,296
END IF

...and...

IF DWORD <= 2,147,483,647 THEN
 'values <= 2.1 gig are identical
 LONG = DWORD
ELSE
 'values > 2.1 gig represent negative numbers
 LONG = DWORD - 4,294,967,296
END IF

DWORD Bitmask Values

Fortunately, most DWORD variables are not used to store large numeric values. A much
more common use of a DWORD variable is a "bitmask »p916" value. For example, the
SQL_DBInfo »p338 function returns an Unsigned Integer value. Many of the values that
SQL_DBInfo returns are not really "numbers", they are "bitmasks" where each bit has a
particular meaning. So saying that the overall value is "positive or negative" has very little
meaning. (See Using Bitmasked Values »p916 for more information.)

When an unsigned integer DWORD value is used as a bitmask, substituting a LONG integer
variable will make no difference whatsoever. Since your program will be looking at the "bit
pattern" and not the actual value, LONGs and DWORDs can be considered to be 100%
identical. Your program can use LONGs and DWORDs interchangeably without worrying
about side effects like "unexpected negative values".

 44

Installing SQL Tools

IMPORTANT INFORMATION!
You must perform these steps before

using SQL Tools for the first time!

SQL Tools is provided as a single-file Installation Program which takes care of unpacking all
of the necessary disk files. Simply execute the installation program, and it will walk you
through all of the various installation choices that you will need to make, such as the name of
the directory where SQL Tools will be installed.

The default directory is \SQLTOOLS, and the rest of this section will assume that you used
the default. If you choose a different directory, simply substitute that directory's name
wherever you see \SQLTOOLS below. We recommend that you use the default
\SQLTOOLS directory because the sample programs that are provided with SQL Tools are
hard-coded for that directory name. They can be changed easily enough, but if you use
\SQLTOOLS the sample programs can usually be compiled and run without any
modifications.

STEP #1: Edit SQLT3.INC

Locate the file called \SQLTOOLS\SQLT3.INC and load it into a text editor such as NotePad
or the PowerBASIC IDE. Near the top of the file you'll see a line that looks like this:

%MY_SQLT_AUTHCODE = &h........

Locate the SQL Tools Authorization Code that was provided with your SQL Tools installation
package. It is an eight-character "hex" string, containing numbers from 0 to 9 and letters from
A to F. It is usually found in a confirmation email or letter from the Authorized Reseller that
provided the installation package. Be careful not to confuse your SQL Tools Authorization
Code with other codes that may be located in the same document, such as a vendor's Serial
Number. If a code does not have exactly eight characters or if it contains letters other than A-
F, it is not your SQL Tools Authorization Code.

Edit the SQLT3.INC file and replace the eight dots (after the &h) with that code. If your
Authorization Code was 1234ABCD the edited line would look like this:

%MY_SQLT_AUTHCODE = &h1234ABCD

To be clear, 1234ABCD is not a valid code. You must use the code that was provided with
your installation package.

STEP #2: Edit SQLT3_Skeleton.BAS

Locate the file called \SQLTOOLS\SAMPLES\SQL_SKELETON.BAS and load it into your text
editor. Assuming that you performed step #1 above, you can delete these lines:

TODO...
'If you have not already done so, add your SQL Tool s Auth Code to the
'SQLT3.INC file, then remove these instructions.

 45

Just below that you will see a block of code that looks like this:

TODO...
'Un-comment ONE of the following four lines, depend ing on the version
of
'SQL Tools that you are using. SEE THE SQL TOOLS D OCUMENTATION FOR
MORE INFO.
'#LINK "\SQLTOOLS\SQLT3Pro.PBLIB" 'SQL Tools Pr o, using PBLIB
'#INCLUDE "\SQLTOOLS\SQLT3ProDLL.INC" 'SQL Tools Pr o, using DLL
'#LINK "\SQLTOOLS\SQLT3Std.PBLIB" 'SQL Tools St andard, using
PBLIB
'#INCLUDE "\SQLTOOLS\SQLT3StdDLL.INC" 'SQL Tools St andard, using DLL

If you are using SQL Tools Pro, delete the #LINK and #INCLUDE lines that refer to SQL
Tools Standard. If you are using the Standard version, delete the Pro #LINK and #INCLUDE
lines.

That should leave you with one #LINK and one #INCLUDE line. If you intend to use only the
PBLIB »p68 version of SQL Tools, you can delete the remaining #INCLUDE line. If you intend
to use only the DLL »p71 version of SQL Tools, you can delete the remaining #LINK line. If
you may use both versions in the future, it's best to simply un-comment one and leave the
other commented out, so you can easily switch back and forth.

If you installed SQL Tools in a directory other than \SQLTOOLS\ you must edit the
SQLT3_Skeleton.BAS file and type the directory name wherever you see \SQLTOOLS\.

Remember to save the SQLT3_Skeleton.BAS file before exiting from your text editor.

STEP #3: Copy the SQL Tools DLL

If you intend to use only the SQL Tools PBLIB Files »p68 -- and not the SQL Tools DLL -- you
can skip this step.

In order for your programs to be able to use the SQL Tools DLL »p71, they'll need to be able to
find it. In most cases it will be necessary for you to place a second copy of the
SQLT3STD.DLL or SQLT3PRO.DLL file (depending on the version »p29 of SQL Tools that
you are using) somewhere on your computer's hard drive. We recommend that you leave the
original copy in the \SQLTOOLS\ directory to serve as a backup. Copy the file, don't move
it.

The ideal location for the SQLT3STD.DLL or SQLT3PRO.DLL file is the same directory as
the executable program that you are developing, but keep in mind that you may be
developing database programs in more than one directory. If that is the case, you may
choose to place the SQL Tools DLL in your Windows System Directory or in another directory
that is in your System Path.

Windows 7 (and above): the System directory is usually C:\Windows \System32 .
Windows NT4/2000/XP/Vista: the System directory is usually C:\WinNT \System32 .
Windows 95/98/ME: the System directory is usually C:\Windows\System .

On some versions of Windows the System directory is hidden by default so you may need to
change your Windows Explorer settings in order to find it. Typically, you can change Tools >
Folder Options > View... to "Show Hidden Folders".

 46

If you write a program using SQL Tools, and when yo u run it you see a Windows
message box that says something like "The dynamic l ink library SQLT3STD.DLL could
not be found in the specified path" it means that W indows was unable to link SQL
Tools to your program's EXE. This almost always me ans that the SQLT3STD.DLL or
SQLT3PRO.DLL file needs to be copied to a location where your program can find it.

STEP #4: Install ODBC Drivers

If you are using a DBMS for which drivers are provided by Windows (typically Microsoft
Access, SQL Server, Excel, dBase, Paradox, sometimes FoxPro, and usually Oracle) you can
usually skip this step. If you plan to use a Microsoft Access 2007 database you will need to
install additional drivers: see Appendix L: Microsoft Access »p919.

Before you can begin using SQL Tools to write programs, you may need to install one or
more ODBC drivers »p47. If you are not familiar with that process and you believe that the
drivers have not already been installed on your development computer, see Installing ODBC
Drivers »p47.

STEP #5: Download Optional Help Files

The SQL Tools installation program places a standard Windows HTML Help (.CHM) file on
your hard drive. Some people prefer the old-style HLP files because of their superior Search
features, and some people like to print out a hard copy of the documentation. Still others
prefer to read the documentation on-line. All of those options are available at
http://PerfectSync.com/pp/DevTools/Downloads.php

While you're visiting our web site, be sure to check out our SQL Tools Resource Page:
http://PerfectSync.com/pp/DevTools/SQLTools/SQLToolsResources.php

SQL Tools Is Now Ready To Use

After you have completed the steps above, we suggest that you use the Windows Explorer
program to examine the files that were placed in the \SQLTOOLS\ directory. A variety of
sample programs, blank databases, and other files are provided. You should also look at
your system's Start Menu, where you will find several SQL Tools components listed under the
heading "Perfect Sync Software".

 47

Installing ODBC Drivers

A driver is a special kind of software program that becomes part of the Windows operating
system and allows other programs to access a particular capability. For example, a certain
Printer Driver might allow Windows to use a certain brand of printer, and a certain Mouse
Driver might allow Windows to use a certain brand of mouse or trackball.

An ODBC Driver is a piece of software that allows your computer to access certain types of
databases almost as if they were "devices" like printers and mice. Just as every major printer
manufacturer has its own drivers, every major type of database has its own drivers. So there
is a Microsoft Access ODBC driver, an Oracle ODBC driver, a dBASE ODBC driver, and so
on.

ODBC (Open Database Connectivity) is a Microsoft standard that allows programs to access
different database formats through a standard interface. It is possible for an ODBC-compliant
program (like SQL Tools) to access virtually any ODBC-compliant database. An ODBC driver
is the software that makes that possible.

As a software developer, you may need to address two different issues:

1) ODBC drivers that you can install and use on your own computer, and

2) ODBC drivers that you can legally distribute with your applications.

It is not enough for your development computer to have an ODBC driver. In order for a SQL
Tools application on any computer to access an ODBC database, you must first install the
appropriate ODBC driver on that computer. ODBC drivers are available for virtually every
major database format, but not all computers are pre-configured with ODBC drivers.

There are four basic ways to obtain and install ODBC drivers...

The Windows Installation CD

All versions of Microsoft Windows 98 SE, Windows NT4, Windows ME, Windows 2000,
Windows XP and Windows 7 include a standard package of ODBC drivers called "MDAC", or
Microsoft Data Access Components. However, depending on the Windows version, the
ODBC drivers may or may not be part of the default installation. If they are not already
installed, you will need to re-insert the Windows installation CD and install the ODBC drivers
that are provided on the disk.

It is important to note that the versions of MDAC/ODBC that are supplied with the various
versions of Windows are not all the same, and that they contain different drivers and driver
versions. You should research the driver(s) that you want to use and make sure that they are
included with all versions of Windows. Microsoft Access drivers are fairly standard, for
example, but the "Jet" drivers have been dropped from more recent versions of MDAC.

Note also that Windows 95 and Windows 98 "classic" do not include ODBC drivers on the
Windows installation CDs. Fortunately those versions of Windows are increasingly
uncommon, because they are no longer available for sale from Microsoft. ODBC drivers are,
however, compatible with Windows 95 and 98 systems and can be installed on those systems
using the other methods described below.

 48

The Internet

Microsoft and many other vendors provide current version of their ODBC drivers on their
internet »p915 sites. There is sometimes a fee that is charged for drivers, but under certain
circumstances you may be able to download, install, and redistribute these drivers at no cost.
See Installing ODBC Drivers from the Microsoft Internet Site »p50.

See Appendix I »p915 for other sources of ODBC Drivers.

The Database Product's CD

The necessary ODBC drivers are almost always included with database products such as
Microsoft Access, and they can be installed by using the product's installation/update CD.
See Installing ODBC Drivers from a Database Product »p51.

Software Installation Programs

Many programmers use "installation programs" such as InstallShield to distribute their
applications, and many of those programs have the ability to automatically install ODBC
drivers when your application is installed. Unfortunately, as of this writing, the version of
InstallShield that comes with Visual Studio does not have that ability. (We used InstallShield
as a well-known example of an installation program, not as an example of a program that can
install ODBC drivers.) We have been told that InstallShield Express, Wise InstallBuilder, and
several other programs can install ODBC drivers, but we do not have first-hand experience
with those products.

 49

Updating SQL Tools to the Latest Version

An UPGRADE refers to a change in the Major Version number, for example from SQL Tools
Version 2.x to 3.x. Generally speaking, there is a fee for an Upgrade.

An UPDATE refers to a change in the Minor Version number, like from Version 3.00 to
Version 3.01 or 3.10. Update are usually free to current licensees.

A PATCH is an update that replaces only a small number of files. For example if this Help
File was updated but no other changes in SQL Tools were required, it would be provided as a
Patch.

This page is about UPDATES. Perfect Sync expects to update SQL Tools Version 3 from
time to time, as bug are reported and fixed, and as minor enhancements are added.

STEP 1: Determine Your Current Version Number

Perfect Sync maintains a web page listing our products' Current Version Numbers at
http://PerfectSync.com/pp/DevTools/CurrentVersions.php . It includes the most
recent version numbers and detailed instructions for examining your SQL Tools files
to determine which version is installed on your system.

STEP 2: Locate ALL of the SQL Tools Files On Your C omputer

One of the most common mistakes in updating SQL Tools is forgetting that you have
copied the runtime or compile-time files (DLL, PBLIB, INC, etc.) to more than one
location on your computer(s) or network. There should always be a copy of every
SQL Tools file in the \SQLTOOLS\ folder (or another folder if you chose a
nonstandard location during installation) but you may have placed copies in your
system folder, various application folders, and/or other convenient locations. Make
sure you inventory your system before you begin the update process. It's a good
idea to review Installing SQL Tools »p44, which describes the common places that
runtime files are copied.

STEP 3: Download the Latest Version

Visit http://PerfectSync.com/pp/DevTools/Downloads.php for download instructions.

STEP 4: Install the Update

Installing an Update is exactly the same as Installing SQL Tools for the first time.
Please refer to Installing SQL Tools »p44 for detailed instructions.

If you have downloaded a Patch instead of an Update, specific instructions will be
provided.

 50

Installing ODBC Drivers from the Microsoft Internet Site

Microsoft provides ODBC drivers »p76 for many different Microsoft and non-Microsoft
databases, including Access, SQL Server, Excel, FoxPro, dBASE, Paradox, and Oracle, plus
the Microsoft Text Driver for flat files.

The Microsoft package is called MDAC, which stands for Microsoft Data Access Components.
At the time of this writing, the name of the downloadable ODBC driver file was
MDAC_TYP.EXE, and it could be downloaded from

 microsoft.com/downloads) . Please note that the file name and location are subject to
change, so this information may be out of date. If you have trouble finding it, we suggest that
you visit microsoft.com and use their Search feature to find MDAC_TYP.EXE or simply
MDAC. Or visit Perfect Sync's SQL Tools Resources page at
http://PerfectSync.com/pp/DevTools/SQLTools/SQLToolsResources.php where we try to
update links as they change.

Frankly, MDAC is notorious for being difficult to manage, but nearly all of the problems are
related to the ADO and OLE DB portions of MDAC. Specifically, some applications require
that certain versions of the ADO and OLE DB drivers be used, so when you install a version
of MDAC that will allow one program to work, it may break another program. But since SQL
Tools does not use the ADO or OLE DB drivers, we have experienced very, very few
problems related to MDAC installation or "version problems".

SQL Tools should work well with almost any version of MDAC, so a good rule of thumb is "if
MDAC has already been installed on a system, leave it alone or you might break somebody
else's software". If MDAC has not been installed on a system, you should review the release
notes that are provided on the Microsoft web site to determine which version is best for you.
Some versions of MDAC include ODBC drivers with known bugs, but they are relatively rare,
relatively minor, and surprisingly well documented on the Microsoft web site.

Distributing the MDAC Package

IMPORTANT NOTE: Perfect Sync disclaims all liabilit y for information and/or opinions
provided in this document regarding your legal righ ts under any Microsoft License
Agreement. You should consider consulting a qualif ied attorney before making any
decisions that could potentially place you in viola tion of a Microsoft License
Agreement and/or international copyright law.

As we understand it, you may, under certain circumstances, legally re-distribute the MDAC
package as a means of distributing ODBC drivers with your applications. You should read the
terms of the Microsoft End User License Agreement (EULA) to find out whether or not you
qualify.

At the time of this writing, that document can be found by searching Microsoft's web site for
"MDAC EULA".

 51

Installing ODBC Drivers from a Database Product

To describe the general process of installing ODBC Drivers »p76, we will walk through the
specific steps that are involved in installing a very popular group of Microsoft ODBC drivers,
which are included with the Microsoft Office bundle. Specifically, these instructions were
written using a copy of Microsoft Office 97 Professional as a guide.

1) Before beginning, run the \SQLTOOLS\MicrosoftODBC\ODBCAD32.EXE
program that is included with SQL Tools. You can use that program's ODBC Drivers
tab to find out which drivers are already installed on a computer. (Windows NT,
2000, XP, and Win7 users already have a copy of this program in their Windows
Control Panel, labeled ODBC.)

2) Locate your Microsoft Office installation disk(s).

3) Locate and run the SETUP.EXE program.

4) Select Add/Remove Components.

5) A list of items with checkboxes will appear. Be careful not to accidentally change
any of the checkboxes. If you do, we suggest that you exit from the Setup program
and start over.

6) Look at the list of items and single-click on Data Access (not Microsoft Access),
then click the Change Option button.

7) Single-click on the Database Drivers item, then click the Change Option button.

8) Double-click on the various drivers, to change the status of their checkmarks. A
black checkmark indicates that a driver will be installed. We suggest that you install
all of the available drivers, so that you won't have to repeat this process later. During
our tests we were able to install drivers for Microsoft Access, Microsoft FoxPro,
Microsoft Excel, Microsoft SQL Server, and dBASE, plus the Microsoft Text and
HTML Driver.

9) Click the various Ok and/or Continue buttons to complete the installation process.

10) Run the ODBCAD32.EXE program again, and look at the list of drivers on the
ODBC Drivers tab. You should see all of the original drivers, plus those that you just
installed.

SQL Tools programs can now access databases that are supported by the ODBC drivers that
are installed on your system.

You will need to repeat this process, or another process that installs ODBC drivers, on every
computer on which a SQL Tools program will be run.

 52

Terminology Differences

SQL terminology, as defined by the evolution of the SQL language, and BASIC terminology,
as defined by the evolution of the BASIC language, are not identical.

For example, ODBC defines a data type (a type of variable) called a %SQL_INTEGER. It has
a range of roughly plus and minus 2.1 billion. BASIC also has a variable type called
INTEGER, but it has a much smaller range: plus or minus 32,767 .

The BASIC data type »p121 that has the same numeric range as a %SQL_INTEGER is called a
LONG INTEGER, and the SQL data type »p87 that has the same range as a BASIC LONG
INTEGER is called a %SQL_SMALLINT, so there's bound to be some confusion when you
begin mixing SQL and BASIC.

Unfortunately, the ODBC standard also uses the word LONG, to refer to a variable-length
string that is more than a certain length. For example, a %SQL_LONGVARCHAR variable (SQL
Long Variable-length Character string) is a string that can be more than 256 characters long.

To help keep things straight, this document will usually refer to Data Types with either a SQL_
or %BAS_ prefix, but you'll still have to be careful. Some SQL Tools functions return strings
that contain the SQL terminology, such as the string "INTEGER" that is returned by the
various SQL Tools "Data Type Info" functions. These strings are defined by the ODBC driver
that you use, and you are required (by the ODBC specification) to use those strings under
certain circumstances, so SQL Tools can't really change them. And of course your BASIC
compiler will not recognize %SQL_INTEGER or %BAS_LONG. You must use the keyword
LONG in the appropriate places in your source code, such as DIM statements.

 53

Compliance Issues

SQL Tools is based on something called the ODBC »p75 Standard. Specifically, it is based on
ODBC Version 3.8, Level 2. ODBC is a very complex set of standards that was designed (by
Microsoft) to provide a common set of commands and techniques that databases of all types
could use.

The root of the Compliance Issue is that Microsoft doesn't control all of the databases in the
world (Oracle, dBASE, Paradox, and so on), so the ODBC 3.8 Level 2 "standard" isn't perfect.
And actually, some of Microsoft's own products do not fully support ODBC 3.8 Level 2.

It is important to remember that not all software which uses "the ODBC standard" supports
100% of the ODBC 3.x Level 2 features. SQL Tools does support ODBC 3.8 Level 2, but only
if you use an ODBC driver »p76 that supports that level of compliance.

Think of it this way... Your word processor may support color printing, but if your Printer Driver
doesn't support color then all you will see is black lettering on white paper. The same is true
for your SQL Tools programs and your ODBC driver. SQL Tools can't do things that your
driver doesn't support.

If you are writing a program that will always be used with a single type of database, such as
Microsoft Access, ODBC compliance really isn't much of a problem. SQL Tools provides
alternate methods of performing many basic tasks, and it is possible to write programs that
accomplish many things even if the ODBC driver doesn't support them directly.

But if you are writing a program that will be used with more than one database -- such as a
program that could use either Access or Oracle -- you will have to be much more diligent with
your testing and debugging. It would be very easy to write a program that works perfectly
with Oracle but fails when used with Access, because the Access ODBC driver »p76 does not
support all of the functions that the Oracle ODBC driver does.

There are two "dimensions" of ODBC compliance with which you may need to be concerned.

The first dimension is the "ODBC Version Number" that a driver supports, which will usually
be 1.0 , 2.0 , or 3.0 .

The second dimension is the "Level" of ODBC functionality that a driver supports. The levels
are called "Core", :"Level 1", and "Level 2".

Each individual ODBC function has been assigned a version number and a level number.
The version number refers to the first version of ODBC in which the function became
available. The level number is an approximation of the level of "sophistication" that the
function represents.

In order to claim that it supports ODBC 2.0, a driver must support 100% of the ODBC 2.0
Core functionality. It may or may not also support ODBC 2.0 Level 1 and/or Level 2 functions,
in any combination.

In order to claim that it supports ODBC 3.0, a driver must support 100% of the ODBC 3.0
Core functionality. It may or may not also support ODBC 3.8 Level 1 and/or Level 2 functions,
in any combination.

It is important to note that ODBC 3.8 Core functionality is not the same thing as ODBC 2.0
Core functionality. In fact, all ODBC 2.0 Level 1 functionality was re-defined as Core

 54

functionality in ODBC 3.0.

To help clarify some of these issues, let's look at a specific example. The Microsoft Access
97 ODBC driver reports that it supports an ODBC version of 2.5 . If you examine the driver's
capabilities in detail, you will find that it supports 100% of the ODBC 2.0 Core and Level 1
functionality, plus many Level 2 functions. So they call it "2.5".

Access 97 does not, however, support a feature called "Foreign Keys »p205" which were
introduced all the way back in ODBC 1.0. Foreign Keys have always been considered to be a
Level 2 feature, so support is not required.

On the other hand, Access 97 does not support a Level 2 feature called "Parameter Options",
but it doesn't really matter. Parameter Options are an ODBC 1.0 Level 2 feature that has
been "deprecated". That means that support is no longer required, because the function has
been replaced by a new function. In this case, the Access 97 driver also supports the new
function.

Finally, you need to keep in mind that you won't need certain ODBC functions. Of the twelve
ODBC Level 2 functions that Access 97 does not support, five are related to something called
"descriptors »p37", which most programs never need to use.

For more information about ODBC compliance issues, we suggest that you consult the
Microsoft ODBC Software Developer Kit »p915.

 55

Two Of Everything: The "Abbreviated" and "Verbose"
Functions

When you look at the list of SQL Tools functions, you'll probably notice that there are two of
just about everything. Closer examination will reveal that there are four of many things, and
eight or more of others. Here's why...

SQL Tools is capable of handling extremely complex programs. In fact, SQL Tools Pro »p29
could theoretically be used to write a program that uses 256 different databases at the same
time, and where each database has 256 SQL statements that are active, all at the same time.
(A much more likely scenario would be a program that uses several databases with one
active statement at a time, or one database with many active statements, but anything is
possible.)

But most of the time, most programs will use a single database and a single statement at a
time.

Here is an example of "two of everything"...

One of the most commonly used SQL Tools functions is called SQL_Statement . It is used
to execute SQL statements, to tell a database what to do. To use the SQL_Statement
function, you need to specify a Database Number (from 1-256), a Statement Number (from 1-
256), a parameter like %PREPARE or %EXECUTE, and a string that contains the SQL
statement to be prepared or executed.

Since most of the time you will be dealing with Database #1 and Statement #1, it can be very
tedious to type 1,1 at the beginning of every single function's parameter list, so SQL Tools
provides a complete set of "abbreviated" functions that use default values for the database
number and statement number.

If a SQL Tools function name contains the word "Database", "Statement", 'Table", "Column",
or "Result" it is a verbose function that requires you to specify a Database number and/or a
Statement Number.

On the other hand, if a SQL Tools function name contains the abbreviation "DB", "Stmt",
"Tbl", "Col", or "Res" it is an abbreviated function that does not allow the Database Number
and Statement Number to be specified as parameters. (Please note that certain words like
"Info" are never spelled out in function names and do not indicate an abbreviated function.)

Here is a specific example of a verbose function...

SQL_Statement 1, 1, %EXECUTE, "SELECT * FROM MYTABL E"

And here is the abbreviated function that would perform precisely the same operation...

SQL_Stmt %EXECUTE, "SELECT * FROM MYTABLE"

The SQL_Statement and SQL_Stmt functions are called "twins".

If you are writing a program that uses one database at a time, with one statement at a time,
we recommend that you use the abbreviated functions. It will save you a lot of typing, and it
will keep you from making errors.

If you are writing a more complex program, you have a choice: 1) Use the verbose functions

 56

for everything, or 2) use the SQL_UseDB »p859 and SQL_UseStmt »p861 functions to specify
which database and statement you want the abbreviated functions to handle.

For example, a program could use Database 1, Statement 3 followed by Database 2,
Statement 9 in this way...

SQL_Statement 1,3, %EXECUTE, "SELECT * FROM MYTABLE "
SQL_Statement 2,9, %EXECUTE, "SELECT * FROM YOURTAB LE"

...or it could do this...

SQL_UseDB 1
SQL_UseStmt 3
SQL_Stmt %EXECUTE, "SELECT * FROM MYTABLE"

SQL_UseDB 2
SQL_UseStmt 9
SQL_Stmt %EXECUTE, "SELECT * FROM YOURTABLE"

If you often switch the default Database number and Statement number at the same time, you
can also use this function...

SQL_UseDBStmt 2,9

...to change both at once.

The advantage of using the SQL_Use functions is that they are "sticky". In other words, once
you use SQL_UseDB 2, all of the abbreviated functions will continue to use Database 2 until
you use SQL_UseDB again to change the default. That way, you can use the SQL_Use
functions to specify a database or statement, and then perform a large number of abbreviated
functions.

It is also possible to mix the verbose and abbreviated functions. For example if a program did
90% of its work with one database and 10% with a handful of others, you could use the
abbreviated functions to handle Database 1, Statement 1, and use the verbose functions for
the other 10%. The use of verbose functions does not affect the setting of the SQL_Use
functions.

If you are writing a multi-threaded application which uses more than one database or
statement at a time, we strongly recommend that you use the verbose functions for
everything. The SQL_Use functions affect all threads at once so it is not possible, for
example, for one thread to use SQL_UseDB 1 and another to use SQL_UseDB 2 .
Whenever a SQL_Use function is used, it affects all abbreviated functions in all threads.

 57

Four of Many Things

In addition to providing verbose and abbreviated »p55 versions of almost every SQL Tools
function, many different functions are provided in both String and Numeric versions.

For example, the various SQL Tools "Info" functions are used to obtain information about
databases. The SQL_TblColInfo family of functions returns information about a table's
columns, and this information can be either numeric or string, depending on the type of
information that you are interested in. You might use the SQL_TblColInfoStr (Info
String) function to get the name of a column, like MYCOLUMN, and you might use the
SQL_TblColInfo function to get the column's Data Type, such as 4 (which corresponds to
%SQL_INTEGER).

In some case the String and Numeric functions will both be useful. If you use the
SQL_DatabaseInfoStr »p299 function to obtain the ODBC version that a certain database
supports, it might return the string "02.50" . If you use the SQL_DatabaseInfo »p298
function to obtain the same information, it would return 2 . If your program is only interested
in the major ODBC version number (2 or 3), that would be enough.

So the bottom line is that if you look at a family of functions such as "Table Info", you will see
verbose and abbreviated versions, plus String and Numeric versions...

 58

Eight or More of Some Things

Beyond verbose vs. abbreviated functions »p55 and string vs. numeric functions »p57, some
SQL Tools functions come in many different forms. In particular, when you are accessing the
columns of a result set »p144 (i.e. the results of a SQL statement »p123), there are many
different ways to access the data. Since ODBC databases can store many different kinds of
data, SQL Tools must be able to return the data to your program in different forms.

SQL_ResultColumnString

Returns String values.

SQL_ResultColumnWString

Returns Wide (Unicode) String values.

SQL_ResultColumnNumeric

Returns Numeric values.

SQL_ResultColumnMemo

Returns text and mixed-text values that can be longer than 64k characters.

SQL_ResultColumnBLOB

Returns Binary Large OBjects such as images and sounds.

And then there are several SQL_ResultColumn functions that tell you things about the
data...

SQL_ResultColumnNull

Numeric value (logical true/false »p912) that indicates whether or not a column
contains a null value »p171.

SQL_ResultColumnBufferPtr

A pointer to the memory buffer where a result column's value is stored.

SQL_ResultColumnIndicator

Numeric "Indicator »p170" value that tells you different things about the status of the
column, such as whether or not it contains a null value »p171, how long a string value
is, and so on.

SQL_ResultColumnIndicatorPtr

A pointer to the memory buffer where a result column's Indicator »p170 is stored

SQL_ResultColumnLength

The length of a string-type result column. (Similar to the BASIC LEN function.)

 59

SQL_ResultColumnSize

The length of a result column's buffer. (Similar to the BASIC or C SIZEOF function.)

SQL_ResultColumnType

The SQL Data Type »p87 of a column: %SQL_INTEGER, %SQL_VARCHAR, and so on.

SQL_ResultColumnCount

The number of columns that were returned by a SQL statement.

SQL_ResultColumnNumber

The column number that corresponds to a column name.

 60

The Abbreviations

SQL Tools function names make extensive use of abbreviations, in order to reduce the
amount of typing that you'll have to do.

ACol Auto Column
Async Asynchronous
Attrib Attribute
Bkmk Bookmark
Col Column
Cur Cursor
DB Database
FKey Foreign Key
Ind Indicator
Info Information
Param Parameter
PKey Primary Key
Proc Procedure
Priv Privilege
Rel Relative
Res Result
ResCol Result Column
ResSet Result Set
Stat Statistic
Stmt Statement
Tbl Table
TblCol Table Column
UCol Unique Column

 61

Four Critical Steps For Every SQL Tools Program

TIP: The \SQLTOOLS\SAMPLES directory contains a PowerBASIC "skeleton" for SQL
Tools programs, called SQLT3_Skeleton.BAS . If you always use a copy of the
skeleton program as a starting point for your SQL T ools programs, you won't have to
worry about any of the critical steps that are desc ribed below. But we do recommend
that you familiarize yourself with the steps...

STEP 1: Tell Your Compiler That You Are Using SQL T ools, and Which Version

Overview: Add the appropriate header file (usually SQLT3.INC) to your program
and specify which runtime files should be used.

Details: Keep in mind that if you installed SQL Tools in a directory other than the
default, when following these directions you will need to replace \SQLTOOLS\ with
the name of the directory where your SQL Tools files are stored.

PowerBASIC: At the very beginning of your program, preferably before any other
executable code (such as SUBs and FUNCTIONs) you should include the line:

 #INCLUDE "\SQLTOOLS\SQLT3.INC"

After that, your program should include one -- and only one -- of the following four
lines

 #LINK "\SQLTOOLS\SQLT3Pro.PBLIB" 'SQL Tools P ro, PBLIB
 #INCLUDE "\SQLTOOLS\SQLT3ProDLL.INC" 'SQL Tools P ro, DLL
 #LINK "\SQLTOOLS\SQLT3Std.PBLIB" 'SQL Tools S tandard,
PBLIB
 #INCLUDE "\SQLTOOLS\SQLT3StdDLL.INC" 'SQL Tools S tandard, DLL

If you are using SQL Tools Pro do not use a line that says Standard, and vice versa,

Select between the remaining two lines by deciding whether you want to use 1) the
PBLIB »p68 runtime files to embed SQL Tools directly into your PowerBASIC program,
or 2) the DLL »p71 runtime files to use a separate library file.

Other Programming Languages: Contact Support to find out whether or not a SQL
Tools header file is available for your language. If not... Every language has its own
unique methods for 1) defining the values of constants and 2) declaring functions that
are located in external DLLs. The SQL Tools DLLs use 100% standard Win32
STDCALL conventions, so it should be relatively simple for you to translate the
SQLT.INC file and one of the ...DLL.INC files into your language. (If you do,
please send a copy of the finished file to Support@PerfectSync.com so that we can
share it with others!)

STEP 2: Authorize the SQL Tools Runtime File(s)

Overview: Execute the SQL_Authorize »p263 function with the appropriate
Authorization Code.

Details: At some point in your code, in a function but before any other SQL Tools

 62

functions are used, add this line of code:

SQL_Authorize %MY_SQLT_AUTHCODE

PowerBASIC: We recommend that you place the SQL_Authorize line at the very
beginning of your PBMAIN , WINMAIN, or MAIN function, before any other
executable code.

Other Programming Languages: As with PowerBASIC, the only important rule is
that SQL_Authorize must be executed before any other SQL Tools functions are
used.

STEP 3: Initialize SQL Tools

Overview: Execute the SQL_Init »p494 or SQL_Initialize »p495 function.

Details: Either the SQL_Init or the SQL_Initialize function must be
executed after SQL_Authorize (see above) but before you use any other SQL
Tools functions. If you attempt to use any other SQL Tools function before
SQL_Init or SQL_Initialize , your program will fail.

SQL_Init initializes SQL Tools using default values that will work well for most
programs. If you are writing a complex program you may need to use the
SQL_Initialize function instead of the simpler SQL_Init . See
SQL_Initialize »p495 for details.

PowerBASIC: Add this line of code immediately after the SQL_Authorize line
that was added in Step 2.

SQL_Init

Other Programming Languages: Your program must execute the SQL_Init or
SQL_Initialize function after SQL_Authorize but before any other SQL Tools
functions are executed.

SQL Tools is now almost ready for use.

Your code goes here. Your program may use all of t he other SQL Tools functions here,
between Steps 3 and 4 .

After your program has finished using SQL Tools...

STEP 4: Shutting Down SQL Tools

Overview: As late as possible in your program, execute the SQL_Shutdown »p706
function.

Details: You must execute the SQL_Shutdown »p706 function at some point in your
program after it is finished using all other SQL Tools functions. It is very important
that you choose a location that will be executed reliably. If your program is allowed to
close without executing SQL_Shutdown , database connections may be "orphaned".
This will reduce the number of connections that are available to your program and to
other programs in the future. If this happens too many times, it may be necessary for

 63

you to shut down and restart the database server before a new connection can be
made.

PowerBASIC: The ideal location for the SQL_Shutdown function is the very end of
your WINMAIN, PBMAIN , or MAIN function, just before the END FUNCTION line.
IMPORTANT NOTE: If your program's WINMAIN, PBMAIN , or MAIN function
contains any EXIT FUNCTION lines, you must also add SQL_Shutdown to those
locations. Or...

In order to simplify the SQL_Authorize , SQL_Init and SQL_Shutdown process,
we recommend that you use a very small "wrapper" main function, like this:

FUNCTION PBMAIN AS LONG
 SQL_Authorize %MY_SQLT_AUTHCODE
 SQL_Init
 FUNCTION = MainProgram
 SQL_Shutdown
END FUNCTION

FUNCTION MainProgram AS LONG
 'your code goes here
END FUNCTION

...and confine your own code to the MainProgram function. That way, no matter what
happens in your code (short of an Application Error or GPF) the SQL_Shutdown
function is guaranteed to execute.

Other Programming Languages: It is very important for you to identify a location
for the SQL_Shutdown function that will ensure that it executes even if your
program terminates abnormally. It is not (usually) possible to protect against
Application Errors and GFPs but all other types of exits should be covered, including
normal and "break" exits.

IMPORTANT NOTE: If you are creating a DLL (as opposed to an EXE) that will use SQL
Tools, be sure to read Special Considerations for DLL Programmers »p64.

 64

Special Considerations for DLL Programmers

If you are writing normal "EXE" programs you can skip this section. It deals with issues that
are only pertinent if you are creating DLLs that use SQL Tools.

Because of the way Microsoft Windows and ODBC »p76 work, it is not possible to use any of
the following SQL Tools functions in the %DLL_PROCESS_DETACH section of a DLL's
DLLEntryPoint or LibMain function:

SQL_Shutdown »p706
SQL_CloseDB »p279 (and SQL_CloseDatabase)
SQL_CloseStmt »p282 (and SQL_CloseStatement)

Failure to follow this rule will always result in 1) program lock-ups, 2) Application Errors, 3)
OleMainThreadWndName errors, 4) memory-related problems (such as memory leaks) on
the computer that is running the SQL Tools program, 5) similar memory-related problems on
the database server computer, and 6) database connections that are never closed, possibly
resulting in your database server running out of available connections. Other serious
problems are also possible.

Because the SQL_Shutdown function is the most commonly used, and because it uses the
other two functions (SQL_CloseDB and SQL_CloseStmt) internally, the rest of this
discussion will focus on SQL_Shutdown .

It is very important for the SQL_Shutdown function to be used before your program's main
executable program (EXE) closes. The SQL_Shutdown function must be called directly from
your program's EXE, just before it exits. An acceptable alternative is for your EXE to call a
function in your DLL, which then calls SQL_Shutdown . It is not acceptable for an EXE
program to close without using SQL_Shutdown or to rely on %DLL_PROCESS_DETACH in a
DLL.

Please note that this %DLL_PROCESS_DETACH restriction is not a defect in SQL Tools. It is,
according to Microsoft, an intentional design detail of Windows and ODBC. For confirmation
of this fact you can visit the microsoft.com web site and read Microsoft Knowledge Base
article number Q177135. It is titled "Do not Call ODBC Within %DLL_PROCESS_DETACH
Case", and it contains the phrase "This behavior is by design".

Technical Details, If You're Interested...

When an executable program starts up, Windows checks to see whether or not the program
uses any DLLs. In the case of this example, it would determine that your DLL is required, and
your DLL would be automatically loaded into memory. Then Windows would detect that your
DLL uses SQL Tools, and the SQLT3STD.DLL or SQLT3PRO.DLL library would be
automatically loaded by Windows. Finally, Windows would see that SQL Tools uses a
standard Windows file called ODBC32.DLL , and that library would be loaded into memory.

At that point, your EXE and all of the DLLs can use each other's functions. This is a perfectly
normal relationship between Windows modules (EXEs and DLLs), and it works very well.

When your EXE program closes, all of the DLLs are automatically unloaded from memory.
As they unload, their %DLL_PROCESS_DETACH code is automatically executed so that they
can perform "cleanup" and "closedown" operations. This would normally be a good place to

 65

put the SQL_Shutdown function.

Unfortunately, when certain functions in the Microsoft ODBC32.DLL library are used, the
DLL actually creates one or more new threads of execution. (If you're not familiar with
threads, that means that the ODBC32.DLL library actually runs a separate, invisible program
that is "attached" to the main program.)

For example, when your program uses the SQL_OpenDB »p536 function to open a database,
SQL Tools uses (among other things) an ODBC function called SQLDriverConnect, which is
located in the ODBC32.DLL library. The Microsoft SQLDriverConnect function then
launches a new, invisible sub-program to "manage" the database connection for you. (If
you're using Windows NT, 2000, XP or Win7 you can use the Windows Task Manager to
detect these new threads. Use View/Select/ThreadCount.)

When your executable program (EXE) closes, Windows automatically and instantly shuts
down all of the threads, before it tells the DLLs to unload. That's the way threads work. So if
a DLL then tries to use the SQL_Shutdown function when it unloads, the database
"manager" thread will no longer be available, and your program will crash or hang. And if
your program was connected to a database, the connection would not be closed. The only
way to close the connection may be to restart the database server.

According to Microsoft Developer Support, there is no known solution or "workaround" for this
problem, other than requiring executable programs to close all database connections before
they exit.

 66

The SQLT3.INC Declaration File

The SQLT3.INC Declaration File contains PowerBASIC equates and TYPE declarations that
are required by all SQL Tools programs. Whether you use SQL Tools Standard or Pro »p29,
the DLL »p71 version or the PBLIB »p68 version, the normal files or the No Trace »p72 files... you
will always need to add this line to your program, preferably near the top of the main .BAS
file.

#INCLUDE "SQLT3.INC"

You will usually need to add a path to that line of code, to specify exactly where the file is
located. For example if you installed SQL Tools in the default folder...

#INCLUDE "C:\SQLTools\SQLT3.INC"

Before you can use SQLT3.INC for the first time you will need to perform a one-time edit.
See Installing SQL Tools »p44 for instructions. After it has been edited you can usually ignore
the contents of the SQLT3.INC file, because all of the values that it contains are described in
this document.

See Critical Steps for Every SQL Tools Program »p61 for more information.

 67

The SQLTv2-3.INC Declaration File

If you have a SQL Tools Version 2 program that you want to upgrade to Version 3 »p930, you
can make that process easier by using the SQLTv2-3.INC file.

Lots of things have new names in Version 3 -- to make them more accurate, more flexible,
and easier to understand -- and the SQLTv2-3.INC file contains equates and MACRO code to
translate the old names into the new. In many cases you will simply be able to use the
Version 2 function names and equates.

Add this line of code to your program after the SQLT3.INC »p66 file.

#INCLUDE "SQLTv2-3.INC"

As with SQLT3.INC you will almost always need to add a path to that line of code, to specify
exactly where the file is located. For example if you installed SQL Tools in the default folder...

#INCLUDE "C:\SQLTools\SQLTv2-3.INC"

So your PowerBASIC code will look something like this...

#INCLUDE "C:\SQLTools\SQLT3.INC"
#INCLUDE "C:\SQLTools\SQLTv2-3.INC"

Not all of the differences between SQL Tools Versions 2 and 3 are handled by this file,
because a few changes will require re-coding. See Upgrading from Version 2 to Version 3

»p930 for details.

See Critical Steps for Every SQL Tools Program »p61 for more information.

PLEASE NOTE

In the long run you should probably remove the SQLTv2-3.INC file from your program, and
edit your program to use the new function and equate names. Doing so will make it much
easier to use the SQL Tools Documentation, because none of the old names are listed there.
It will also make it easier to obtain Tech Support »p25 because we will probably insist that you
use the new names in any test code that you submit to us.

SQL Tools Version 1 names are not supported by Version 3. If and when SQL Tools Version
4 is released, the Version 2 names will no longer be supported.

 68

Using the PBLIB (#LINK) Files

Your programs can use SQL Tools in either of two forms, the DLL version or the PBLIB
version.

This page is about the SQL Tools PBLIB Files. If you are using the DLL version, read this
page »p71 instead.

PBLIB Files are supported by PB/Win version 10.0 and above, and PB/CC version 6.0 and above. Earlier versions of
the PowerBASIC compilers must use the DLL version of SQL Tools.

The SQL Tools PBLIB file is a PowerBASIC Library that can be linked directly to your
program when you compile it. The SQL Tools functions that your program uses will become
part of your executable (EXE) program, instead of residing in a separate (DLL) file. Using a
PBLIB file allows you to distribute your entire program as a single file.

If you are using SQL Tools Standard , add this line to your program right after the
SQLT3.INC »p66 file:

#LINK "SQLT3Std.PBLIB"

If you are using SQL Tools Pro ...

#LINK "SQLT3Pro.PBLIB"

As with SQLT3.INC you will almost always need to add a path to that line of code, to specify
exactly where the file is located. So if you installed SQL Tools Pro in the default folder, your
PowerBASIC code will look something like this...

#INCLUDE "C:\SQLTools\SQLT3.INC"
#INCLUDE "C:\SQLTools\SQLTv2-3.INC" 'optional
#LINK "C:\SQLTools\SQLT3Pro.PBLIB"

Note the use of #LINK instead of #INCLUDE in the last line.

Nothing else is necessary. When you compile your program using PowerBASIC, the compiler
will link the necessary portions of the PBLIB file directly into your EXE file.

If you distribute your program or install it on another computer, only your EXE file will need to
be installed. Do not distribute the PBLIB files along with your program. (See License
Agreement »p18 for details about what you may legally distribute.)

See Critical Steps for Every SQL Tools Program »p61 for more information.

PBLIB/SLL Granularity

The SQL Tools PBLIB files are actually made up of approximately 60 Static Link Library (SLL)
files, each of which contains a group of related functions.

The SQL Tools functions in the "Core" SLL are needed by virtually all programs: SQL_Init ,
SQL_OpenDB, SQL_Stmt , SQL_Fetch ... the SQL Tools Error Handling system, and many
other functions that SQL Tools requires to operate. The Core SLL comprises about 1/3 of the
entire SQL Tools package.

 69

The other 2/3 of the PBLIB file provides functions that not all programs will need. Groups of
functions are automatically linked into your program one-by-one, only as you need them. If
you use a SQL Tools function that's not in the Core SLL, the PowerBASIC compiler will find
the function in the PBLIB file and link it (and any supporting functions) into your program.
Remove that function from your program and re-compile, and it will no longer be linked.

Notable Differences between PBLIB and DLL Files

PowerBASIC File Numbers are not isolated within PBLIB Files. If you OPEN a disk file AS #1
in your main program, SQL Tools will not be able to use that file number for its own purposes,
and if SQL Tools opens a certain file number, your program will not be able to open it. This is
different from DLLs; each DLL has an isolated set of File Numbers.

It is therefore very important for your program to use FREEFILE to obtain an available
number for every OPEN statement. If you arbitrarily OPEN filename AS #13 , for example,
SQL Tools may already be using that file number and your program's OPEN statement will fail.

 70

The SQLT3StdDLL.INC and SQLT3ProDLL.INC Declaration
Files

Your programs can use SQL Tools in either of two forms, the DLL version or the PBLIB
version.

This page is about the SQL Tools DLL Files. If you are using the PBLIB version, read this
page »p68 instead.

To tell your program where the various SQL Tools functions are located, add one of the
following two lines of code to your program after the #INCLUDE for SQLT3.INC »p66.

#INCLUDE "SQLT3StdDLL.INC" 'Standard
#INCLUDE "SQLT3ProDLL.INC" 'Pro

As with SQLT3.INC »p66 you will almost always need to add a path to the chosen #INCLUDE
line, to specify exactly where the file is located. For example if you installed SQL Tools
Standard in the default folder...

#INCLUDE "C:\SQLTools\SQLT3StdDLL.INC" 'Standard

So your PowerBASIC code will look something like this...

#INCLUDE "C:\SQLTools\SQLT3.INC"
#INCLUDE "C:\SQLTools\SQLTv2-3.INC" 'optional
#INCLUDE "C:\SQLTools\SQLT3StdDLL.INC"

If you distribute your program or install it on another computer, you will need to distribute a
SQL Tools DLL with your program. If you don't do that, your program will not run. (See
License Agreement »p18 for details about what you may legally distribute.)

See Critical Steps for Every SQL Tools Program »p61 for more information.

 71

Using the SQL Tools DLL Runtime Files

This page is about the SQL Tools DLL Files. If you are using the PBLIB »p68 version you can
skip this page.

A DLL is a Windows Dynamic Link Library. That means that the library file is linked to your
program dynamically, which means "when your program is run". (Compare this to a Static
Link Library or PBLIB, which is linked when your program is compiled.)

That means that when your program starts up, it will attempt to locate the DLL file that you
told it to use, either SQLT3Std.DLL or SQLT3Pro.DLL . If it can't find the DLL, your program
will fail to start and a Windows Error Message will (usually) be displayed.

The best place to put a DLL file is in the same directory as your program's EXE file. See
Installing SQL Tools »p44 for other alternatives; the same rules apply to non-development
computers..

 72

The "No Trace" #LINK and Runtime Files

In addition to two complete sets of runtime files in the form of DLL and PBLIB files, two
complete sub-sets of the SQL Tools runtime files are automatically installed on your
development computer when you install SQL Tools. We recommend that you use the first set
for almost everything.

The second set is called "No Trace" because all of the SQL Tools tracing functions have been
removed. This results in significantly -- as much as 33% -- smaller runtime files. The No
Trace files are also slightly faster, but only by a very small amount.

You may wish to develop your programs using the normal runtime files and then distribute it
with the No Trace files, to make your distribution package smaller. Unless size is very
important, however, we recommend that you distribute the larger runtime files. This will allow
you to perform tracing operations on the final runtime system if it becomes necessary.

It is also important to note that the Info/Attribute Label »p193 functions are not available when
the No Trace files are being used.

Your program can perform this test to find out whether or not Trace and Label functions are
available at runtime:

IF SQL_FuncAvail(%SQL_SQLTOOLSTRACE) THEN
 'Trace and Label functions are available
END IF

 73

A SQL Tools Primer

The following sections of this document are intended to summarize all of the terms and
concepts that are used in SQL Tools programming.

Each term or concept is presented in its own section, "encyclopedia" style, but instead of
being ordered alphabetically the topics are arranged so that they progress from basic to
complex, to allow them to be read sequentially in a "tutorial" style. If this document is
presented in electronic form (such as a Help File), you can use the >> button or link to
advance from page to page.

If you want to look up a certain word or phrase, use the Index and Table of Contents »p2 that
are provided with this document. When it is presented as a Help File you can also use the
Find feature to locate every instance of a word or phrase.

For a complete tutorial, use the >> button or link to read the following pages in order.

 74

What a Database Is

Broadly speaking, a database is a collection of information in one form or another.

Of course, that's not a very useful description for a programmer. To explain it better, we'll first
need to define a few terms.

Modern computer databases always contain one or more "tables". Tables will be described in
more detail shortly. For now, you should picture them as "spreadsheets" or "grids", with rows
and columns containing words and/or numbers.

Databases also contain a wide variety of other structures that are necessary for the
maintenance of the tables, but the database's data -- the useful information that is stored in
the database -- is contained in the tables.

When most programmers visualize a database, they see one or more tables.

 75

SQL and ODBC

Over the years, many different types of databases have been designed and used.

As time went by, a standard language called SQL gradually evolved. SQL stands for
Structured Query Language (some people say Standard Query Language), and it is simply a
standard way of "talking" to a database. If you use a SQL command like UPDATE, SQL
databases understand what that means.

You can think of SQL as a computer language, much like BASIC. Since you can't really write
programs in 100% SQL, it may be better to think of it as a sub-language that can be added to
a computer language like BASIC.

If you know how to use the SQL language, you can (at least theoretically) write a program that
can interface with a "SQL compliant" database, i.e. a database that understands the SQL
language. To be clear, when somebody says that a database is SQL compliant, it means that
the database complies with the SQL rules.

Of course, not all SQL compliant databases are created equal. As with BASIC, there are
several different variations or "dialects" of SQL. All SQL databases understand the core
commands, but each database has its own extensions and quirks. Some understand more
complex commands than others, some can handle hundreds of simultaneous users, and so
on. Not only that, but the SQL commands themselves are only part of most programs. For
example, each type of database requires that you "connect to it" in a different way.

So Microsoft designed and published an even broader standard called ODBC. ODBC stands
for Open DataBase Connectivity, which simply means that it is an attempt to create an
"open", standard way of doing everything. SQL is certainly a large part of ODBC, but ODBC
takes the additional steps of specifying how you connect to a database, standard error
messages, and on and on.

If a database is "ODBC compliant", that means that virtually everything is standardized. As
with SQL, you can write a program that can interface with a compliant database, but more
than that, you can (at least theoretically) write a single program that can interface with any
ODBC compliant database.

If SQL is a computer language, you can think of ODBC as an operating system much like
Windows, except (of course) that it runs inside Windows. "Subsystem" is probably a better
way to visualize ODBC.

To summarize, ODBC is a subsystem of Windows. If you use SQL Tools, SQL is a sub-
language of BASIC.

 76

ODBC Drivers, and the Driver Manager

A driver is a special kind of software program that effectively becomes part of the Windows
operating system and allows other applications (such as your programs) to access a
particular capability.

ODBC »p75 is a Microsoft standard that allows programs to access different database formats
through a standard interface. It is possible for an ODBC-compliant program (like SQL Tools)
to access virtually any ODBC-compliant database.

An ODBC driver is a piece of software that allows your computer to use ODBC capabilities.

All of the ODBC drivers that are installed on your computer are "managed" by another piece
of software, called the ODBC Driver Manager. You can visualize it this way...

Your Program

SQL Tools

ODBC Driver Manager

ODBC Driver

Database

In order to talk to the database, your program simply tells SQL Tools to do something via the
first down-arrow.

SQL Tools then communicates with the ODBC Driver Manager, which talks to the specific
ODBC Driver that is used for a particular type of database, and then the ODBC Driver talks to
the actual database. All of that takes place in a small fraction of a second. The database
then processes the request, replies "okay, I did that", and sends the message back up the
chain (via the up-arrows) to SQL Tools.

And then SQL Tools passes the response back to your program.

You, as a programmer, really only have to deal with two parts of the chain: SQL Tools (of
course) and the ODBC driver. Don't worry: SQL Tools provides 100% of the functions that
you will need to work with a database. But an ODBC driver has to be installed on your
computer before SQL Tools can do its job.

If you want to use a Microsoft Access database, you'll need to install the Microsoft Access
ODBC Driver on your computer. If you want to use an Oracle database, you'll need to install
an Oracle driver. You can think of the ODBC drivers as "translators" which allow your SQL
Tools programs to work with different ODBC compliant databases.

It is possible to install many different ODBC drivers on the same computer. Microsoft
provides a program called the ODBC Database Administrator to handle the management of
ODBC drivers. If your computer is running Windows NT, 2000, XP or Win7, you already have
a copy of the ODBC Administrator. Look in your Control Panel, and double-click the ODBC
icon. If you're running Windows 95, 98, or ME, you can use the copy of the Administrator
program that is supplied with SQL Tools. Look in the \SQLTOOLS\MicrosoftODBC
directory.

 77

SQL Tools and ODBC Drivers

Because SQL Tools relies on ODBC drivers for all da tabase operations, it is not
possible for SQL Tools to support a feature, even i f it is supposed to be part of the SQL
or ODBC standard, if the ODBC driver that you are u sing does not support that feature .

For example, if you are using the Microsoft Access ODBC driver »p76, SQL Tools will not
provide advanced Oracle-style functionality for Access databases. SQL Tools will give you
access to the features that the Microsoft Access ODBC driver provides, but it does not
attempt to "simulate" advanced features that are not provided by a given driver.

It is possible for programs to do this -- in fact it is a common programming technique -- but
SQL Tools and your programming language simply provide the "raw" functions that would
allow you to write programs that simulate advanced features.

ALL OF THE SQL TOOLS SPECIFICATIONS THAT ARE LISTED IN THIS DOCUMENT ARE
SUBJECT TO LIMITATIONS BY THE ODBC DRIVERS THAT YOU CHOOSE TO USE.

IF YOU NEED ADVANCED DATABASE FUNCTIONALITY THAT IS NOT PROVIDED BY A
GIVEN ODBC DRIVER, YOU MUST EITHER WRITE THE FEATURE-SIMULATION CODE
YOURSELF OR UPGRADE YOUR PROGRAM TO A DIFFERENT ODBC DRIVER.

 78

Opening a Database

Once the appropriate ODBC driver »p76 has been installed, your SQL Tools program will be
able to use the types of databases that the driver supports.

The first runtime step in using a database is establishing communication between your
program and the database. Other books that you may read will probably refer to a "database
connection", but SQL Tools uses the term "open" because that term is very familiar to most
BASIC programmers. When you open a database, you tell SQL Tools to prepare it for use.

Three different methods can be used to specify how SQL Tools should open a database.

1) Specify a DSN file name »p79

2) Specify a Connection String »p80

3) Manual "Navigation" »p81

All three methods use the same SQL Tools functions, called SQL_OpenDatabase or
SQL_OpenDB »p536.

 79

Using a DSN File to Open a Database

Example: SQL_OpenDB "MYDATA.DSN"

A DSN or "Datasource Name" file is not a database. It is a text file that contains information
about a database, such as where it is located, the ODBC driver »p76 that is required to access
it, and so on. A valid DSN file contains all of the information that is needed to open a
database.

DSN files can be created in several different ways.

1) If you search your hard drive you may find that some DSN files already exist on
your system. Many programs that use ODBC drivers also use DSN files. If you
specify a partial DSN file name such as *.DSN , the SQL_OpenDB function will
display a standard Open File dialog box that will allow you to browse for a DSN file.

2) If you know the format of a DSN file for a particular type of database, you can
hand-edit a DSN file, or create one from scratch using a text editor. (This is usually
not necessary.)

3) You can use the Microsoft ODBC Datasource Administrator program, which is
included with SQL Tools, to create DSN files.

4) The Manual Navigation »p81 method can also be used to create DSN files.

See Appendix G »p910 for information about the DSN File keywords DSN, FILEDSN, DRIVER,
UID, PWD, and SAVEFILE.

 80

Using a Connection String to Open a Database

Example: SQL_OpenDB "DSN=SYS1;UID=JOHN;PWD=HELLO"

Like a DSN file »p79, a valid Connection String contains all of the information that is necessary
to connect to a database. In fact, if you create a text file that contains a connection string,
and give it a name with the .DSN extension, you have created a DSN file.

Connection strings can be very complex. For example, here is the connection string that is
used to open the sample database called "Book Collection" that is provided with Microsoft
Access 97.

DBQ=C:\WINNT\Profiles\xxx\Personal\Book Collection. mdb;
DefaultDir=C:\WINNT\Profiles\xxx\Personal; Driver={ Microsoft
Access Driver (*.mdb)}; DriverId=25; FIL=MS Access;
ImplicitCommitSync=Yes; MaxBufferSize=512; MaxScanR ows=8;
PageTimeout=5; SafeTransactions=0; Threads=3; UID=a dmin;
UserCommitSync=Yes

Each type of database requires a different kind of connection string. We suggest that you
begin by using a DSN file to open a database, and then examine the contents of the DSN file
to learn about the various options. See Appendix G »p910 for information about the connection
string keywords DSN, FILEDSN , DRIVER , UID , PWD, and SAVEFILE .

 81

Manual Navigation: Using the SQL_OpenDB Function to
Create a DSN File

Example: SQL_OpenDB ""

If you use an empty string with the SQL_OpenDB »p536 function, it will display a series of dialog
boxes that will allow you to "navigate" to a connection, save a DSN file »p79, and then select
the DSN file. In the future, your programs can simply specify the new DSN file instead of
repeating the "navigation" process.

The SQL_OpenDB dialog boxes are actually provided by a Microsoft subprogram that is very
similar to certain parts of the Microsoft ODBC Database Administrator. The subprogram
includes its own Windows Help File, which explains how to use the dialog boxes.

 82

Error Messages After Opening a Database

It is very common for the SQL_OpenDB »p536 function to return an Error Code »p895 of
%SQL_SUCCESS_WITH_INFO and to generate an Error Message that says...

The driver doesn't support the version of ODBC beha vior that
the application requested.

That message means that your program specified ODBC 3.x behavior (via the
SQL_Initialize »p495 function), and that you have opened a database that does not
support ODBC 3.x behavior. Most ODBC drivers can emulate at least some 3.x behavior, so
it is not a good idea to use a different lODBCVersion& value with SQL_Initialize . If you
do that, the %SQL_SUCCESS_WITH_INFO message will no longer be generated but you will
not be able to use certain ODBC functions such as Bookmarks.

You should not be concerned by the "doesn't support... " Error Message. An Error
Code of %SQL_SUCCESS_WITH_INFO means that the SQL_OpenDB function was successful,
and that the ODBC Driver Manager »p76 simply wanted to alert you to the fact that the ODBC
Driver that you are using does not support ODBC 3.x behavior.

We suggest that you have your program check and clear the SQL Tools Error Stack (see)
before using SQL_OpenDB, and then check it again after SQL_OpenDB. If the only message
in the stack is a %SQL_SUCCESS_WITH_INFO message, you can safely ignore it.

Another technique for ignoring errors is covered under Ignoring Predictable Errors »p183.

For more information, see Error Codes »p180.

 83

Determining Database Capabilities

Once you have opened »p78 a database, you may need to determine what capabilities the
database has. This is particularly important 1) during development and 2) at runtime if your
program may use different databases at different times.

SQL Tools provides a wide variety of functions that can provide literally hundreds of pieces of
information about a database.

For example, if your program relies on an advanced feature like Table Privileges »p206 you
may need to use the SQL_FuncAvail »p446 function to determine whether or not a database
supports them.

A "generic" way to determine a database's capabilities is to use the SQL_DBInfo »p338 and
SQL_DBInfoStr »p377 functions to obtain database "version" information. The following
values are of particular interest...

PRINT SQL_DBInfoStr(%DB_DM_VER)
PRINT SQL_DBInfoStr(%DB_ODBC_VER)
PRINT SQL_DBInfoStr(%DB_DRIVER_NAME)
PRINT SQL_DBInfoStr(%DB_DRIVER_VER)
PRINT SQL_DBInfoStr(%DB_DRIVER_ODBC_VER)
PRINT SQL_DBInfoStr(%DB_DBMS_NAME)
PRINT SQL_DBInfoStr(%DB_DBMS_VER)

When used with a Microsoft Access 97 test database, those functions returned the following
values:

03.00.2301.0000
03.00.0000
odbcjt32.dll
03.50.3428.00
02.50
ACCESS
3.5 Jet

The 03.00.2301.0000 value is the version number of the ODBC Driver Manager »p76 that is
being used. The 03.00.0000 indicates that the Driver Manager supports ODBC 3.0.

"odbcjt32.dll " is the actual file name of the ODBC driver »p76 that is being used, and the
driver's version number is 03.50.3428.00 . Note that the next value is 02.50 which is the
ODBC version »p53 that the driver supports. That is not the same thing as the driver version
number. (In fact the major version numbers in this example are different.)

The DBMS program that was used to create the database was ACCESS, and the Access
version was 3.5 Jet .

If your ODBC driver supports them, you can also use the following functions to determine the
"level »p53" of ODBC that the driver supports (Core, Level 1, or Level 2), and the level of "SQL
Conformance" that the driver supports.

PRINT SQL_DBInfo(%DB_ODBC_INTERFACE_CONFORMANCE)
PRINT SQL_DBInfo(%DB_SQL_CONFORMANCE)

 84

As you can see, even determining a database's "version" can be a fairly complex task.

Fortunately, the SQL_DBInfo and SQL_DBInfoStr functions can also provide very specific
answers to very specific questions, such as "does the database support Outer Joins" or "what
is the maximum length of a column name", or "does the database support a lLockType& value
of %LOCK_ON when the SQL_SetPos function is used with a keyset-driven MultiRow cursor?"

We suggest that you take a few minutes to review the types of values that can be obtained
from the SQL_DBInfo »p338 and SQL_DBInfoStr »p377 functions. They are extremely
powerful tools.

 85

Tables, Rows, Columns, and Cells

Once you have opened »p78 a database, you can access everything that is inside it. You may
remember from the beginning of this primer that a database was loosely defined as "one or
more tables".

A table can be visualized as a two-dimensional grid, with rows and columns. Here is a very
simple Address Book table, with columns for Name, Address, and City, and with four rows for
four different people:

The columns of a table always contain uniform data. That is to say, the different columns can
contain different types of data, but the data in any given column is always of the same type.
For example, the Name column in the Address Book table contains names and nothing but
names.

The rows of a table always contain data that is related in another way. In the Address Book
table, one row represents one person. In another type of table, such as a Book Collection
table, one row might represent one book.

If you're an experienced BASIC programmer, you may be familiar with the terms "record" and
"field". In the world of SQL databases, records correspond to rows, and fields correspond to
columns.

Another term for this type of data structure is a "relation", because the columns in a given row
contain "related" data. (A name is related to an address, and so on.) That's where the term
"relational database" comes from: it's any database that uses relations (tables, rows and
columns) as its most basic data structure.

Each "box" in a table is called a cell. A cell contains the data for one column in one row. A
less formal (and more common) term for a cell would be a "column value", which usually
implies that one row is being discussed.

Adding new columns to a table is usually a "design time" operation. For example, if you were
designing the Address Book table you would probably want to add columns for State,
Country, Zip Code, Phone Number, and so on. You might also want to create separate
columns for First Name, Last Name, and Middle Initial. The choices are virtually endless, and
they will depend on the type of table that you are designing. But in the end, your database
columns will be usually be part of your program's design, and will rarely be changed.

Adding new rows to a table, on the other hand, is a very common runtime operation. For
example, adding new people to the Address Book table is something that would happen all
the time.

Other common operations include deleting rows and updating rows.

 86

Table Metadata

"Metadata" is a fancy word for "behind-the-scenes information".

For example, here is our simple Address Book table again:

The table is useful all by itself -- it contains information -- but in order to be efficient the
database must also contain metadata about the table. Consider this diagram:

The column labels FullName, StreetAddress and City are not part of the "data grid", and they
do not count as rows. Neither do the "data type" descriptions. All of those things are
metadata that describe the columns.

In Win32 programming, the word "property" is often used to refer to metadata. For example,
it might be said that the second column's "column name property" is StreetAddress.

A wide variety of metadata is provided by modern databases. Each column has a name, a
Data Type, a Width, and many other properties. You can picture a table as a grid that is
"surrounded" by metadata of many different types.

So far we have described column metadata (like column names), but you should keep in mind
that tables -- and even databases themselves -- have metadata too. Each table has a name
and a type (such as TABLE, SYSTEM TABLE, or VIEW), among other properties. And
databases have metadata values such as the name of the disk file that contains the database.

Here is a better definition of a database than we were able to give earlier:

A database consists of one or more tables and all of their metadata.

 87

SQL Data Types

One of the most important kinds of metadata is the Column Data Type. Every column of
every table must have a Data Type assigned to it, so that the database (and your program)
will know how to deal with the column.

The following pages list of all of the basic SQL Data Types.

%SQL_CHAR »p88
%SQL_VARCHAR »p89
%SQL_LONGVARCHAR »p90
%SQL_INTEGER »p91
%SQL_SMALLINT »p92
%SQL_TINYINT »p93
%SQL_BIT »p94
%SQL_BIGINT »p95
%SQL_REAL »p96
%SQL_DOUBLE »p97
%SQL_FLOAT »p98
%SQL_NUMERIC »p99
%SQL_DECIMAL »p99
%SQL_TIMESTAMP »p100
%SQL_DATE »p102
%SQL_TIME »p103
%SQL_ODBCx_INTERVAL »p104
%SQL_BINARY »p105
%SQL_VARBINARY »p105
%SQL_LONGVARBINARY »p105

SQL Unicode Data Types »p109

%SQL_wCHAR »p111
%SQL_wVARCHAR »p112
%SQL_wLONGVARCHAR »p113

You should also become familiar with Datasource-Dependent Data Types »p108.

 88

%SQL_CHAR

A fixed-length string. This is the oldest and most basic SQL data type, but it is used by
relatively few modern databases because it wastes storage space in the database and in
runtime memory.

The length of this data type is specified, on a column-by-column basis, when a database is
designed. It is most appropriate for something like a MiddleInitial or SocialSecurityNumber
column, where the length of the data is fixed and is known ahead of time. But even
something as seemingly-standard as a telephone number -- which might contain a Country
Code or an Extension -- might not work well as a fixed-length string.

Many databases do not support %SQL_CHAR values which are longer than 254 characters.
(The legal range of string lengths is usually 0-255 , but one character is often reserved for a
CHR$(0) string terminator.)

The Display Size »p119 and Octet Length »p117 of a %SQL_CHAR value depend on the length
that was specified when the database was designed. (The Octet Length property does not
include the byte that is required for the string's null terminator.)

 89

%SQL_VARCHAR

A variable-length string. The maximum length of each %SQL_VARCHAR column is specified
when a database is designed.

This is probably the most common type of column in most modern databases. It is
appropriate for a wide variety of uses, such as Name, Address, and City columns where the
length of the data can vary greatly but will not exceed a certain "reasonable" value, such as
255 characters. In fact, most databases limit %SQL_VARCHAR values to a maximum of 255
characters, and many do not support more than 254 characters. (The legal range of string
lengths is usually 0-255 , but one characters is often reserved for a CHR$(0) string
terminator.)

%SQL_VARCHAR columns are more efficient than %SQL_CHAR »p88 columns because they do
not waste space in the database if the contents of a column do not fill the available column
length.

The Display Size »p119 and Octet Length »p117 of a %SQL_VARCHAR value depend on the
maximum length that was specified when the database was designed. (The Octet Length
property does not include the byte that is required for the string's null terminator.)

 90

%SQL_LONGVARCHAR

A "long" variable-length string. The definition of "long" depends on what you're doing. In
most cases, ODBC considers strings that are potentially over 255 characters to be "long".

The maximum length of a %SQL_LONGVARCHAR column is defined by the ODBC driver »p76
that is used. A common maximum length is 1,073,741,824 characters (1 gigabyte).

The most common use of this data type is a "memo" field that allows the user to enter strings
of virtually any length.

The Display Size »p119 and Octet Length »p117 of a %SQL_LONGVARCHAR value depend on the
maximum length that was specified when the database was designed. (The Octet Length
property does not include the byte that is required for the string's null terminator.)

 91

%SQL_INTEGER

A 32-bit integer value, stored in binary form. It can be interpreted as a Signed Integer in the
%BAS_LONG »p121 range of -2,147,483,648 to +2,147,483,647 , or an Unsigned Integer
in the %BAS_DWORD »p121 range of zero (0) to +4,294,967,295 .

This is the most common and most efficient type of numeric data for your programs to
process, but it may or may not be the most efficiently-stored and retrieved data type. Your
results will vary, depending on the type of database that you choose, and you may get better,
faster results with a different integer data type.

The Display Size »p119 for a %SQL_INTEGER value is 10 if the value is unsigned, or 11 if it is
signed.

The Octet Length »p117 for a %SQL_INTEGER value is 4.

 92

%SQL_SMALLINT

A 16-bit integer value, stored in binary form. It can be interpreted as a Signed Integer in the
%BAS_INTEGER »p121 range of -32,768 to +32,767 or an Unsigned Integer in the
%BAS_WORD »p121 range of zero (0) to +65,535 .

The Display Size »p119 for a %SQL_SMALLINT value is 5 if the value is unsigned, or 6 if it is
signed.

The Octet Length »p117 for a %SQL_SMALLINT value is 2.

 93

%SQL_TINYINT

An 8-bit integer value, stored in binary form. It can be interpreted as a Signed Integer in the
range -128 to +127 or an Unsigned Integer in the %BAS_BYTE »p121 range zero (0) to
+255 . (PowerBASIC does not directly support 8-bit Signed Integers, but they can be stored
in %BAS_INTEGER »p121 variables since that data type has a range of -32,768 to
+32,767 .)

The Display Size »p119 for a %SQL_TINYINT value is 3 if the value is unsigned, or 4 if it is
signed.

The Octet Length »p117 for a %SQL_TINYINT value is 1.

 94

%SQL_BIT

A one-bit integer value, stored in binary form. A %SQL_BIT column can be interpreted as
having...

1) a value of zero (0) or +1 , or
2) a value of zero (0) or -1 .

The SQL_ResColNumeric »p607 function will return zero or negative one, to make the value
easier to handle with boolean operators like NOT. See Appendix H: Logical True and False

»p912 for more details.

In most databases, %SQL_BIT columns are actually stored as larger data structures, so they
can provide extremely efficient storage for True/False values. Generally speaking, adding
one %SQL_BIT column to a table adds a certain amount of overhead, and then a fixed
number of additional %SQL_BIT columns (often 7 or 15) can be added to the same table with
little or no additional overhead.

PowerBASIC does not directly support the %BAS_BIT data type, but they can be stored in
other types of %BAS_ variables such as %BAS_LONG »p121 and %BAS_INTEGER »p121. (Using a
signed %BAS_ data type allows the storage of 0 , +1, or -1 .)

The Display Size »p119 for a %SQL_BIT value is always considered to be 1, because the
meanings of +1 and -1 are identical.

The Octet Length »p117 for a %SQL_BIT value is 1.

 95

%SQL_BIGINT

A 64-bit integer value (or larger), stored in string form. Since many computer languages do
not yet support 64-bit math, all ODBC drivers return these values as strings.

Signed %SQL_BIGINT values up to plus-or-minus 9.22 x 10^18 are supported by
PowerBASIC's QUAD (%BAS_QUAD »p121) data type, as well as the PowerBASIC VAL, STR$,
and FORMAT$ functions, among others. PowerBASIC does not currently support 64-bit
Unsigned Integers. Fortunately, neither do most databases, so it is usually safe to use the
PowerBASIC VAL function to convert a %SQL_BIGINT string value into a %BAS_QUAD value.

The Display Size »p119 for a %SQL_BIGINT value is always 20 , regardless of whether the
value is signed or unsigned.

The Octet Length »p117 for a %SQL_BIGINT value is the length of the string that would be
required to hold the character (i.e. text) representation of the data.

 96

%SQL_REAL

A single precision floating-point numeric value in the range of plus-or-minus 8.43 x 10^-37
to 3.37 x 10^38 .

This SQL Data Type corresponds directly to the %BAS_SINGLE »p121 Data Type.

The Display Size »p119 for a %SQL_REAL value is always 14 .

The Octet Length »p117 for a %SQL_REAL value is 4.

 97

%SQL_DOUBLE

A double precision floating-point numeric value in the range of plus-or-minus 4.19 x 10^-
307 to 1.67 x 10^308 .

This SQL Data Type corresponds directly to the %BAS_DOUBLE »p121 Data Type.

The Display Size »p119 for a %SQL_DOUBLE value is always 24 .

The Octet Length »p117 for a %SQL_DOUBLE value is 8.

 98

%SQL_FLOAT

A floating-point numeric value, the range and precision of which can be specified while you
are designing a database.

Because it is user-defined, this Data Type does not correspond directly to a PowerBASIC
Data Type. It may therefore require special handling. SQL_ResColNumeric »p607 will
attempt to interpret the value by assuming that it has the default FLOAT format, but if the
column was defined as FLOAT(x) this will result in an incorrect numeric value being
returned. In that case you will need to use the SQL_ResColString »p614 function to obtain a
binary image of the numeric value, then use PowerBASIC code to interpret the bits. Refer to
your DBMS documentation for information about the bit-level format.

The Display Size »p119 for a %SQL_FLOAT value is always 24 .

The Octet Length »p117 for a %SQL_FLOAT value is 8.

 99

%SQL_NUMERIC and %SQL_DECIMAL

Numeric data types where the precision and scale (the total number of digits, and the number
of digits to the right of the decimal point) are specified when a database is designed. The
usual notation is DECIMAL(X,Y) where X and Y are integer values. Most database do not
support %SQL_NUMERIC or %SQL_DECIMAL values with a total of more than 15 digits.

These data types are stored in a database as strings of 5, 9, 13, or 17 bytes. In almost all
cases the SQL_ResColNumeric »p607 function will return a floating-point value for these
columns, and the SQL_ResColString »p614 function will return the number in string form.

We say "almost all cases" because some databases implement %SQL_NUMERIC and
%SQL_DECIMAL columns in nonstandard ways. In rare cases these columns may contain
binary data that must be interpreted bit by bit.

The Display Size »p119 for a %SQL_NUMERIC or %SQL_DECIMAL value is the precision of the
column plus 2. For example, the display size of a DECIMAL(10,3) column would be 12 .

The Octet Length »p117 for a %SQL_NUMERIC or %SQL_DECIMAL varies, depending on the
binary format that is used by the DBMS.

 100

%SQL_TIMESTAMP and %SQL_TYPE_TIMESTAMP

ODBC Version 2 requires the use of %SQL_TIMESTAMP.

ODBC Version 3 requires the use of %SQL_TYPE_TIMESTAMP.

SQL Tools versions 2 and 3 handle both types automatically. SQL Tools version numbers are not related to ODBC
version numbers in any way.

A timestamp column stores one Date value and one Time value in a standard 16-byte (128-
bit) binary format. It is also frequently used to store either a date or a time.

The SQL_ResColNumeric »p607 function automatically detects the data type that is being
used, and returns a numeric value in the QUAD range that corresponds to a Windows
FILETIME value. This is the same data type that is used by the SQL_DateTimePart »p314
and SQL_DateTimePartStr »p315 functions, as well as the PowerBASIC PowerTime Object

The SQLT3.INC »p66 file contain the data structure that is returned by the
SQL_ResColString »p614 function for a %SQL_TIMESTAMP or %SQL_TYPE_TIMESTAMP
column. See Advanced Techniques below for more information.

The Display Size »p119 for a timestamp value is 19 if fractional seconds are not included, or 20
plus the number of fractional-seconds digits after the decimal point.

The Octet Length »p117 for a timestamp value is 16 (the size of the TIMESTAMP_STRUCT
structure).

Advanced Techniques

It is possible to access a timestamp value by using the User Defined Type
TIMESTAMP_STRUCT directly. The "raw" contents of the structure can be obtained with the
SQL_ResColString function, which returns a string. That string would then be placed
directly into the %SQL_TIMESTAMP structure using a technique that is appropriate to the
programming language you are using. (Exactly the same technique can be used for
%SQL_DATE »p102 and %SQL_TIME »p103 columns if the appropriate structures are used
instead of TIMESTAMP_STRUCT, although some DBMSs use a TIMESTAMP_STRUCT to
store a %SQL_DATE or %SQL_TIME.)

The structure looks like this:

TYPE TIMESTAMP_STRUCT
 Year AS INTEGER
 Month AS INTEGER
 Day AS INTEGER
 Hour AS INTEGER
 Minute AS INTEGER
 Second AS INTEGER
 Fraction AS LONG
END TYPE

You have to be careful when using a raw timestamp structure because it can appear to
contain invalid information. For example, instead of restricting Second values from zero to
fifty-nine (0-59) as you might expect, the ODBC specification allows values from zero to

 101

sixty-one (0-61) in order to allow times involving "leap seconds".

The Fraction element of a %SQL_TIMESTAMP column is a %BAS_DWORD »p121 that can
hold values from 0 to 4,294,967,295 , but the largest legal value is 999,999,999 so a
%BAS_LONG »p121 value can also be used. The maximum resolution of a timestamp is
therefore one one-billionth of one second, or one nanosecond. In practice, few databases (or
ODBC drivers) actually support this level of precision. (Most notably, SQL Server only
supports resolutions of approximately 1/300 of a second.)

If column 10 of a result set contained a timestamp, you could do this with PowerBASIC:

DIM DateTime AS TIMESTAMP_STRUCT

LSET DateTime = SQL_ResColString(10)

The SQL_ResColString »p613 function will return a string, and the PowerBASIC LSET
operation will place the contents of the string directly into the TIMESTAMP_STRUCT. Then
your program could access the various elements of DateTime by using the UDT's
elements. For example, you might access DateTime.Month or DateTime.Seconds.

IMPORTANT NOTE: If the timestamp column is nullable »p171 the SQL_ResColString
function can return an empty string. If that happens, the PowerBASIC LSET function will fill
the structure with space characters, resulting in invalid date-time values like 8224-8224-
8224 @ 8224:8224:8224 . So code like this should be used if the date-time column is
nullable:

DIM DateTime AS TIMESTAMP_STRUCT

IF SQL_ResColNull(10) THEN
 'The column contains a null value
 LSET DateTime = STRING$(16,0)
ELSE
 'The column contains a date-time
 LSET DateTime = SQL_ResColString(10)
END IF

For other programming languages see SQL_StringToType »p734.

If you are using Manual Binding »p164, you must use the appropriate timestamp data type.
This will depend on 1) the capabilities of the ODBC driver that you are using and 2) if you use
SQL_Initialize »p495 instead of SQL_Init »p494, the value of the lODBCVersion&
parameter. (SQL_Init automatically specifies ODBC Version 3.)

 102

%SQL_DATE and %SQL_TYPE_DATE

ODBC Version 2 requires the use of %SQL_DATE.

ODBC Version 3 requires the use of %SQL_TYPE_DATE.

SQL Tools versions 2 and 3 handle both types automatically. SQL Tools version numbers are not related to ODBC
version numbers in any way.

You must use the appropriate date data type, depending on 1) the capabilities of the ODBC
driver that you are using and 2) if you use SQL_Initialize »p495 instead of SQL_Init , the
value of the lODBCVersion& parameter. (SQL_Init automatically specifies ODBC Version
3.)

A %SQL_DATE or %SQL_TYPE_DATE column is similar to a %SQL_TIMESTAMP »p100 column,
except that it contains a 6-byte DATE_STRUCT structure that represents a date only. The
elements of a date structure are...

TYPE DATE_STRUCT
 Year AS INTEGER
 Month AS INTEGER
 Day AS INTEGER
END TYPE

The SQL_ResColNumeric »p607 function automatically detects the data type that is being
used, and returns a numeric value in the QUAD range that corresponds to a Windows
FILETIME value. This is the same data type that is used by the SQL_DateTimePart »p314
and SQL_DateTimePartStr »p315 functions, as well as the PowerBASIC PowerTime Object

For a different way to use a date column, see %SQL_TIMESTAMP »p100 and read the section
titled "Advanced Techniques". The same techniques can be used with date columns, but you
should use a DATE_STRUCT instead of a TIMESTAMP_STRUCT.

The Display Size »p119 for a date value is always 10

The Octet Length »p117 for a date value is 6 (the size of the DATE_STRUCT structure).

 103

%SQL_TIME and %SQL_TYPE_TIME

ODBC Version 2 requires the use of %SQL_TIME.

ODBC Version 3 requires the use of %SQL_TYPE_TIME.

SQL Tools versions 2 and 3 handle both types automatically. SQL Tools version numbers are not related to ODBC
version numbers in any way.

You must use the appropriate time data type, depending on 1) the capabilities of the ODBC
driver that you are using and 2) if you use SQL_Initialize »p495 instead of SQL_Init , the
value of the lODBCVersion& parameter. (SQL_Init automatically specifies ODBC Version
3.)

The SQL_ResColNumeric »p607 function automatically detects the data type that is being
used, and returns a numeric value in the QUAD range that corresponds to a Windows
FILETIME value. This is the same data type that is used by the SQL_DateTimePart »p314
and SQL_DateTimePartStr »p315 functions, as well as the PowerBASIC PowerTime Object

A %SQL_TIME or %SQL_TYPE_TIME column is similar to a %SQL_TIMESTAMP »p100 column,
except that it contains a 6-byte TIME_STRUCT structure that represents a time only. The
elements of a time structure are...

TYPE TIME_STRUCT
 Hour AS INTEGER
 Minute AS INTEGER
 Second AS INTEGER
END TYPE

Note that the "fractional seconds" element that is part of a %SQL_TIMESTAMP column is not
part of a %SQL_TIME column. A %SQL_TIMESTAMP column therefore contains more
information than a %SQL_DATE plus a %SQL_TIME column.

For a different way to use a time column, see %SQL_TIMESTAMP »p100 and read the section
titled "Advanced Techniques". The same techniques can be used with time columns, but you
should use a TIME_STRUCT structure instead of a TIMESTAMP_STRUCT.

The Display Size »p119 for a time value is 8 if fractional seconds are not included, or 9 plus the
number of digits after the decimal point.

The Octet Length »p117 for a time value is 6 (the size of the TIME_STRUCT structure).

 104

%SQL_ODBCx_INTERVAL Data Types

%SQL_ODBCx_INTERVAL_ columns are used to store the difference between two dates
and/or times.

The x will be a number, either 2 or 3, indicating the ODBC version with which the data
complies. After the last underscore will be additional names. Many different
%SQL_ODBCx_INTERVAL_ column types are listed in the SQLT3.INC »p66 file such as
%SQL_ODBC3_INTERVAL_DAY_TO_HOUR (the number of days/hours between two
date/times), %SQL_ODBC3_INTERVAL_YEAR_TO_MONTH (the number of years/months
between two dates), and %SQL_ODBC3_INTERVAL_YEAR (the number of years between two
dates).

%SQL_ODBCx_INTERVAL_ columns can be somewhat difficult to use because they are
defined differently by the ODBC 2.0 and ODBC 3.x specifications. You will probably notice
that the SQL Tools Declaration Files contain two complete sets of numbers, one for the
ODBC 2.0 data-type ID numbers and one for the ODBC 3.x numbers. If you know ahead of
time that a column contains a %SQL_ODBCx_INTERVAL_ this is not usually a problem, but if
you are using SQL Tools Info functions to examine an unfamiliar database, it can be very
confusing.

The SQL Tools Declaration Files contain the User Defined Type structures that you will need
for %SQL_ODBCx_INTERVAL_ columns. They consist of an 8-byte Year-Month UDT and a
20-byte Day-Second UDT, which are combined into a 20-byte SQL_INTERVAL structure via a
UNION statement.

%SQL_ODBCx_INTERVAL_ columns are always 26-byte structures, regardless of the type of
interval being measured. Your program must access the appropriate structures and
elements, based on the type of interval. Because of their complexity (and relative rarity) SQL
Tools does not provide functions that interpret or format %SQL_ODBCx_INTERVAL_
structures. You should perform this task with BASIC code.

For a complete description of %SQL_ODBCx_INTERVAL_ columns, we suggest that you
consult either the Microsoft ODBC Software Developer Kit »p915 or another comprehensive
ODBC reference.

The Microsoft ODBC Reference lists the Octet Length »p117 of a %SQL_ODBCx_INTERVAL_
value as 34 .

 105

%SQL_BINARY, %SQL_VARBINARY, and
%SQL_LONGVARBINARY

These data types are virtually identical to %SQL_CHAR »p88, %SQL_VARCHAR »p89, and
%SQL_LONGVARCHAR »p90, except that they are intended for "binary" data instead of "string"
data. (Some books refer to %SQL_LONGVARBINARY as %SQL_LONGBINARY.)

String data traditionally consists of characters that humans can read (A-Z , a-z , 0-9 ,
!@#$%^&*, etc.) plus a few control characters like Carriage Return and Line Feed. In
practice, any ANSI character with the exception of the string-termination character CHR$(0)
can be stored in a CHAR column.

Binary columns can store all 256 ANSI characters, including CHR$(0) .

Binary columns are remarkably versatile. They can be used to store sounds, pictures, and
even entire programs.

A common term for a %SQL_LONGVARBINARY column is a BLOB, which stands for Binary
Large OBject. It is just that: a "blob" of binary data, containing virtually anything that you can
imagine.

Many different database programs use binary columns for their own internal purposes. For
example, when you store a "Form" or a "Report" in a Microsoft Access database, it is actually
stored in a special kind of table called a SYSTEM TABLE, in a %SQL_LONGVARBINARY
column.

Binary columns can be used to store User Defined Types, entire numeric arrays, data
structures that you design yourself, or just about anything else.

As with %SQL_CHAR »p88 columns, %SQL_BINARY columns have a fixed length that is defined
when a database is designed. The usual maximum length is 255 bytes.

As with %SQL_VARCHAR »p89 columns, %SQL_VARBINARY columns are variable-length, with a
maximum length (usually 256 bytes) that is defined when a database is defined.

As with %SQL_LONGVARCHAR »p90 columns, the maximum size for a %SQL_LONGVARBINARY
column is defined by the ODBC driver »p76 that is used. A common maximum length is 1
gigabyte.

The Display Size »p119 and Octet Length »p117 of all of the %SQL_BINARY data types depend
on the maximum length that was specified when the database was designed.

 106

Lengths of %SQL_CHAR and %SQL_BINARY Data Types

The lengths of the various %SQL_CHAR and %SQL_BINARY data types (including all of the
VAR and LONGVAR permutations) can vary from database to database and from ODBC driver
to ODBC driver.

SQL Tools uses default maximum lengths for these columns that work well with most
databases and drivers, but it may be necessary for you to change the defaults to work better
in your particular circumstances. The default sizes for all %SQL_CHAR and %SQL_BINARY
columns can be changed with the SQL_SetOption »p681 function.

%SQL_CHAR »p88, %SQL_VARCHAR »p89, %SQL_BINARY »p105, and %SQL_VARBINARY »p105
columns all default to a maximum of 256 bytes. If your databases and ODBC drivers use
lengths of 256 characters or less, you will not need to change the SQL Tools defaults unless
you are trying to optimize an application to use the absolute minimum amount of memory that
is possible. (This can be accomplished even more efficiently by manually binding »p162 result
columns.)

%SQL_LONGVARCHAR »p90 , %SQL_wLONGVARCHAR »p113, and %SQL_LONGVARBINARY »p105
columns often contain data that is longer than 256 bytes, but SQL Tools uses a default buffer
size of 256 to allow you to "preview" the first portions of these columns using the usual
SQL_ResultColumn functions. It may be desirable for you to change the default to a larger
value, but you should be careful not to use values that are too large or your program will use
great quantities of memory. The appropriate way to access most %SQL_LONGVARCHAR,
%SQL_wLONGVARCHAR, and %SQL_LONGVARBINARY columns is to use the default 256 -byte
buffer to preview the data (or to unbind LONG columns to disable the preview buffer), and
then to use the SQL_ResColMemo »p602 and SQL_ResColBLOB »p579 functions to obtain the
actual contents of the column. They both use a default "chunk size" of 64k bytes, and can be
used repeatedly to obtain data that is longer than 64k. For more information, see Long
Columns »p167.

 107

%SQL_DEFAULT

This data type can sometimes be used when you do not know which SQL Data Type »p87 you
should use for a function. It means "use the native data type of the column, as defined by the
database itself".

The Microsoft ODBC Software Developer Kit »p915 both 1) recommends against using this
value and 2) requires that it be used under certain circumstances.

 108

Datasource-Dependent Data Types

A Datasource-dependent Data Type is a data type that 1) is supported by a particular
database and 2) is completely described by the database. Database-Specific Data Types are
always based on the standard SQL Data Types »p87 but they are not identical to them. Think
of a SQL Data Type as a general description, and a Datasource-dependent Data Type as a
complete description.

For example, if a database supports the %SQL_CHAR »p88 data type, it must specify a
maximum string length. If it supports a %SQL_DECIMAL »p99 or %SQL_NUMERIC »p99 data
type, it must specify the number of digits that will be used after the decimal point. If it
supports the %SQL_INTEGER »p91 data type, the length and decimal-digits are pre-defined, but
the database must assign a name to the data type (like INTEGER or LONG) so that certain
SQL statements (such as CREATE TABLE) can use the names. Every single SQL Data
Type requires some parameters to be defined.

Many different databases also support "variations" on the standard SQL Data Types.

For example, it is very common for a database to support a data type called COUNTER. This
is usually a %SQL_INTEGER column that is not allowed to contain Null values »p171 and that is
auto-incrementing. That means that the database itself is responsible for inserting unique,
usually sequential values into the column, as a means for providing unique row identifiers.

That same database may also support a data type called INTEGER, which might be a
%SQL_INTEGER column that is nullable and is not auto-incrementing, or non-nullable and
non-incrementing... the exact definition will depend on the database.

Another common Datasource-dependent Data Type is MONEY, which would (presumably)
describe how the database handles monetary values. It might be a %SQL_DECIMAL value, or
a %SQL_INTEGER value that is used to store "cents" and multiplied times a certain factor to
obtain "dollars and cents", or it might be a string value, or a floating-point value... It depends
on what the database designer decided to use for a "money" column.

 109

Unicode Data Types

For information about specific Unicode Data Types, see %SQL_wCHAR »p111,
%SQL_wVARCHAR »p112, and %SQL_wLONGVARCHAR »p113.

There are two basic types of strings in the modern Windows world: ANSI strings and Unicode
strings. (The terms ANSI and ASCII have slightly different meanings, but for the purposes of
this discussion you can consider them to be identical. The same is true for the terms
Unicode, "wide characters", and "multi-byte characters".)

In an ANSI string, each character is represented by a single byte of data. That's the reason
that there are exactly 256 different ANSI characters: a byte (8 bits) can only represent 256
different values, from 0-255. An ANSI string has a length that is the same as its character
count. For example, the three-character string "SQL" requires three bytes of storage
(memory, disk space, etc.).

In a Unicode string, each character is represented by two bytes (one word) of data. That
means that the Unicode character set contains 65,536 different characters, from 0 to 65,535.
The Unicode character set is intended to replace the ANSI character set, so that characters
from many different languages can be displayed. If you have a Windows NT, 2000, XP or
Win7 computer, use the Start > Programs > Accessories > Character Map program to select
a font like Arial. If you use the Subset option, you will see many different pages of up to 256
characters each.

Since each Unicode character requires a word instead of a byte, that means that the
representation of the example string "SQL" requires six bytes of storage. Unicode strings are
usually twice as long as ANSI strings with the same content.

And that means that if a database contains a Unicode column (%SQL_wCHAR,
%SQL_wVARCHAR, or %SQL_wLONGVARCHAR, where the W stands for Wide), you must double
the amount of storage space that your program provides.

The Unicode data types were introduced in the ODBC 3.5 standard. In fact, Unicode support
is the most significant difference between ODBC 3.0 and 3.5.

How SQL Tools Handles Unicode Data

If you are confident that a result column contains Unicode data, and if you want to assign that
data to a PowerBASIC WSTRING variable, you should simply use the SQL_ResColWString
function instead of SQL_ResColString . No other steps are necessary.

If you are not sure, or if you are using a database that mixes ANSI and Unicode, the following
information may be helpful.

A single Result Set can contain ANSI string columns, Unicode string columns, or a
combination of both. However each individual column will always be consistent; the data in
any given column will be 100% ANSI or 100% Unicode.

Note too that certain SQL/ODBC functions in a SQL statement can convert strings between
ANSI and Unicode. For example a column called PartNumber might contain ANSI
characters, but if you use the ODBC function FORMAT(PartNumber,x) in a SQL
statement, the data might be returned as a Unicode string. It all depends on the ODBC driver

 110

that you are using.

By default, SQL_ResColString »p614 will always return the type of raw data that is present in
a Result Column. If a column contains ANSI characters, that's what SQL_ResColString will
return; if a column contains Unicode, SQL_ResColString will return Unicode characters.
But PowerBASIC will always interpret the data as ANSI, because SQL_ResColString is
declared as a STRING function.

Depending on a number of factors, it may or may not be necessary for your program to use
the PowerBASIC BITS$() function to assign the value from SQL_ResColString to a
STRING ($) or WSTRING ($$) variable.

MyUnicode$$ = BITS$(WSTRING, SQL_ResColString(x))

The following PowerBASIC functions can be used to translate strings among the various
formats that you may encounter: ACODE$(), UCODE$(), OEMTOCHR$(), CHRTOOEM$(),
UTF8TOCHR$(), and CHRTOUTF8$().

You can tell SQL_ResColString to attempt to translate everything into ANSI strings by
using...

SQL_SetOption »p681 %OPT_FORCE_STRING_TYPE, %ACODE_STRINGS

We say "attempt" because it is not always possible to translate Unicode into ANSI. If your
strings contain non-English characters they may be mis-translated. This is not a bug, it is the
nature of ANSI and Unicode.

You can tell SQL_ResColString to translate everything into Unicode by using

SQL_SetOption %OPT_FORCE_STRING_TYPE, %UCODE_STRINGS

Because of the nature of ANSI and Unicode, this type of translation always works.

The default setting is %RAW_STRINGS, which tells SQL_ResColString to return ANSI
strings for ANSI columns and Unicode strings for Unicode columns.

 111

%SQL_wCHAR

A fixed-length Unicode string. This data type is very similar to %SQL_CHAR »p88, except that it
is a Unicode »p109 data type. (The w stands for Wide Characters, which is another term for
Unicode.)

The length of this data type is specified, on a column-by-column basis, when a database is
designed. It is most appropriate for something like a MiddleInitial or SocialSecurityNumber
column, where the length of the data is fixed and is known ahead of time. But even
something as seemingly-standard as a telephone number -- which might contain a Country
Code or an Extension -- might not work well as a fixed-length string.

Many databases do not support %SQL_wCHAR values which are longer than 254 characters.
(The legal range of string lengths is usually 0-255 , but one character is often reserved for a
CHR$(0) string terminator.)

The Display Size »p119 and Octet Length »p117 of a %SQL_CHAR value depend on the length
that was specified when the database was designed. (The Octet Length property does not
include the byte that is required for the string's null terminator.)

IMPORTANT NOTE: You must always keep in mind that Unicode »p109 strings require two
bytes per character. So a %SQL_wCHAR column with 10 characters would require 20 bytes,
not 10.

 112

%SQL_wVARCHAR

A variable-length Unicode string. This data type is very similar to %SQL_VARCHAR »p89,
except that it is a Unicode »p109 data type. (The w stands for Wide Characters, which is
another term for Unicode.)

The maximum length of each %SQL_wVARCHAR column is specified when a database is
designed.

This data type is appropriate for a wide variety of uses, such as Name, Address, and City
columns where the length of the data can vary greatly but will not exceed a certain
"reasonable" value, such as 255 characters. In fact, most databases limit %SQL_wVARCHAR
values to a maximum of 255 characters, and many do not support more than 254 characters.
(The legal range of string lengths is usually 0-255 , but one characters is often reserved for a
CHR$(0) string terminator.)

%SQL_wVARCHAR columns are more efficient than %SQL_wCHAR »p111 columns because they
do not waste space in the database if the contents of a column do not fill the available column
length.

The Display Size »p119 and Octet Length »p117 of a %SQL_wVARCHAR value depend on the
maximum length that was specified when the database was designed. (The Octet Length
property does not include the byte that is required for the string's null terminator.)

IMPORTANT NOTE: You must always keep in mind that Unicode »p109 strings require two
bytes per character. So a %SQL_wVARCHAR column with a maximum length of 10
characters would require 20 bytes, not 10.

 113

%SQL_wLONGVARCHAR

A "long" variable-length Unicode string. This data type is very similar to
%SQL_LONGVARCHAR »p90 , except that it is a Unicode »p109 data type. (The w stands for
Wide Characters, which is another term for Unicode.)

The definition of "long" depends on what you're doing. In most cases, ODBC considers
strings that are potentially over 255 characters to be "long".

The maximum length of a %SQL_wLONGVARCHAR column is defined by the ODBC driver »p76
that is used. A common maximum length is 1,073,741,824 characters (1 gigabyte).

The most common use of this data type is a "memo" field that allows the user to enter strings
of virtually any length.

The Display Size »p119 and Octet Length »p117 of a %SQL_wLONGVARCHAR value depend on
the maximum length that was specified when the database was designed. (The Octet Length
property does not include the byte that is required for the string's null terminator.)

IMPORTANT NOTE: You must always keep in mind that Unicode »p109 strings require two
bytes per character. So a %SQL_wLONGVARCHAR column with a maximum length of 1000
characters would require 2000 bytes, not 1000.

 114

SQL Data Type "Properties"

Each SQL Data Type »p87 has a set of "properties". Some properties (such as the buffer size
that is required to hold a %SQL_INTEGER value) never change. Other properties (such as the
prefix that must be used for literal %SQL_VARCHAR value) can be defined differently by
various ODBC drivers. And some properties (such as the length of a %SQL_CHAR column)
are defined when a database is designed.

Most of the time you won't have to worry about a data type's properties. After all, by the time
your SQL Tools program opens a database, nearly all of the properties have been determined
and there's nothing you can do about them. But sometimes you will need to find out the value
of a data type property. Some ODBC functions (and therefore some SQL Tools functions)
require that certain properties be used as parameters when the functions are used.

You can use the SQL_DBDataTypeCount »p328 function to find out how many different data
types a database supports, and then you can use the SQL_DBDataTypeInfoStr »p334 and
SQL_DBDataTypeInfo »p330 functions to obtain a data type's properties.

The various types of columns (table columns, result columns, Stored Procedure columns,
AutoColumns, etc.) all have specific lists of data type properties that they use, but there are
six common properties with which you should become familiar:

Concise Type »p115

Buffer Size »p116

Transfer Octet Size »p117

Num Prec Radix »p118

Display Size »p119

Decimal Digits (Precision) »p120

 115

Concise Type

This data type property is usually the data type itself, such as %SQL_CHAR or
%SQL_INTEGER.

The only time that "concise" data types get complicated is when date-times are involved. For
example, a particular value might have a concise data type of %SQL_ODBCx_INTERVAL_,
and a "Date-Time Subcode" of %SQL_ODBC3_INTERVAL_YEAR to describe the Interval in
more detail.

If a Data Type is not "concise" then something like %SQL_ODBC3_INTERVAL_YEAR will be
specified, and %SQL_ODBCx_INTERVAL_ will be implied.

 116

Buffer Size

This data type property is the length of the memory buffer that is required to hold a value.

Generally speaking, the buffer size is defined by the type of %BAS_ »p121 variable that you use
for a value.

Also see Transfer Octet Size »p117.

 117

Transfer Octet Length

In some cases you will need to be concerned with the "octet length" of a data type, which is
the buffer size that would be used for a value if the %SQL_DEFAULT »p107 data type was used.

"Octet" refers to a byte, which (of course) has 8 bits. The "transfer octet length" is the number
of 8-bit blocks of memory that are required for a value.

Also see Buffer Size »p116.

 118

Num Prec Radix

Frankly, "Num Prec Radix" is an obscure term that is not defined very well by the Microsoft
ODBC Software Developer Kit »p915.

This data type property is very important because i t determines how two other
properties are interpreted.

This property will always have a numeric value of ten (10), two (2), or zero (0).

If this value is 10 , the Display Size »p119 and Decimal Digits »p120 properties refer to the
number of digits that are allowed for the value.

For example, a %SQL_DECIMAL(12,5) »p99 column would return a Num Prec Radix value of
10, a Display Size value of 12, and a Decimal Digits value of 5.

A %SQL_FLOAT »p98 column, on the other hand, could return a Num Prec Radix value of 10, a
Display Size value of 15, and a Decimal Digits value of zero (0).

If this value is 2 , the Display Size »p119 and Decimal Digits »p120 properties refer to the
number of bits that are allowed for the value.

For example, a %SQL_FLOAT column could have a Num Prec Radix value of 2, a Display Size
value of 53, and a Decimal Digits value of zero (0). (Or it could have the values shown for a
Num Prec Radix of 10, just above.)

If this value is zero (0) , Num Prec Radix is not applicable to the data type.

 119

Display Size

The exact meaning of the Display Size property is dependent on the value of the Num Prec
Radix »p118 property.

The Display Size property usually refers to the number of characters that a user interface
would have to display in order to show the entire column in character form. For example, an
unsigned %SQL_TINYINT column (which can contain values from 0 to 255) would have a
display size of 3, because the maximum width required to display a value is 3 characters, for
"255 ". A signed %SQL_TINYINT column, on the other hand, can contain values between -
128 and +127 , so it would have a display size of 4 because it might be necessary to display
the value "-128 ".

Do not confuse the display size value with the size of the memory buffer »p116 that is required
to store a column's value. For example, a %SQL_TINYINT column requires a one-byte buffer,
but requires three or four characters to display.

 120

Decimal Digits

The exact meaning of the Decimal Digits property is dependent on the value of the Num Prec
Radix »p118 property.

"Decimal Digits" or "Precision" usually refers to the maximum number of digits that a value
can have to the right of the decimal point.

For %SQL_NUMERIC and %SQL_DECIMAL values, this is the Y number in the
DECIMAL(X,Y) notation.

For date-time data values, Decimal Digits refers to the number of digits in the fractional-
seconds portion of the value.

For all other data types (including floating point types) the Decimal Digits value is considered
to be zero (0).

 121

BASIC Data Types

In addition to becoming familiar with the SQL Data Types »p87, you should review all of the
BASIC data types shown below. This document provides only a brief summary of each
BASIC data type; for complete information, please refer to your BASIC language's
documentation.

Each data type below has a BUFFER SIZE notation. This indicates the amount of memory
that the data type requires for the storage of one variable of that data type. The BUFFER
SIZE value is used by many different SQL Tools functions.

%BAS_ASCIIZ

This is a standard Windows ASCIIZ string A %BAS_ASCIIZ is always a string with
a pre-defined maximum length, with a null-terminator (CHR$(0)) that marks the end
of the string's current value. BUFFER SIZE: Depends on the DIM statement that is
used to create the variable. For example, to create a 100-byte string in PowerBASIC
you would use DIM lpzMyString AS ASCIIZ * 100 . The default buffer size for
a %BAS_ASCIIZ value is 256 bytes, which equals 255 characters of data plus one (1)
byte for the null terminator.

%BAS_STRING

This is the BASIC "dynamic string" data type. It is very similar to a %SQL_VARCHAR,
except that it is not null-terminated. BUFFER SIZE: Depends on the longest string
that can be stored in the variable, which is a function of the %SQL_VARCHAR »p89
value. For example, a %SQL_VARCHAR column has a default maximum length of 256
characters. Therefore a %BAS_STRING variable would usually use a 256-byte buffer,
even though a PowerBASIC dynamic string can be up to 2 gigabytes in length. (See
Long Columns for more information.)

Please note that the %BAS_STRING data type can be used to store binary data, such
as those found in %SQL_BINARY »p105 columns. Unlike %SQL_CHAR values,
%BAS_STRING values are allowed to contain CHR$(0) .

%BAS_LONG

This is the BASIC LONG INTEGER data type, which can hold a signed numeric value
between -2,147,483,648 and +2,147,483,647 . This is the most efficient 32-bit
BASIC data type. It corresponds to a signed %SQL_INTEGER »p91 value. BUFFER
SIZE: 4.

%BAS_DWORD

This is the PowerBASIC DWORD data type, which can hold an unsigned numeric
value between 0 and +4,294,967,295 . It corresponds to an unsigned
%SQL_INTEGER »p91 value. BUFFER SIZE: 4.

%BAS_INTEGER

This is the BASIC INTEGER data type, which can hold a signed numeric value
between -32,768 and +32,767 . It corresponds to a signed %SQL_SMALLINT »p92
value. (Please see Terminology Differences »p52 for a discussion about avoiding

 122

confusion between %BAS_INTEGER and %SQL_INTEGER, which are not the same
thing.) BUFFER SIZE: 2.

%BAS_WORD

This is the PowerBASIC WORD data type, which can hold an unsigned numeric value
between 0 and +65,535 . It corresponds to an unsigned %SQL_SMALLINT »p92 value.
BUFFER SIZE: 2.

%BAS_BYTE

This is the BASIC BYTE data type, which can hold an unsigned numeric value
between 0 and +255 . It corresponds to an unsigned %SQL_TINYINT »p93 value.
BUFFER SIZE: 1.

%BAS_QUAD

This is the PowerBASIC QUAD Integer data type, which can hold a signed numeric
value between plus-and-minus 9.22x10^18 . BUFFER SIZE: 8

%BAS_SINGLE

This is the BASIC SINGLE data type, which can hold a signed floating-point value in
the %SQL_REAL »p96 range. BUFFER SIZE: 4.

%BAS_DOUBLE

This is the BASIC DOUBLE data type, which can hold a signed floating-point value in
the %SQL_DOUBLE »p97 range. BUFFER SIZE: 8.

Please note that there are several places where the %BAS_ and %SQL_ data types do not
overlap. For example, PowerBASIC supports the QUAD data type, but there is no
corresponding numeric SQL data type. (%SQL_BIGINT »p95 comes close, but it is a string
data type, and it can be either signed or unsigned.) And SQL supports both unsigned
%SQL_TINYINT »p93 values (0 to +255) and signed %SQL_TINYINT values (-128 to +127),
while PowerBASIC supports only unsigned %BAS_BYTE values.

Please also note that BASIC can be used to construct User Defined Type data structures that
can be used for virtually any SQL data type. For example, the SQLT3.INC »p66 file contains
BASIC User Defined Types that can be used for %SQL_TIMESTAMP »p100 values.

And you could easily convert a %BAS_BYTE value into a signed number in the range -128 to
+127 by using a %BAS_LONG variable (which is signed) and subtracting 128 from any value
over 127 .

 123

SQL Statements

A complete discussion of SQL Statements is well beyond the scope of this document. Entire
books have been written on the topic! This basic information, and the information in Appendix
A »p862, is provided as background material only. You should acquire reference materials
related to the particular "flavor" of SQL that your ODBC driver »p76 accepts.

A SQL Statement is a "command" that you send to a SQL database, to tell it to do something.

For example, in order to read data from a database you would use the SELECT statement.
If a database contains a table called MYTABLE, and if you want the database to give you all of
the rows and all of the columns, you would use the SQL statement...

SELECT * FROM MYTABLE.

Here are some examples of commonly used SQL statements:

SELECT -- retrieves one or more rows from a database

UPDATE -- changes the values in one or more rows

INSERT -- adds one or more rows

DELETE -- deletes one or more rows

For more information, see Appendix A: SQL Statement Syntax »p862.

 124

Execution of SQL Statements
The processing of most SQL statements »p123 is basically an "interpreted" operation. The
ODBC driver »p76 must analyze a string that contains a SQL statement and then "compile" the
statement into an executable form. This first step is called "preparation" and is roughly
equivalent to the steps that are taken by a BASIC interpreter like QBASIC to convert source
code into executable code at run time. The actual "execution" of a SQL statement is a
separate process.

SQL statements are either prepared or executed, or both, by using the SQL_Stmt »p716
function. (It is also possible to execute SQL statements "asynchronously" by using the
SQL_AsyncStmt »p256 function, which is very similar to SQL_Stmt .)

Here is the basic syntax for SQL_Stmt :

SQL_Stmt lOperation&, sStatement$

The sStatement$ variable represents a SQL statement such as...

SELECT * FROM MYTABLE.

The parameter lOperation& should always be one of the following constants:

%PREPARE tells the SQL_Stmt function to prepare the SQL statement in sStatement$ but not
to execute it. The alias PREP is also recognized.

%EXECUTE tells the SQL_Stmt function to execute a SQL statement that was previously
prepared. The alias %EXEC is also recognized.

%IMMEDIATE tells the SQL_Stmt function to prepare and then immediately execute a SQL
statement, as if it were a one-step process. The alias %IMMED is also recognized, as is
%DIRECT, which is based on the original ODBC terminology.

Most programs will use %IMMEDIATE most of the time.

The major advantage of using %PREPARE and %EXECUTE as separate steps is that it allows
statement input parameters »p128 to be bound to the statement between the two steps. A SQL
statement can be prepared once, bound to one or more parameter variables, and then
executed many times with different parameter values. If a SQL statement is to be executed
repeatedly with different parameter values it is much more efficient to use this two-step
process than to use %IMMEDIATE to prepare/execute the statement strings over and over.

If you use the %PREPARE or %IMMEDIATE option, the sStatement$ parameter must contain a
valid SQL statement.

If you use the %EXECUTE option, the sStatement$ string is optional. If you use an empty
string for sStatement$, SQL Tools will assume that you mean "execute the statement that
was just prepared". If you have not previously prepared a statement, an error message will
be generated. If you do pass a sStatement$ string to the SQL_Stmt function when the
%EXECUTE option is used, SQL Tools will check to make sure that it is the same statement
string that was previously prepared. If you are writing complex programs with many different
statements that can be prepared and executed, this is a good double-check to make sure that
your program is executing the statement that you think it is. If the strings do not match, an
error message will be generated. Also see Asynchronous Execution of SQL Statements »p125.

 125

Asynchronous Execution of SQL Statements

Most program use the SQL_Stmt »p716 or SQL_Statement »p708 function to prepare and/or
execute SQL statements. When that is done, your program "pauses" until the SQL statement
generates a result.

That's not usually a problem but, depending on your program, it is not always desirable. For
example, most GUI-style programs need to continuously update their screens, and because it
can take seconds, minutes, or even hours for some SQL statements to finish, you may wish
to execute a SQL statement "asynchronously". That term means "in the background, while
my main program continues to run". Asynchronous execution can allow your program to do
many different things while waiting, such as checking to see if the user has clicked a Cancel
button, and/or displaying a "WORKING... PLEASE WAIT" animation.

Generally speaking, if all you want to do is execute a SQL statement asynchronously, the
SQL Tools async functions are easier to use than PowerBASIC's THREAD functions.

See SQL_AsyncStmt »p256 for a complete discussion of asynchronous SQL statements.

Also see SQL_AsyncStatus »p254 , SQL_AsyncErrors »p252, and SQL_StmtCancel »p720

.

For a discussion of another (more complex) method of performing asynchronous database
operations, see Multi-Threaded Programs »p224.

 126

SQL Statement Mode

If you want to get the most from a SQL statement, there's more to it than just using the
SQL_Stmt »p716 function to tell the database what to do. SQL Tools provides a wide variety of
options that you can use to tell a database how you want it to execute SQL statements.

The SQL_StmtMode function is used to "set up" a SQL statement even before you use
SQL_Stmt to %PREPARE or %EXECUTE it. Actually, that's a very important distinction:

The SQL_StmtMode function can only be used to change the way future SQL statements will
be prepared and/or executed. If you make a mistake and use the SQL_StmtMode function
after you use SQL_Stmt, an error message will be generated and the new setting won't take
effect until the next time you use SQL_Stmt. Note that it is not possible to %PREPARE a
statement, then change the Statement Mode, and then %EXECUTE the statement. All mode
changes must be made before a SQL statement is used for the first time.

If you have already executed a SQL statement and need to change the statement mode for
future statements, you should use the SQL_CloseStmt »p282 function to explicitly close the
old statement, and then use SQL_StmtMode to change the mode before you use SQL_Stmt
again. (Closing statements »p196 is not usually a necessary step when you're using SQL
Tools, because it is handled automatically.)

One of the more common uses for SQL_StmtMode is to tell the ODBC driver the maximum
number of rows of data that you want it to return. For example, executing a simple statement
like SELECT * FROM MYTABLE can overwhelm a database system or a network. If
the table is very large, a huge volume of data can be returned by a SQL statement such as
that one, and in some cases it can overload your server and/or network.

So you could use the SQL_StmtMode function like this...

SQL_OpenDB "MYDATA.DSN"

SQL_StmtMode %STMT_ATTR_MAX_RESULT_ROWS, 10

SQL_Stmt %IMMEDIATE, "SELECT * FROM MYTABLE"

... and the ODBC driver would only return 10 rows of data to your program, even if the SQL
statement would normally return thousands or millions of rows.

Other common uses of SQL_StmtMode include setting the %STMT_ATTR_QUERY_TIMEOUT
value to limit the amount of time that the driver will spend processing a request, and changing
various aspects of the way the driver "scrolls »p149" through result sets, to make certain types
of requests more efficient.

You should keep in mind that while SQL_StmtMode settings are "sticky" -- once they are set,
future statements will use them until the value is changed again -- but they are not "global".
Statement mode changes do not apply to all Statement Numbers. Here is an example of
what we mean...

Let's say that your program is using the "normal" settings of Database 1, Statement 1 (see

»p197) and you use SQL_StmtMode to change the %STMT_ATTR_MAX_RESULT_ROWS value
to 10. Future SQL statements that use Database 1, Statement 1 will use the new setting, but
statements that use different Database and/or Statement number will not see the new setting.

 127

They will use the default settings.

To reiterate this important point, the SQL_StmtMode function sets the statement mode for
each Connection Number and Statement Number individually.

This may seem like it complicates things unnecessarily, but it allows you to set up different
statements to perform differently. For example, you might want Statement Number 1 to
always return all rows, and Statement Number 2 to only return a single row of data,
regardless of the request.

See SQL_StmtMode »p725 for a complete list of all of the Statement Mode options.

 128

Binding Statement Input Parameters

Please note: This is probably the most complex sing le topic in this document. It is
recommended for advanced SQL Tools users only. If you are just learning to use SQL
Tools, we suggest that you read the first few parag raphs of this section, to introduce
the basic concepts surrounding bound statement inpu t parameters, and then skip
ahead to the next major section of this document (R esult Sets).

You can think of a "bound statement input parameter" as a variable that is embedded directly
into a SQL statement »p123. A "placeholder" in a SQL statement is linked directly to a BASIC
variable that your program provides, and by changing the value of the variable you can
effectively change the SQL statement.

They can be somewhat difficult to set up, especially at first, but there are many advantages to
using bound statement input parameters:

1) Bound statement input parameters make it possible to use SQL_Stmt(%PREPARE) »p716 to
prepare a statement once, and then, after binding the parameter(s), you can use
SQL_Stmt(%EXECUTE) »p716 many different times, with different parameter values. This is
usually much faster than re-building a string-based SQL statement and using
SQL_Stmt(%IMMEDIATE) »p716 over and over.

2) Bound statement input parameters can make it much easier for your program to "construct"
a SQL statement at runtime. Rather than writing complicated text-parsing routines to create a
string-based statement on the fly (i.e. with certain values that are determined at runtime), you
can hard-code the "static" parts of the statement and use bound parameters and BASIC
variables to change the statement's values.

3) Bound statement input parameters are faster and more efficient than text-based
parameters, especially if a parameter's value is numeric or binary. If you include a numeric
parameter in a string-based SQL statement, your program must first use STR$ or FORMAT$ to
convert the number into a string, and then the ODBC driver must locate the part of the SQL
statement that represents the number, and convert it back into a numeric value so that it can
be used. And all of that takes time. Providing numeric values via numeric variables is better,
faster, and more efficient.

4) Stored Procedures »p208 can contain parameters that must be bound before the procedure
can be executed.

5) Bound parameters are very useful when you want to include a value in a SQL statement
that is difficult to express in "text" form. For example, it's easy to do this...

SELECT * FROM ADDRESSBOOK WHERE ZIPCODE = 48070

...but how would you create a SQL statement that used WHERE to search for a complex
binary value in a column called BINARYIMAGE? You could manually type in an extremely
long "literal" value »p862, and risk making a mistake, or you could use a bound statement input
parameter.

(Please note: There are actually three different types of bound statement parameters, but
"output parameters" and "input-output parameters" are only used by Stored Procedures »p208.
For the sake of simplicity, the rest of this discussion will refer to "bound statement input
parameters" simply as "bound parameters".)

 129

Most simple SQL statements are executed with the SQL_Stmt(%IMMEDIATE) function,
which automatically performs two different steps. 1) The statement is "prepared", i.e.
converted from a string like SELECT * FROM MYTABLE into an executable program,
and then 2) the program is executed. (For more information about this process, see
SQL_Stmt »p716.)

It is also possible to use the SQL_Stmt function twice, to perform the %PREPARE and
%EXECUTE steps one at a time, and to perform parameter binding operations in between the
steps.

The SQL statement "parameter placeholder" is the ? (question mark) character. For
example:

SELECT CITY FROM ADDRESSBOOK WHERE ZIPCODE = ?

If you attempt to execute that statement with SQL_Stmt(%IMMEDIATE) you will receive an
ODBC Error Message »p181 with "parameter" in it, such as "Wrong number of parameters".
The exact error message will vary from driver to driver.

However, if you use SQL_Stmt(%PREPARE) to simply prepare that same statement, without
executing it, no error will be generated.

And if you use the SQL_ParamCount »p549 function after the statement has been prepared, it
will return a value of one (1), to indicate that the driver detected one parameter placeholder.
That means that the ODBC driver will not execute the statement until you have provided a
value for that placeholder.

Bound parameters are not allowed in the column-list that is to be returned by a SELECT
statement, like this...

SELECT ? FROM ADDRESSBOOK

...and you may not use bound parameters for both of the operands of a comparison, like this...

SELECT CITY FROM ADDRESSBOOK WHERE ? = ?

And finally, bound parameters cannot usually be used in statements that change a table's
design, like CREATE TABLE and DROP TABLE. If you stick to using bound
parameters in SELECT, INSERT, UPDATE, and DELETE statements, you shouldn't
have any problems. (Some ODBC drivers may allow bound parameters to be used in other
types of statements.)

Because the process of binding a statement parameter requires information that is fairly
complex, and because the ODBC "Info" functions are relatively slow, SQL Tools does not
provide an "AutoBinding »p159" function for parameters (as it does for result columns). After
all, the primary advantage of bound parameters is speed, and if SQL Tools used ODBC Info
functions to look up all of the required information at runtime, the speed advantage would be
greatly diminished.

The process of manually binding a statement parameter is fairly complex, but it is surprisingly
similar to the process of manually binding a column of a result set. If you are not already
familiar with that process, it would be a good idea for you to pause here to review Manual
Column Binding »p162, and to experiment with the manual binding of result columns. The rest
of this discussion will assume that you are familiar with the basic concepts of memory buffers,

 130

Indicators »p170, and the general process of binding. You should also be familiar with the
various BASIC Data Types »p121 and SQL Data Types »p87, and the various properties that
SQL Data can have, such as "decimal digits" and "display sizes".

 131

Binding Numeric Parameters

The first step in binding any statement parameter is to determine the parameter number.

It's easy: parameters are always numbered starting with one (1). In other words, the first
question mark in a SQL statement is parameter number one, the second is parameter number
two, and so on.

SELECT CITY FROM ADDRESSBOOK WHERE ZIPCODE = ?

Our example statement only uses one bound parameter, so we will be using the number 1 for
the Parameter Number.

Next we have to make another relatively simple decision. Is the parameter an Input
Parameter, an Output Parameter, or an Input-Output Parameter? Since we are trying to send
a value to the SQL statement, this is clearly an Input Parameter. It provides input to the SQL
statement. (Only Stored Procedures use the other two types of bound parameters. For more
information, see Stored Procedures »p208.)

The next step in manually binding a statement parameter is to figure out which SQL Data
Type the placeholder represents. It wouldn't make much sense to use a value like "Smith " or
"January 1, 2000 " in the example above, because our imaginary ZIPCODE column is a
numeric column that would never contain string or date values.

If you're not sure which SQL Data Type »p87 to use for a parameter, you can use two different
SQL Tools functions to determine the appropriate type. The first function requires that you
write a little more code than the second, but it always works. The second function is
somewhat easier, but it is not supported by all ODBC drivers.

Method 1: SQL_TblColInfo

Assuming that a database containing a table called ADDRESSBOOK is already open, and that it
contains a column called ZIPCODE...

'get the Table Number for ADDRESSBOOK:
lTblNo& = SQL_TblNumber("ADDRESSBOOK")

'get the Column Number for ZIPCODE:
lColNo& = SQL_TblColNumber(lTableNumber&,"ZIPCODE")

'get the data type of the ADDRESSBOOK/ZIPCODE colum n:
lDataType& = SQL_TblColInfo »p776

(lTblNo&,lColNo&,%TBLCOL_DATA_TYPE)

While you're at it, you're going to be needing three other pieces of information about the
ZIPCODE column.

lDigits& =
SQL_TblColInfo(lTblNo&,lColNo&,%TBLCOL_DECIMAL_DIGI TS)

lBuffLen& =
SQL_TblColInfo(lTblNo&,lColNo&,%TBLCOL_BUFFER_LENGT H)

lSize& = SQL_TblColInfo(lTblNo&,lColNo&,%TBLCOL_DIS PLAY_SIZE)

 132

Method 2: SQL_ParamInfo

You can determine whether or not this method will work by examining the result of this
function:

lResult& = SQL_FuncAvail »p446(%SQL_SQLDESCRIBEPARAM)

If it returns False (0), then your ODBC driver does not support it and you cannot use method
2. If it returns True (-1), you can use Method 2.

If your ODBC driver supports it, you can use the following code to obtain the necessary
values for parameter number 1:

lDataType& = SQL_ParamInfo »p554(1,%PARAM_DATA_TYPE)

lSize& = SQL_ParamInfo(1,%PARAM_SIZE)

lDigits& = SQL_ParamInfo(1,%PARAM_DIGITS)

If you use this method, you should determine the lBuffLen& value by consulting this
document and/or your BASIC documentation, to determine the length of the buffer that is
required for an lDataType& column. (More about this in a moment.)

Both Methods

We should emphasize that we are writing "test code" here, to obtain some numeric values
that will be necessary for the final program. You would (probably) not actually use the
Method 1 or Method 2 code above in your finished program.

For this example, let's assume that the lDataType& value that is returned by the code above
is four (4). According to the SQLT3.INC »p66 file, that corresponds to a SQL Data Type of
%SQL_INTEGER »p91, which makes sense for a numeric column. (If the data type didn't seem
to make sense, we would re-check our test code to make sure we were obtaining the correct
value.)

And let's say that the lDispSize& value is ten (10). That simply means that a text column
that is ten characters wide would be required to display the largest possible %SQL_INTEGER
value that the ZIPCODE column can hold. Ten is a perfectly normal "display size" for a
%SQL_INTEGER column, even though a real Zip Code would never require ten columns to
display.

The lDigits& value would be zero (0), because a %SQL_INTEGER column is not a floating
point column, so there are zero "digits to the right of the decimal point".

Finally, the lBuffLen& value would almost certainly be four (4), because all %SQL_INTEGER
columns require a four-byte buffer. (See BASIC Data Types »p121 for more information.)

When you become familiar with the process of binding statement parameters, you will often
be able to make educated guesses about these values, and skip the test-code step.

 133

Choosing a Variable Type

The next step in binding the ZIPCODE parameter is to decide which type of BASIC variable
you want to use to represent the value.

You can always safely choose a numeric variable type, but if you are going to use a
%BAS_ASCIIZ »p121 fixed-length string or a %BAS_STRING »p121 dynamic string ($) variable,
make sure that you read this entire section. Some very important warnings regarding strings
are included near the end.

The best choice would be a %BAS_ data type that corresponds to %SQL_INTEGER, which
would be %BAS_LONG »p121 if the value was a signed integer, or %BAS_DWORD »p121 if it was
unsigned. The U.S. Postal Service has not yet begun assigning "signed zip codes" (as in "my
zip code is negative 48070"), so %BAS_DWORD would seem to be the logical choice. But
actually, you have some leeway when choosing the %BAS_ data type. Since the %BAS_LONG
data type is the most efficient BASIC data type, and since the largest Zip Code value is well
within the positive range of %BAS_LONG variables, we're going to use %BAS_LONG.

Actually, you have a lot of options when choosing a %BAS_ variable type for parameter
binding. As a matter of fact, if you follow the special instructions below you could even use a
string variable. Most ODBC drivers automatically perform "reasonable" data-type
conversions, so binding an ASCIIZ string variable that contained "90210 " would be basically
the same thing as binding a numeric parameter that contained the value 90210 . The ODBC
driver will, of course, take a split-second to perform the string-to-numeric conversion, and it
may be faster for your program to use the BASIC VAL function to convert a string into a
numeric value, but the choice is yours. The data-type conversions that are considered
"reasonable" vary from driver to driver, but most conversions are supported by most drivers.
If you try to do something "unreasonable" like using a %SQL_TIMESTAMP »p100 to represent a
%SQL_DOUBLE »p97 floating-point value, it will be rejected by the driver and an Error Message
will be generated.

Again, for this example we've chosen a %BAS_LONG variable for the ZIPCODE parameter.

The final step in getting ready to bind the ZIPCODE parameter is to create the buffers for the
data and the Indicator. If you have reviewed Manual Result Column Binding »p162, you should
be familiar with creating buffers, and with Indicators »p170.

We are going to use two %BAS_LONG variables, one for the data (the actual Zip Code) and
one for the parameter's Indicator. We'll call the first one lZipCode& , and the second
lZCInd& (short for Zip Code I ndicator).

Putting It All Together

Now that we have accumulated all of the information we need, we can construct the source
code that we need to bind the ZIPCODE parameter. The following line uses constants and
the variable names from the test code above to make it easier to read, but you could also use
the literal numeric values that correspond to the constants and variables. And of course you
can make up your own variable names.

 134

lResult& = SQL_BindParam »p269(1, _
 %SQL_PARAM_INPUT, _
 %BAS_LONG, _
 %SQL_INTEGER, _
 lDispSize&, _
 lDigits&, _
 VARPTR(lZipCode&), _
 4, _
 lZCInd&)

Let's review those values one by one. The first "1" means that we are binding parameter
number 1. %SQL_PARAM_INPUT means that parameter number 1 is an Input Parameter.
%BAS_LONG means that we are going to use a BASIC LONG INTEGER for the parameter
data. %SQL_INTEGER means that we determined that the ZIPCODE column contains a
%SQL_INTEGER value, and the lDispSize& and lDigits& values are appropriate for a
%SQL_INTEGER column.

IMPORTANT NOTE: The next parameter must be VARPTR(something) because the
SQL_BindParam function requires a memory pointer to the first byte of the data buffer.
Remember: the third-to-last parameter of SQL_BindParam »p269 is called
lPointerToBuffer& and, just as with Manual Column Binding, you must provide a value
from the BASIC VARPTR function.

VERY IMPORTANT NOTE: If you are using a %BAS_STRING dynamic string ($) variable for
the parameter's buffer, you should read Binding Dynamic String/Binary Parameters »p138 and
then use STRPTR instead of VARPTR.

VERY IMPORTANT NOTE: Some versions of PowerBASIC have restrictions against using
VARPTR with register variables. Unless you are certain that this will not be a problem, we
recommend the use of #REGISTER NONE to disable the automatic use of register variables
in PowerBASIC programs that require the use of the VARPTR function.

The second-to-last parameter is "4" because all %BAS_LONG variables required 4 bytes of
memory. For information, see BASIC data types »p121.

Finally, just as with Manual Result Column Binding »p162, the lZCInd& variable is always a
%BAS_LONG variable that is passed "normally". Do not use VARPTR or STRPTR.

That's it. (That's a lot of parameters, but it wasn't really that hard, was it?)

When that source code is executed, it will bind the ? placeholder in the SQL statement to
the lZipCode& and lZCInd& variables.

 135

Sample Program

'(Open the database here.)

'prepare the SQL statement that contains the "?" ma rker:
sStmt$ = "SELECT CITY FROM ADDRESSBOOK WHERE ZIPCOD E = ?"
SQL_Stmt(%PREPARE,sStmt$)

'bind the parameter:
lResult& = SQL_BindParam(1, _
 %SQL_PARAM_INPUT, _
 %BAS_LONG, _
 %SQL_INTEGER, _
 lDispSize&, _
 lDigits&, _
 VARPTR(lZipCode&), _
 4, _
 lZCInd&)

'set the parameter value
lZipCode& = 48070

'set the Indicator value
lZCInd& = %SQL_NUMERIC_DATA

SQL_Stmt(%EXECUTE,sStmt$)

SQL_Fetch %NEXT_ROW

'(Use the result set here.)

Of course, the best thing about a bound parameter is that you can %EXECUTE the statement
many times without using the time-consuming %PREPARE step again, like this...

lZCInd& = %SQL_NUMERIC_DATA

FOR lZipCode& = 48070 TO 48079
 SQL_Stmt(%EXECUTE,sStmt$)
 '(fetch and use the result set here)
NEXT

 136

Setting a Bound Parameter to the Null Value

If you want to set a bound parameter to the Null value »p171, you must assign the value
%SQL_NULL_DATA (negative one) to the Indicator »p170 variable, not to the data variable. In
the example above, doing this:

lZipCode& = 0
lZCInd& = %SQL_NULL_DATA

SQL_Stmt %EXECUTE, sStmt$

'(fetch and use the result set)

...would do the same thing as executing the following SQL statement:

SELECT CITY FROM ADDRESSBOOK WHERE ZIPCODE = NULL

It's always a good idea to set both the data value and the Indicator value at the same time, to
avoid (for example) accidentally leaving an Indicator variable set to %SQL_NULL_DATA
instead of %SQL_NUMERIC_DATA.

 137

Binding Fixed-Length String/Binary Parameters

If you are going to use a %BAS_ASCIIZ variable for bound string parameters you must set
the value of the Indicator variable to equal the number of characters in the current string value
(instead of using %SQL_NUMERIC_DATA or %SQL_NULL_DATA).

For example, if you had bound an ASCIIZ variable called lpzZipCode to the example
statement above, you would be required to do this:

DIM lpzZipCode AS ASCIIZ * 5

lpzZipCode = "48070"
lZCInd& = 5

If the values that are being assigned to a bound parameter are not always the same length,
you can use the BASIC LEN function to obtain a value for the Indicator. For example...

DIM lpzLastName AS ASCIIZ * 32

lpzLastName = "Smith"
lZCInd& = LEN(lpzLastName)

REMEMBER: You must always set the Indicator to the appropriate "length" value if the
parameter is either a string or a binary parameter (%SQL_CHAR, %SQL_VARCHAR,
%SQL_LONGVARCHAR, %SQL_wCHAR, %SQL_wVARCHAR, %SQL_wLONGVARCHAR,
%SQL_BINARY, %SQL_VARBINARY, or %SQL_LONGVARBINARY. Otherwise, the Indicator
value should be set to %SQL_NUMERIC_DATA.)

 138

Binding Dynamic String/Binary Parameters

If you are going to use a BASIC "dynamic string" (%BAS_STRING »p121) variable for a bound
string parameter, there is one additional factor that you must consider. Failure to heed these
warnings will result in Application Errors.

First, in order to obtain a memory pointer to a dynamic string variable, you must use the
BASIC STRPTR function instead of VARPTR. For more information about STRPTR, please
consult your BASIC documentation.

Second, whenever you assign a value to a dynamic string, the variable's data is moved to a
new location in memory. That means that any STRPTR information that you give to the
SQL_BindParam »p269 function will become invalid every time you assign a new value to the
string.

There are two basic solutions to this problem.

1) Use SQL_BindParam to re-bind the parameter every time you change the value of the
string.

...or...

2) Rather than assigning a new value like this...

sLastName$ = "Smith"

...which would cause the string variable to be relocated in memory, always do this instead...

LSET sLastName$ = "Smith"

Using the BASIC LSET function to change a string's value does not require it to be moved to
a new memory location, so the STRPTR memory-pointer value will remain valid. If you decide
to use LSET , you must remember to start out with a string that is filled with spaces, bind the
parameter, and then use LSET to insert the values. If you don't "initialize" the string -- and
make sure that it is long enough to hold the longest parameter string that you intend to use --
then the LSET function will truncate the string. For example, if you start out with
sLastName$ = "Doe" and then use LSET sLastName$ = "Smith" you will end up
with "Smi". The LSET function can't change the length of the initial string. See your BASIC
documentation for more information about LSET .

To bind a parameter to a dynamic string you should create a dynamic string ($) variable and
fill it with a "dummy" string that is long enough to hold the longest value that you'll be using,
and then bind the parameter.

Example...

 139

DIM sLastName$
DIM sTemp$

SQL_Stmt(%PREPARE,(etc))

'"size" the buffer...
sLastName$ = Space$(32)

SQL_BindParam(sLastName$, etc.)

'To make things easier, we'll use a
'"working" variable...
sTemp$ = "Smith"

'set the parameter's value...
MID$(sLastName$,1) = sTemp$

'set the parameter's Indicator value...
lLastNameIndicator& = LEN(sTemp$)

SQL_Stmt(%EXECUTE,"")

 140

Binding Long Parameter Values

If you need to bind a parameter that requires a very large buffer (typically over 32k bytes), it is
possible to send the parameter's value to the SQL statement "in pieces" without actually
creating a buffer.

First, as always, you should use SQL_Stmt(%PREPARE) »p716 to prepare a SQL statement
that contains a ? in the appropriate location.

Then you should bind the parameter normally, with one important exception. Create an
Indicator buffer, but do not create a data buffer. Instead of providing a VARPTR or STRPTR
value for the lPointerToBuffer& parameter, you should pass the parameter number. (To
be clear, both the lParameterNumber& and lPointerToBuffer& parameters must have
the same value.)

Next, instead of placing the length of the data into the Indicator »p170 variable, you must use
one of two special values. To determine which special value you need to use, use this test
code:

sResult$ = SQL_DBInfoStr »p377(%DB_NEED_LONG_DATA_LEN)

If sResult$ does not contain " Y" you should use the special Indicator value
%SQL_LONG_DATA.

If sResult$ does contain " Y" then you must use an Indicator value that is created by the
following equation:

Indicator = 0 - (DataLength + 100)

In other words, add 100 to the length of the Long data, and make the value negative. If the
Long column's data is 8000 bytes long, the special Indicator value that you must use would
be -8100 .

Note: Once you have determined whether or not "Y" is returned by a certain ODBC driver for
a certain database, you do not need to repeat the %DB_NEED_LONG_DATA_LEN test. You
can assume that the answer will always be the same, and remove the test code.

Then you should use this code, as you normally would...

lResult& = SQL_Stmt(%EXECUTE,"")

Instead of executing the prepared statement, however, the SQL_Stmt »p716 function will return
immediately and the value of lResult& will be %SQL_NEED_DATA (value 99).

Then you should use the SQL_NextParam »p526 function like this...

lResult& = SQL_NextParam

...to find out the parameter number of the parameter that needs data. In this simple example,
the return value of SQL_NextParam will be one (1), because the one-and-only parameter
needs data. Even if you know that a parameter needs data, you must use the
SQL_NextParam function after SQL_Stmt to tell SQL Tools "here comes the data for the
next parameter".

 141

Then you should use the SQL_LongParam »p503 function to send the Long value and an
Indicator value to the parameter.

For example, if the long value that you want to send to the parameter is contained in the
variable sLongValue$, you should use this code:

SQL_LongParam sLongValue$, LEN(sLongValue$)

(Keep in mind that the SQL_LongParam »p503 function automatically sends data to the
parameter with the number that was returned by the SQL_NextParam »p526 function.)

If you want to send a Null »p171 value to a Long parameter, use...

SQL_LongParam("", %SQL_NULL_DATA)

You can use SQL_LongParam repeatedly, to send the data in "chunks", if that is convenient.
For example, if the Long parameter value was stored in two different variables called
sLong1$ and sLong2$, you would use this code...

SQL_LongParam(sLong1$, LEN(sLong1$)
SQL_LongParam(sLong2$, LEN(sLong2$)

...and SQL Tools would automatically add together all of the strings that you submit in this
way.

When you are done sending the Long value to the parameter, use the SQL_NextParam
function again. This does two things: 1) it tells SQL Tools that you are done sending data for
that parameter, and 2) it returns a value that indicates whether or not more columns need
data. If there is another Long column that needs data, the column number will be returned by
the SQL_NextParam function . If not, zero (0) will be returned.

You must use the SQL_NextParam function even if you know that there are no more
parameters that need data. If you don't, SQL Tools won't know that you are finished sending
data and it will generate an Error Message.

When you have provided data for all of the Long columns that need it, SQL_NextParam will
return zero (0) or a negative Error Code »p180 number, to indicate that you are ready to
proceed.

After you have told SQL Tools that all of the Long data has been sent, the ODBC driver will
build a result set. Keep in mind that this often-time-consuming operation is usually performed
by the SQL_Stmt function, but in this case your program will appear to pause when
SQL_NextParam is used for the final time.

Under normal circumstances, the SQL_NextParam function will return %SQL_SUCCESS
(zero). It can also return all of the Error Codes that can be returned by SQL_Stmt »p716, if an
error is detected. Unfortunately, one of those Error Codes is %SQL_SUCCESS_WITH_INFO
(value 1), and this Error Code can be confused with "parameter 1 needs data". (This difficult-
to-handle situation is caused by the ODBC driver, not by SQL Tools.) Fortunately this is a
rare occurrence.

Keep in mind that, even if the SQL statement was a SELECT statement, no result set »p144
was generated by the SQL_Stmt function because it did not have the data that it needed to

 142

do so. That means that the SQL Tools AutoAutoBind »p159 feature was not able to
automatically bind the columns of your result set. So, if the statement that contained a Long
parameter was a SELECT statement, the last "unusual" step that you must perform when
using Long parameters is this...

SQL_AutoBindCol »p265 %ALL_COLs

Then you can use SQL_Fetch »p435 to begin retrieving and using the results of the SQL
statement.

 143

Arrays of Bound Parameters

For information about even more advanced Parameter Binding techniques, see
SQL_SetStmtAttrib(%STMT_ATTR_PARAMSET_SIZE) »p709.

 144

Result Sets

When a SELECT statement is used to retrieve rows from a database, something called a
"result set" is created. You can think of a result set as a new, temporary table. Your
programs can never actually access a database table directly; they can only access result
sets.

For example, if you use the SQL statement...

SELECT * FROM ADDRESSBOOK

...that would tell the database to create a new, temporary table that contains all of the rows
and columns from a table called ADDRESSBOOK. And if you use.

SELECT NAME, CITY FROM ADDRESSBOOK

...a new, temporary table -- a "result set" -- would be created that contains all of the rows from
ADDRESSBOOK, but only the NAME and CITY columns. If you used...

SELECT NAME, CITY FROM ADDRESSBOOK WHERE ZIPCODE <
50000

...the result set would contain the NAME and CITY columns, but only the rows from
ADDRESSBOOK where the ZIPCODE column had a value less than 50000 . If you add...

SELECT NAME, CITY FROM ADDRESSBOOK WHERE ZIPCODE <
50000 AND NAME <> 'SMITH' ORDER BY ZIPCODE

...you would get a somewhat different result set.

The SQL syntax »p862 that you use will depend on 1) what you are trying to accomplish and 2)
the syntax that is supported by the ODBC driver »p76 that you are using.

 145

Result Column Binding (Basic)

When a SQL SELECT statement is executed, a result set »p144 is produced. If the result set
contains one or more rows (i.e. if it did not return "no data") then a process called "column
binding" must take place.

Each column of the result set must be "bound" to your program. Your program can't access
columns that haven't been bound.

(Okay, technically you don't have to bind all of the columns of a result set if the result set
contains some columns that you want to ignore. But that's a sign of sloppy SQL
programming. You should design your SQL statements so that they only return columns that
you need. Returning columns that you don't need wastes database resources, server
processing time, and network bandwidth.)

(And yes, if you skipped ahead in this document you know that there is a special kind of
column called a Long Column »p167 that doesn't have to be bound in order to be used. For
now, pretend that you don't know that.)

Like we said, each column of a result set must be "bound" to your program. Your program
can't access columns that haven't been bound. Binding is a complex, error-prone process. If
it is not performed correctly your program is very likely to generate an Application Error.

Fortunately, SQL Tools can handle 100% of the binding process for you.

If you use the SQL_Stmt(%EXECUTE) »p716 or %IMMEDIATE option, SQL Tools will
automatically bind all of the columns in your SQL statement's result set, so that your program
can access the resulting data.

It is also possible to use the SQL Tools SQL_ManualBindColumn »p510 function to bind
result columns to memory buffers that your program manages, but we do not recommend that
you use manual binding »p162 unless it is very important to squeeze every last drop of
performance out of your program. The SQL Tools AutoBinding process is very efficient, but in
some cases using manual binding can help an application run slightly faster. See Manual
Column Binding »p164 for more information.

 146

Fetching Rows from Result Sets (Basic)

"Fetch" is the SQL term for "get a row of data from a result set."

Once your program has used the SQL_Stmt »p716 function (and possibly SQL_StmtMode »p725

) to tell the database which data it should give you, two things will happen automatically: 1)
The ODBC driver »p76 will construct a result set »p144 and 2) SQL Tools will automatically bind

»p159 all of the columns in the result set. After those things have been done, your program
can access the data in the result set.

The most common way to access a result set is row-by-row. It is also possible to access
several rows at a time, but for now we are going to concentrate on the basics. (For more
information, see MultiRow Cursors »p210.)

The SQL_Fetch »p435 function can be used in several different ways, but not all methods are
supported by all ODBC drivers. The most common method (by far) is...

SQL_Fetch %NEXT_ROW

... which is roughly equivalent to performing a LINE INPUT operation. It fetches the next row
of data from the result set.

If you have not yet fetched a row from a result set, %NEXT_ROW has the same effect as
%FIRST_ROW. If all of the rows of a result set have already been fetched, using SQL_Fetch
does not return any data and the value of the SQL_EOD »p409 (End Of Data) function is set to
Logical True »p912. More about this later.

 147

Cursors

A result set's "cursor" can be visualized in much the same way that a cursor operates in a
word processor. The little blinking "marker" doesn't really exist in a word processing
document, it simply shows the location where the next operation (such as typing a letter) will
take place.

ODBC cursors mark the location where the next SQL_Fetch »p435 operation will be
performed.

For now, this discussion will concentrate on single-row cursors.

 148

Forward-Only Cursors

All ODBC drivers support "forward-only" cursors, which allow the SQL_Fetch »p435
%NEXT_ROW function to get a row of data. Forward-only cursors (naturally enough) only allow
the cursor to move forward. If your program needs to go back and re-read a row of data, the
only way to do it is to re-execute the SQL statement and move forward from the beginning
again.

While very limited, forward-only cursors are very fast, and when your program simply needs
to read a result set from beginning to end, forward-only operation is usually sufficient.

More complex programs, however, may need more complex cursor movement. By default,
SQL Tools uses something called a "Static Scrollable Cursor" which allows more complex
cursor control.

 149

Scrollable Cursors

A scrollable cursor is a cursor that can "scroll" forward and backward through a result set.
(Compare Forward-Only Cursors »p148.)

 150

Problems with Scrollable Cursors

This long, complex section of this document does not apply to programs that "own" a
database. If the database that your program accesses is never accessed by other programs
which can change the database while your program is accessing it, and if your program only
uses one SQL statement at a time, you can probably skip this section.

Unfortunately, the ability to scroll can add greatly to the complexity of a Windows program.

For example, let's say that your program is accessing a database that can also be accessed
by another program at the same time. You execute a SQL statement that returns a result set,
and begin reading the rows. Then, when you're halfway through, the other program changes
several rows that your program has already read.

If your program scrolls back to re-read rows that it has already read, should the result set
reflect the changes that were made by the other program or should it contain the same data
as before? What if the other program deleted a row of data that is included in your result set?
Or added one?

The first issue that you must consider is called a "value change". What happens if another
program (or another "concurrent" SQL statement in your own program) changes the values in
a row?

The second issue is called a "membership change", and it relates to rows that are added
and/or deleted. What happens when a row that is a "member" of your result set is deleted by
another program? And should the result set include rows that are added by another program
after a SQL statement has been executed by your program?

The third major issue is called an "order change". If your program has used the SQL
statement ORDER BY clause to read a result set in alphabetical order, what happens if
another program either 1) adds/deletes rows or 2) changes a value that affects the order of
the result set, like changing a row from "Apple" to "Zebra".

To help address these issues, ODBC drivers can provide three different types of scrollable
cursors: Static, Dynamic, and Keyset Driven.

Static Cursors provide result sets that appear to be static. In other words, once a
result set has been created by the ODBC driver it is treated like a "snapshot" and is
not allowed to change. For that reason, static cursors may not always reflect the real-
time status of a database. But static cursors are a type of scrollable cursor »p149 that
is supported by virtually every ODBC driver, so in some cases you may be forced to
choose between a forward-only cursor »p148 and a static cursor.

Dynamic Cursors always reflect all of the changes that are made in a database, in
real time. They are usually slower and can be much more difficult to manage than
static cursors, but they have obvious advantages in applications such as real-time
displays.

Keyset Driven Cursors are a combination of static and dynamic capabilities. The
rows of keyset-driven cursors always contain current data. If another program
changes the data in a row, your program will see the change. But the order and
membership of the result set do not change. This is accomplished (by the ODBC
driver) by creating a "keyset" which keeps track of the result set, and allows the
ODBC driver to "manage" the results that it gives to your program.

 151

Some ODBC drivers support a fourth type of scrollable cursor, called a Mixed Cursor . If a
result set is too large for the driver to be able to create a reasonable-sized keyset (based on
available memory, etc.) the driver will automatically limit the size of the keyset. If scrolling is
performed within the keyset the result set will appear to be keyset-driven, but if scrolling is
performed outside that range the result set will be dynamic.

 152

Fetching Rows from Result Sets (Advanced)

If your ODBC driver supports scrollable cursors »p149 (most do), you can also use the following
SQL_Fetch »p435 options...

SQL_Fetch %FIRST_ROW
SQL_Fetch %LAST_ROW
SQL_Fetch %PREV_ROW

...to fetch the first, last, or previous row (i.e. the row of the result set that is located before the
most-recently-fetched row).

You can also use a positive numeric value like...

SQL_Fetch 113

... to specify that you want a specific row from a result set. This is called an "absolute" fetch.
Again, this capability is not supported by all ODBC drivers.

See Determining Cursor Capabilities »p153.

 153

Determining Cursor Capabilities

The easiest way to determine whether or not your ODBC driver »p76 supports a particular type
of cursor scrolling (such as absolute fetching) is to simply try it. If an Error Message is
generated, your ODBC driver probably does not support the type of scrolling that you are
attempting to perform.

Cursor capabilities can also be determined programmatically, by using the SQL_DBInfo »p338
function. In particular, a database's ability to provide different types of scrollable cursors
(static, dynamic, and/or keyset driven) can be determined by using this code...

lResult& = SQL_DBInfo(%DB_ type_CURSOR_ATTRIBUTES1)

...where type is the type of cursor that is being used (STATIC, DYNAMIC, etc.)

For more information, see SQL_DBInfo »p338.

Also see Using Bitmasked Values »p916.

 154

Using Bookmarks

ODBC Bookmarks are used to identify a row in a result set »p144, so that your program can
easily return to that row and re-fetch it at a later time. Bookmarks can also be used by the
SQL_BulkOp »p276 function to perform "bulk operations" such as %BULK_UPDATE and
%BULK_DELETE.

Not all ODBC drivers »p76 support bookmarks, and some driver support them only when
ODBC 3.x behavior is specified with the SQL_Initialize »p495 function. You can determine
whether or not your driver supports bookmarks by using the
SQL_DBInfo(%DB_ type_CURSOR_ATTRIBUTES1) function, where type is the type of
cursor being used (STATIC, DYNAMIC, etc), and examining the %SQL_CA1_BOOKMARK bit.
(See Using Bitmasked Values »p916.)

If your driver supports them, you must activate the bookmark feature before a SQL statement
is executed, by using this code:

SQL_StmtMode »p725 %STMT_ATTR_USE_BOOKMARKS, %BMARKS_VARIABLE

If you re using an ODBC 2.0 driver and have used the value 2 for the lODBCVersion&
parameter of SQL_Initialize »p495, you should use this code instead:

SQL_StmtMode %STMT_ATTR_USE_BOOKMARKS, %BMARKS_ON

(The old-style fixed-length ODBC 2.0 bookmarks are not supported by ODBC 3.x drivers.
ODBC 3.x programs must use %BMARKS_VARIABLE to specify the new variable-length
bookmarks, instead of using the old %BMARKS_ON value.)

Once bookmarks have been activated for a statement, the statement will automatically
produce bookmarks that your program can use.

The ODBC term "bookmark" really isn't as descriptive as it might be. When you place a
bookmark in a printed book, you insert something into a book, to mark your place. ODBC
bookmarks do not change the database in any way -- nothing is "inserted" -- but they
accomplish much the same thing. Your program actually asks the database for a bookmark
(via the SQL_Bkmk »p273 function), and the ODBC driver returns a specially-formatted string to
your program. If you later give the string back to the database (via SQL_FetchRel »p441) it
will re-fetch the row that corresponds to the bookmark.

A better term than "bookmark" might have been "row address", but because it is so widely
used by SQL programmers, we have maintained the ODBC terminology in SQL Tools. But
you should always think of a bookmark as a string that identifies a row in a result set. It's
more like "writing down a page number" than "using a bookmark".

Your program can save as many bookmarks as you like, by storing different bookmark
strings. Some ODBC drivers use "universal" bookmarks that can be used by any statement,
i.e. a bookmark that is obtained by one SQL statement can be used by another statement.
Other ODBC drivers provide bookmarks that are only valid until you execute another SQL
statement. You can determine how your driver handles bookmarks by using the
SQL_DBInfo »p338(%DB_BOOKMARK_PERSISTENCE) function.

Incidentally, the format of a bookmark string is understood by the driver that produces it, but it
is not normally possible for your program to make sense of them. Depending on how the
ODBC driver works, a bookmark can be as simple as a %BAS_DWORD »p121 value that

 155

specifies an offset in a data file, or a string that contains a Primary Key »p203, or it can be an
extremely complex binary string.

To obtain a bookmark for the most-recently-fetched row in a result set, use the SQL_Bkmk
function, and save the function's return value in a string variable.

To return to that row, use the SQL_FetchRel function with the bookmark string and an
"offset" value of zero (0). (SQL_FetchRel stands for Fetch Relative.)

To return to a row that is after the bookmarked row, use the same bookmark string and a
positive offset value, to indicate the number of rows after the bookmarked row that you want
the fetch to take place. For example, using an offset of 1 would fetch the first row after the
bookmarked row.

To return to a row that is before the bookmarked row, use the same bookmark string and a
negative offset value, to indicate the number of rows before the bookmarked row that you
want the fetch to take place. For example, using an offset of -1 would fetch the row just
before the bookmarked row.

If you use an offset value that causes the fetch to take place before the first row or after the
last row of the result set, the SQL_FetchRel function's return value will be %SQL_NO_DATA,
and the SQL_EOD »p409 (End Of Data) function will return Logical True »p912 until a valid row is
fetched.

 156

Binding Column Zero

When you activate bookmarks »p154, it becomes possible for your result sets to include a
Column Number Zero (0), which contain bookmark values.

IMPORTANT NOTE: The SQL_AutoBindCol(%ALL_COLs) »p265 function does not
automatically bind column 0. Unless your program makes extensive use of bookmarks, you
should not normally bind the bookmark column of a result set. Bookmark columns can be
quite long, so binding »p158 them usually results in a performance penalty. As noted above

»p154, other functions can be used to obtain bookmark values without binding column zero.

If your program makes extensive use of bookmarks, you might want to consider binding
column zero. You can use the SQL_AutoBindCol(0) function to perform this function.
Then you can use the SQL_ResColString(0) »p613 function to obtain strings that are
compatible with the SQL_FetchRel function.

 157

Relative Fetches

A Relative Fetch is used to fetch »p146 a row number relative to the current row number. For
example, if a statement's cursor »p147 was positioned at row 10 and you performed a "+2"
relative fetch, row 12 would be fetched. If you then performed a "-4 " fetch, row 8 would be
fetched. Relative fetches are always performed relative to the current cursor position at the
time of the fetch.

Not all ODBC drivers support relative fetches. To find out whether or not yours does, you can
use the SQL_DBInfo(%DB_type_CURSOR_ATTRIBUTES1) »p338 function, where type is
the type of cursor that is being used (STATIC, DYNAMIC, etc.), and examining the
%SQL_CA1_RELATIVE bit. (See Using Bitmasked Values »p916.)

If your ODBC driver supports relative fetches, you can use the SQL_FetchRel »p441 function
to perform them. You can use the lOffset& parameter to specify how far, forward or
backward, you want to "jump".

If you use an offset value that causes the fetch to take place before the first row or after the
last row of the result set, the SQL_FetchRel function's return value will be %SQL_NO_DATA,
and the SQL_EOD »p409 (End Of Data) function will return Logical True »p912.

 158

Result Column Binding (Advanced)

Whenever a SELECT statement is executed by the SQL_Stmt »p716 function, SQL Tools
automatically "binds" all of the columns of the result set »p144 to "data buffers" and "Indicator
buffers" which are then managed by SQL Tools.

These buffers are actually small blocks of computer memory. SQL Tools creates them and
then tells the ODBC driver »p76 where they are located, and the ODBC driver places data and
Indicator values into the buffers whenever a SQL_Fetch »p435 or SQL_FetchRel »p441
operation is performed.

When you use a SQL_ResCol function (SQL_ResColString »p614, SQL_ResColNumeric

»p607, SQL_ResColNull »p605, etc.), SQL Tools gets the values from the memory buffers and
passes them to your program in a useful form.

See Also: AutoBinding »p159, Other Binding Alternatives »p160

 159

AutoBinding

The default SQL Tools mode is called "AutoAutoBinding". That means that SQL Tools
automatically AutoBinds all of the columns in every result set »p144, so that you don't have to
worry about the process. (See Result Column Binding »p158 for background information.)

You can disable the AutoAutoBind mode by using...

SQL_SetOption »p681 %OPT_AUTOAUTO_BIND, 0

If you do that, SQL Tools will no longer automatically AutoBind the results of every SELECT
statement.

You can then "manually AutoBind" the results of a SQL statement »p123 by using the
SQL_AutoBindCol »p265 function immediately after you use the SQL_Stmt »p716 function. If
you were to use SQL_AutoBindCol(%ALL_COLs) after every SQL_Stmt that contains a
SELECT, it would accomplish the same thing as using the AutoAutoBind mode.

 160

Other Binding Alternatives

As your SQL Tools programs get more sophisticated, there may be circumstances when you
want to "manually bind" one or more columns of a result set.

Manually bound columns can be accessed slightly faster than autobound columns »p159, so if
speed is a very high priority for your program, you want to might try it. You may also choose
to manually bind one or more columns if you need to handle the data in a column in a way
that the standard SQL_ResCol »p166 functions do not allow, or in a more efficient way. (For
example, you could bind a column directly to a PowerBASIC UNION structure in order to
access the data in a more flexible way than the SQL_ResCol functions provide.) Finally,
some programmers simply prefer to handle the binding process themselves.

Please note that all of the various SQL Tools binding alternatives can be used at the same
time, within the same result set, with no limitations except that each column may only end up
with one type of binding. In other words you are free to use the SQL_AutoBindCol »p265
function to bind all of the columns in a result set, and then use the other binding functions
(see below) to re-bind columns as needed. Any time that you use a function to re-bind a
column, the previous binding is lost.

You can even have columns that are not bound at all, by using the SQL_UnbindCol »p852
function. The SQL Tools column-binding functions are very flexible.

 161

Proxy Binding

Before we discuss the different methods of manually binding a column of a result set, you
should be aware of a process that we call Proxy Binding. Proxy Binding is when you use
AutoBinding »p159 on all of the columns of a result set »p144, but then, instead of using the
SQL_ResCol »p166 functions to access the values, you use SQL_ResultColumnBufferPtr

»p633 and SQL_ResColIndicatorPtr »p591 functions to obtain pointers to some of the data
buffers and Indicators. If you are comfortable with using memory pointers -- and frankly you
had better be, if you are considering manual binding -- then Proxy Binding may be an
excellent, flexible, high-performance alternative to manual binding.

You should refer to the Reference Guide entries for SQL_ResultColumnBufferPtr »p633,
SQL_ResColIndicatorPtr »p591, SQL_ResColSize »p612, and SQL_ResColLength »p600
for more information about how those functions can allow you to perform Proxy Binding.

 162

Manual Binding and Direct Binding

First, a couple of very important warnings about manual result column binding:

IMPORTANT NOTE: If you manually bind a column of a result set »p144 to a buffer that your
program manages, and then your program fails to maintain the buffer correctly, Application
Errors are very likely.

IMPORTANT NOTE: If you choose to manually bind a column of a result set, you will
effectively be disabling the SQL_ResCol »p166 functions for that column, and your program is
completely responsible for obtaining values from the column's buffers. If you attempt to use a
SQL_ResCol function with a column that has not been Autobound »p159, an Error Message
will be generated.

As you probably know, every column of every result set »p144 requires two buffers: one for the
data, and one for the Indicator »p170 value. SQL Tools provides two alternative methods of
column binding: 1) Direct Binding »p163, where your program manages the data buffer but SQL
Tools continues to manage the Indicator, and 2) Manual Binding »p164, where your program
manages both the data buffer and the Indicator buffer.

An Indicator buffer is much less complex that a data buffer, so most programs will be able to
use Direct Binding. After all, there are only so many different things that you can do with an
Indicator value. Manual Binding, the most complex binding process, should be reserved for
programs that must squeeze the last drop of performance out of a system.

 163

Direct Binding

Direct Binding is a process where your program manages the data buffer for a column of a
result set, but SQL Tools manages the column's Indicator »p170 buffer.

The SQL_DirectBindCol »p392 function is used to Direct Bind a column of a result set. The
parameters of the function allow you to specify the size and location of a memory buffer that
your program has created. (You must create the buffer before you can use the
SQL_DirectBindCol function.)

Whenever possible, you should create a memory buffer that will not move. You can do this
with a PowerBASIC ASCIIZ , numeric, or UDT variable, or with an array of numeric variables.

It is also possible to use a BASIC dynamic string variable (a $ variable) and a function like
String$ to create a memory buffer, but if you use this method you must be very careful to
never assign a value to the string after it has been bound to a result column. Whenever you
assign a new value to a dynamic string, it is automatically relocated in memory. If you tell
SQL Tools that a string-based buffer is available at a certain location, and then the string
moves because you assign a new value to it, the buffer location will be invalid and the ODBC
driver will cause an Application Error the next time that SQL_Fetch »p435 or SQL_FetchRel

»p441 is used.

So you should always use the MID$ or LSET function to change the value of a dynamic
string buffer, never an "equal sign" type of assignment.

If you must assign a value to a dynamic string that is used for a column data buffer, your
program should re-bind the column before SQL_Fetch or SQL_FetchRel is used again.

 164

Manual Binding

Manual Binding is just like Direct Binding »p163, except that your program also provides a
buffer for the column's Indicator »p170.

The SQL_ManualBindCol »p508 function is used to Manually Bind a column of a result set
»p144. The parameters of the function allow you to specify the size and location of a memory
buffer that your program has created for the column data, and the location of a memory buffer
that your program has created for the column Indicator. (You must create both buffers before
you can use the SQL_ManualBindCol function.) It is not necessary to specify an Indicator-
buffer length, because a four-byte %BAS_LONG »p121 buffer is always used.

The same "buffer movement" warnings apply to Manual Binding. (If you haven't read them
already, see Direct Binding »p163 above, for details.)

 165

Row-Wise Binding

In almost all cases, your SQL Tools programs will use column-wise binding. That means that
each of the columns in a result set »p144 is bound to individual data buffers and Indicator »p170
buffers.

If you use row-wise binding, each row of a result set is bound to a single buffer that contains
all of the data and all of the Indicators. Row-wise binding is often used with MultiRow cursors

»p210, to create complex (and efficient) memory structures.

Row-wise binding requires that you use Manual Binding »p164 to bind a row of a result set to a
single, large buffer. The structure of the buffer is determined by the columns that the result
set contains. For example, if a result set contains two %SQL_CHAR »p88 columns that are each
10 bytes long, the row-wise buffer would consist of 10 bytes for the first column, plus 4 bytes
for the first column's Indicator, plus 10 bytes for the second column, plus another 4-byte
Indicator. That's a total of 28 contiguous bytes. As you can imagine, a more complex (and
realistic) result set could produce a very complex buffer structure.

For more information about row-wise binding, see SQL_SetStmtAttrib »p701

(%STMT_ATTR_ROW_BIND_TYPE).

We also suggest that you consult the Microsoft ODBC Software Developer Kit »p915, which
contains additional information about row-wise binding.

 166

Accessing Result Columns

When you tell SQL Tools to fetch »p146 a row from a result set »p144, it automatically loads the
row's data from the database into memory buffers that are (usually) hidden from your
program. You can then access the data by using SQL Tools functions which return the
appropriate kinds of values. For example, if column 1 of a result set contained a string value,
you would probably use something like this...

sResult$ = SQL_ResColString(1)

...or, if column 19 contained a signed integer value (a %BAS_LONG »p121 value) you might
use...

lResult& = SQL_ResColNumeric(19)

Long Columns »p167 (such as "Memo" fields containing more than 64k characters) require the
use of special functions called SQL_ResColMemo »p602 and SQL_ResColBLOB »p579.

Information about the data can be obtained with these functions:

SQL_ResColInfo »p593
SQL_ResColInfoStr »p597
SQL_ResColLength »p600
SQL_ResColSize »p612
SQL_ResColType »p618
SQL_ResColNull »p605

You can access the memory buffers directly using these functions:

SQL_ResColRaw »p610
SQL_ResColBuffer »p581
SQL_ResColBufferPtr »p582
SQL_ResColIndicator »p589
SQL_ResColIndicatorPtr »p591

 167

Long Columns

When SQL Tools binds »p145 a result set »p144, it is required (by the ODBC driver »p76) to set
aside some of your computer's memory -- a "memory buffer" -- for each column's data. The
buffer must be long enough to hold the maximum amount of data that the column can
possibly return. For example, if a table contains a %SQL_VARCHAR »p89 column that is allowed
to be up to 256 characters long, SQL Tools must create a 256-character buffer just in case
the data fills the entire column.

That process works well most of the time, but it creates a serious problem for the "Long
Column" data types %SQL_LONGVARCHAR »p90 , %SQL_wLONGVARCHAR »p113, and
%SQL_LONGVARBINARY »p105. Those data types can be up to 1 gigabyte in length, so setting
aside a full-size memory buffer -- or even a hard-disk buffer -- becomes impractical.
Especially if a result set contains multiple Long Columns.

For this reason, SQL Tools purposely binds Long Columns to buffers that are -- at least
potentially -- too small. By default, SQL Tools uses 64k-byte buffers (128k for Unicode
strings). This allows you to use the standard SQL_ResColString »p614 function if the Long
Column contains less than 64k characters, which is plenty for most purposes. If a Long
Column contains data longer than that, you can use SQL_ResColString for a "preview" of
the string, but you'll need to use a different function to retrieve the entire thing.

SQL_ResColMemo »p602 can be used to retrieve %SQL_LONGVARCHAR and
%SQL_wLONGVARCHAR data up to 1 gigabyte in length in a single step.

SQL Tools Pro »p29 also provides the SQL_ResColBLOB »p579 function, which retrieves
%SQL_LONGVARBINARY data such as images, sounds, and even entire documents and
programs.

 168

"Data Truncated" Error Messages

When SQL_Fetch »p435 or SQL_FetchRel »p441 is used to retrieve a row of data that contains
column data that is too long to fit in the memory buffer to which the result column was bound

»p158, a %SQL_SUCCESS_WITH_INFO Error Message »p181 will be generated to warn your
program that the buffer contains partial data. The wording of the message will vary from
ODBC driver to ODBC driver, but it will usually contain the word "truncated".

It is also fairly common for a %SQL_SUCCESS_WITH_INFO message containing the words
"Error In Row" to be generated.

In some cases (such as with Microsoft Access) both messages will be generated. If more
than one column is truncated, several error messages may be generated for each
SQL_Fetch or SQL_FetchRel operation.

If you know ahead of time that a column contains data that is too long to fit in a buffer, and if
your program does not need to "preview »p167" the first block of data, you can use the
SQL_UnbindCol »p852 function before you use the SQL_Fetch function for the first time, to
unbind the column. You can then use the SQL_ResColMemo »p602 and SQL_ResColBLOB

»p579 functions to access the data in the long column. It is only necessary to unbind a column
once; you do not have to unbind it before every SQL_Fetch operation (for example, inside a
DO/LOOP structure).

Also see Ignoring Predictable Errors »p183.

 169

Possible Driver Restrictions on Long Columns

If your program has to deal with long columns »p167, there are several restrictions that you
may need to keep in mind.

These restrictions are imposed by some ODBC drivers, and if they are imposed they cannot
be bypassed. To determine your ODBC driver's exact restrictions, use the SQL_DBInfo »p338

(%DB_GETDATA_EXTENSIONS) function.

1) You may be required to unbind long columns before you can access them with
SQL_ResColMemo »p602 and SQL_ResColBLOB »p579. (See SQL_UnbindCol »p852
for more information.)

2) It may only be possible to access long columns that have column numbers that are
higher than the highest-numbered bound column, so it may be necessary to use
SQL_UnbindCol to unbind columns other than long columns. (You can usually get
around this problem by designing your SQL statements to produce result sets where
all of the long columns are located at the end of the row.)

3) It may be necessary for your program to access long columns in ascending
numeric order, i.e. you may have to get all of the long data from column 10 before
you can get it from column 11. Or you may be able to get part of the data from
column 10 and then get some data from column 11, but you may then be unable to
return to column 10.

4) It may be impossible to get data from long columns if MultiRow cursors »p210 are
being used.

Again, these restrictions may or may not be imposed by your ODBC driver.

 170

Result Column Indicators

Whenever a database gives you data from a column of a result set »p144, it actually provides
two different types of information.

The first type is the actual column data, in string or numeric form.

The second type is called the Column Indicator, and it is a separate value that tells you about
the column data.

Many, many SQL programs have been written without using Indicators, but other programs
can't do without them.

The most common use of an Indicator is the detection of "null columns »p171", which are
described in the following section. Then we'll discuss the other uses »p172 of column
Indicators.

 171

Null Values

Let's say that you are creating a "family tree" database that lists all of the members of your
family, both living and dead. You might create a table with columns called FirstName ,
LastName , MiddleName , MotherName , FatherName , BirthDate , and DeathDate . You
would, of course, use your family's records to enter one row of data for each person.

And since you are a careful database designer, you would create a database that uses the
appropriate SQL Data Types »p87 for all of the columns. You would probably use
%SQL_VARCHAR »p89 (variable length string) for everything except the last two, which would be
%SQL_DATE »p102 or %SQL_TIMESTAMP »p100 columns.

What do you enter when it comes time to type in your own DeathDate ? You haven't died
yet, so there is no logical value to enter. You could make up a "magic number" like
01/01/9999 to indicate that you are still alive, but that would require your program to
understand that special value. If somebody used another program to view your database,
they would have to figure out that 01/01/9999 means "still alive".

SQL databases provide a special value for cases like this. It is called a Null Value, and it can
be used to signify "no data". (As you'll see, it can also be used to signify other things.)

Here's another example: All of your family records list your great-great-great-grand-uncle as
"John Smith ". What do you enter into the MiddleName field? If you enter "" (an empty
string), that could be interpreted to mean either "this person's middle name is unknown" or
"this person did not have a middle name". The Null value can be used to distinguish between
those two conditions without resorting to "magic" values like "??? ". In this case you could
define "" to mean "no middle name" and a null value to mean "unknown". Or vice versa.

Finally, let's reconsider your Uncle John. His death certificate turns out to be missing, so you
don't know his DeathDate . Since he's a great-great-great-whatever it is fairly unlikely that
he's still alive, so you probably need to redefine a Null value in the DeathDate columns as
"unknown" instead of "still alive". Then perhaps you'd add a true/false column (a %SQL_BIT

»p94) called IsAlive .

In the end, the meaning of a null value is up to the database designer. It does not have a
predefined, "universal" meaning, but it is another tool that you can use when dealing with
unusual circumstances.

Clearly, the efficient design of a database with things like DeathDate columns can be a very
complex undertaking (sorry about the pun), but the SQL Null value can make things a little
easier.

The SQL_ResultColumnNull »p647 function returns a true or false value that is based on the
column Indicator »p170.

 172

Other Uses of Column Indicators

As we described above, the most common use of a column Indicator »p170 is the detection of
null values »p171. The SQL_ResultColumnNull »p647 function returns a true or false value
that is based on the column Indicator.

However, the column Indicator itself is actually a numeric value, not a simple true/false value.

If the Indicator has a zero or positive value , that indicates the length of a string.
For example, if a result column contained the string "John Smith ", the result column
Indicator would contain the number 10. If the result column contained an empty
string ("") the Indicator value would be zero (0).

A value of negative one (-1) corresponds to a null value.

A value of negative four (-4) corresponds to "length unknown" for certain types of
Long columns »p167.

Other negative numbers have special meanings too, but they do not normally apply to SQL
Tools programs.

Various SQL Tools functions such as SQL_ResColNull »p605 interpret the column Indicator
values for you, so you don't usually need to be concerned about the actual numeric values,
but you should be aware that the column Indicator values exist.

 173

Results from non-SELECT Statements

SELECT statements return result sets »p144, i.e. temporary tables that contain rows of data
that your program can read.

Other SQL statements »p123 such as UPDATE do not return result sets. They simply return
the number of rows that were affected by the statement.

The SQL_ResRowCount »p622 function can be used immediately after a SQL_Stmt »p716
function, to obtain the number of rows that were affected by the statement.

VERY IMPORTANT NOTE: The SQL_ResRowCount function should not be used to
determine the number of rows that were returned by a SELECT statement. See next page

»p174 for more details.

 174

Why You CAN'T Use SQL_ResRowCount for SELECT
Statements

Some ODBC drivers »p76 return a value for SQL_ResRowCount »p622 for all statements,
including SELECT statements. In that case, SQL_ResRowCount can theoretically be used
to obtain the number of rows in a result set »p144 that is produced by a SELECT statement.
But not all ODBC drivers provide this information, and those that do are not always reliable.

The Microsoft Access ODBC Driver, for example, returns a value of -1 (negative one) if you
attempt to obtain the number of rows that were created by a SELECT statement.

Unless you are writing a program that 1) will only be used with a database that you know
returns a value for SQL_ResultRowCount , and 2) will be the only program that accesses a
database, you should avoid using that function to determine the number of rows in a result
set.

There is a very good reason for this limitation: an ODBC driver can not always know how
many rows a result set contains. For example, let's say that you execute a SQL statement
that returns all of the rows in a table where a certain column contains a zero. If you were to
use code like this...

FOR lRow& = 1 TO SQL_ResRowCount
 SQL_Fetch %NEXT_ROW
 'process a row
NEXT

...what would happen if another program that was accessing the database at the same time
changed a row so that the column no longer contained a zero? The number of rows in the
result set could change, and your loop would fail.

Consider, too, that even if the SQL_ResRowCount value that a driver provides is updated in
real time, code like this cannot be 100% reliable...

DO
 lRow& = lRow& + 1
 IF lRow& > SQL_ResRowCount THEN
 EXIT LOOP
 END IF
 SQL_Fetch %NEXT_ROW
 'process a row
LOOP

If the SQL_ResRowCount value is updated in real time (in other words, if the ODBC driver re-
counts the rows in the result every time you use the function), it is still possible for a row to be
deleted during the split second between that elapses between the SQL_ResRowCount and
SQL_Fetch »p435 lines.

For these and other reasons, you should always use a read-to-end-of-data strategy to read all
of the rows in a result set.

The only reliable way to detect the End Of Data condition is to attempt to read a row with
SQL_Fetch, and then check the SQL_EOD »p409 function to find out whether or not it worked.

 175

Detecting the End Of Data

Since not all ODBC drivers »p76 return a reliable value for SQL_ResRowCount »p622, it is not
practical to read all of the rows of a result set using code that looks like this...

FOR lRow& = 1 TO SQL_ResRowCount
 SQL_Fetch %NEXT_ROW
NEXT

Many ODBC drivers, including the Microsoft Access driver, return a value of negative one (-
1) for SQL_ResultRowCount when it is used with SELECT statements, so the code
above would result in no rows being fetched. In fact, most ODBC drivers cannot tell your
program how many rows there are in a result set, using any technique other than fetching
them and counting them, one by one. See Why You CAN'T Use SQL_ResRowCount for
SELECT Statements »p174 for a more complete discussion of this topic.

The only reliable technique for reading all of the rows in a result set is this:

DO
 SQL_Fetch %NEXT_ROW
 IF SQL_EOD THEN EXIT LOOP
 'process one row of data
LOOP

(Please note that this loop does not include error handling »p179, which is covered below.)

The SQL_EOD »p409 function is conceptually similar to the BASIC EOF (End Of File) function.
SQL_EOD stands for End Of Data, and the function returns a Logical True »p912 (-1) value if
the most recent SQL_Fetch »p435 or SQL_FetchRel »p441 operation failed because the end of
data was reached.

It is important to note that "end of data" can also mean "beginning of data" if you are using
fetch operations that can move the cursor backward, such as SQL_Fetch %PREV_ROW or
SQL_FetchRelative with a negative offset. In those cases, an "end of data" condition can
also mean "the fetch operation failed because you have reached the start of the result set".
However, since it is much more common to fetch in a forward direction, this discussion will
focus on the end-of-data condition.

There are some very important differences between EOF and SQL_EOD. For example, the
following BASIC code could be used to read a file from beginning to end:

OPEN "FILENAME.EXT" FOR INPUT AS #1

DO
 IF EOF(1) THEN EXIT LOOP
 LINE INPUT #1, sOneLine$
 'process a line of data here
LOOP

CLOSE #1

But that same code would not work properly if SQL Tools functions were simply substituted
for the BASIC functions. For example:

 176

SQL_OpenDB "MYDATA.DSN"
SQL_Stmt %IMMEDIATE, "SELECT * FROM MYTABLE"

DO
 IF SQL_EOD THEN EXIT LOOP
 SQL_Fetch %NEXT_ROW
 'process a row of data here
LOOP

SQL_CloseDB

Because the SQL_EOD function cannot detect that a SQL_Fetch or SQL_FetchRel
operation is about to fail (the way EOF can), the fetch function would fail when it tried to read a
row of data after the last row had already been reached. The program would then attempt to
process a row of non-existent data.

The correct way to use SQL Tools functions to read an entire result set is this:

SQL_OpenDB "MYDATA.DSN"
SQL_Stmt %IMMEDIATE, "SELECT * FROM MYTABLE"

DO
 SQL_Fetch %NEXT_ROW
 IF SQL_EOD THEN EXIT LOOP
 'process a row of data here
LOOP

SQL_CloseDB

Note that the SQL_EOD function is located immediately after the SQL_Fetch , so that when
SQL_Fetch fails and the End Of Data condition is detected, your program can respond
correctly. (By the way, this lack of a "look ahead" capability is a limitation of all ODBC drivers.
It is not a limitation imposed by SQL Tools. ODBC databases simply do not "know" that the
last row of data has been read until it fails to read a new row. See Why You CAN'T Use
SQL_ResRowCount for SELECT Statements »p174 for a more complete discussion of this
topic.)

When you are writing a read-until-end-of-data loop, there is another factor that you should
take into account. Consider the following BASIC code:

OPEN "FILENAME.EXT" FOR INPUT AS #1

DO
 IF EOF(1) THEN EXIT LOOP
 LINE INPUT #1, sOneLine$
 'process a line of data here
LOOP

CLOSE #1

What happens if there is a hard drive error that keeps the LINE INPUT from working
correctly? The loop will run forever.

You should check for the same types of errors when you are attempting to read a result set,
like this:

 177

SQL_OpenDB "MYDATA.DSN"
SQL_Stmt %IMMEDIATE, "SELECT * FROM MYTABLE"

DO
 SQL_Fetch %NEXT_ROW
 IF SQL_EOD THEN EXIT LOOP
 IF SQL_ErrorPending THEN
 'Check the error type,
 'and exit if necessary.
 END IF
 'process a row of data here
LOOP

SQL_CloseDB

Instead of checking the value of SQL_ErrorPending »p422, you could also check the return
value of the SQL_Fetch function for %SQL_SUCCESS, like this:

SQL_OpenDB "MYDATA.DSN"
SQL_Stmt %IMMEDIATE, "SELECT * FROM MYTABLE"

DO
 IF SQL_Fetch(%NEXT_ROW) <> %SQL_SUCCESS THEN
 EXIT LOOP
 END IF
 'process a row of data here
LOOP

SQL_CloseDB

For a more complete discussion of this topic, see Error Handling »p179.

 178

Detecting "No Data At All"

If your program uses a SQL statement »p123 that may not produce any results (an empty result
set »p144), you can use the method described in Detecting The End Of Data »p175 to find out
whether or not any rows were returned, or you can use a method that is usually faster.

The SQL_ResColCount »p584 function (not SQL_ResRowCount »p622) returns the number of
columns in a result set. You usually know this number ahead of time -- after all, you designed
the SQL statement and specified which rows should be returned -- but if SQL_ResColCount
returns a zero (0) value, that means that the SQL statement did not return any columns, and
that means that it did not return any rows.

 179

Error Handling in SQL Tools Programs

In DOS programs, runtime errors are often handled with an ON ERROR GOTO function. When
a runtime error is detected, the program's flow is interrupted and a special error-handling
function is executed. Then, if the program is able to recover from the error, a Resume
statement tells the program to jump back to the point where it was interrupted.

In Windows programs, it is much more common to use an error handling strategy called ON
ERROR RESUME NEXT. If an error occurs, the program automatically skips the offending line
and goes directly to the next line of code. If errors are possible in a section of code, programs
routinely check the ERR system variable, and if a nonzero value is found, they handle the
error.

(A complete discussion of good programming and error-handling technique is well beyond the
scope of this document. This information is provided as background for this User's Guide.)

ODBC drivers »p76 take the ERR concept a couple of steps further, and SQL Tools expands
your error-handling options even beyond that.

See Error Codes »p180 and Error Messages »p181.

 180

Error Codes

Almost all ODBC functions, and some SQL Tools function, produce Error Codes as their
return values. The most common Error Code is actually %SQL_SUCCESS, which means "no
errors". %SQL_SUCCESS has a value of zero, and nonzero values usually mean that an error
was detected.

Usually.

An Error Code of %SQL_SUCCESS_WITH_INFO (which has a numeric value of 1) means that
an ODBC driver was able to perform a certain function, but there's something that it thinks
you need to know about the operation. For example, a SQL_Fetch »p435 operation might
return %SQL_SUCCESS_WITH_INFO if the fetch worked but one or more columns contained
data that was too long to fit in the buffers that were provided. That may or may not be a
problem for your particular program, so the driver says "success" but also provides "info".

If an Error Code is detected by your program, SQL Tools gives you a wide variety of functions
that allow you to examine the errors that are reported by ODBC drivers and by SQL Tools
itself. In the case of the SQL_Fetch error described above, examining the return value of the
SQL_ErrorText »p430 function would reveal a string that said something like...

[Microsoft][ODBC Microsoft Access 97 Driver]Data tr uncated

%SQL_SUCCESS_WITH_INFO basically means "the operation that you requested was
performed, and your program can continue running, but you may need to address a problem."

The third-most common return code (after %SQL_SUCCESS and
%SQL_SUCCESS_WITH_INFO) is almost certainly %SQL_ERROR. If a SQL Tools function
returns this error code it means that something serious occurred and the ODBC driver »p76
reported an error. Examining the SQL_ErrorText function after a %SQL_ERROR might
reveal a message that says that the network connection to your database has failed, or that
you do not have the access rights that are required to perform the operation that you
requested. Hundreds of different messages are possible. See Appendix E: ODBC Error
Codes »p895 and Appendix F: SQL States »p897 for more details.

In addition to "passing along" error messages from the ODBC driver, SQL Tools itself can
also generate several different error codes. For example, if you use an illegal value with a
SQL Tools function it will usually return %ERROR_BAD_PARAM_VALUE.

A complete list of SQL Tools Error Codes is provided in Appendix D »p891.

Please note that some SQL Tools functions do not return error codes. For example, the
various SQL Tools functions that return string values cannot (of course) also return numeric
error codes. And many functions that return numeric values do not return error codes, in
order to simplify their use. For instance, a function like SQL_TableCount »p747, which
returns the total number of tables in a database, does not return error codes because things
like %SQL_SUCCESS_WITH_INFO (value 1) would be easily confused with "this database
contains 1 table".

All SQL Tools functions do, however, generate Error Messages »p181 even if they do not return
Error Codes.

 181

Using Error Messages Instead of Error Codes

Some programmers prefer to ignore the return values of functions and rely on other
techniques instead. This is conceptually similar to using ERR. Programs periodically check a
certain function (SQL_ErrorPending »p422) to find out whether or not any errors have
occurred since the last time it was checked.

Another interesting aspect of ODBC error handling is that more than one error message can
be generated for a single error. Returning to the SQL_Fetch »p435 "Data Truncated" example
above »p180, let's assume that three different columns contained data that was too long for
their buffers. In that case the SQL_Fetch function would return
%SQL_SUCCESS_WITH_INFO, and three different error messages would be produced: In
fact, the Microsoft Access 97 ODBC driver produces an additional error message in this case,
and the actual error messages, in order, would look like this:

[Microsoft][ODBC Microsoft Access 97 Driver]Error i n row
[Microsoft][ODBC Microsoft Access 97 Driver]Data tr uncated
[Microsoft][ODBC Microsoft Access 97 Driver]Data tr uncated
[Microsoft][ODBC Microsoft Access 97 Driver]Data tr uncated

The first message means "there was at least one error in the row that was fetched" and then
the three other messages provide details. All of that from a single use of SQL_Fetch !

SQL Tools maintains a "stack" of up to 64 error messages at a time. (That number can be
adjusted, but 64 is the default value and it works well for most programs.) If more than 64
errors build up, the oldest ones are discarded as new ones are added.

Because 1) not all functions return Error Codes »p180 and 2) many different functions can
return multiple errors but an Error Code can only indicate a single error, many programmers
ignore the Error Codes that functions provide as return values, and rely instead on the Error
Messages from the stack.

The best, most flexible strategy is to use a combination of both Error Codes and Error
Messages.

The SQL_ErrorPending »p422 function returns a Logical True »p912 value (-1) if there are
any errors currently in the stack.

The SQL_ErrorCount »p413 function returns a number from 0 to 64, indicating the current
error count.

The "bottom" error on the stack -- the oldest error -- can be examined with functions like
SQL_ErrorText »p430, SQL_ErrorNumber »p421, SQL_ErrorStatementNumber »p427, and
SQL_ErrorFuncName »p415. (See The Error/Trace Family »p248 of functions for more details.)
After you have found out everything that you need to know about an error, you can use the
SQL_ErrorClearOne »p411 function to remove it from the stack. Then you can use those
same functions to examine the next error in the stack (if any).

An alternate method, instead of using different functions to examine different aspects of an
error, is to use the SQL_ErrorQuickOne »p424 function to obtain a string that contains
everything SQL Tools knows about an error. The error is automatically cleared from the stack
when SQL_ErrorQuickOne is used.

 182

As noted above, not all SQL Tools functions return Error Codes »p180 such as
%SQL_SUCCESS_WITH_INFO, but all of them add an error message to the stack whenever an
error is detected. This is the primary reason that some programmers prefer to ignore the
return value of most SQL Tools functions and rely on SQL_ErrorPending and/or
SQL_ErrorCount to alert them that errors have been detected.

 183

Ignoring Predictable Errors

You will probably encounter some "predictable" errors while you are writing programs with
SQL Tools. For example, if you use the SQL_Init »p494 function (and thereby use the default
lODBCVersion& value of 3), and if your program opens a Microsoft Access 97 database you
will receive the following Error Message:

[Microsoft][ODBC Driver Manager] The driver doesn't support the
version of ODBC behavior that the application reque sted.

That error message, among others, can be very annoying because once you have run your
program once and have seen the message, you probably won't want to see it every time you
run the program.

You can use the SQL_ErrorClearOne »p411 function to get rid of the Error Message after it
happens, or you can tell SQL Tools -- ahead of time -- to ignore the error.

Method 1: The SQL_ErrorIgnore Function

You can use the SQL_ErrorIgnore »p418 function to tell SQL Tools "please do not
report this error in the future, no matter which function generates it".

Method 2: The sIgnoreErrors$ Parameter NEW

Many of the most commonly-used SQL Tools functions -- SQL_OpenDatabase ,
SQL_OpenDB, SQL_Statement , SQL_Stmt , SQL_Fetch , SQL_FetchResult ,
SQL_ResSet , and SQL_ResultSet -- accept an optional parameter called
sIgnoreErrors$ which tells SQL Tools "ignore these errors when executing this
function, this time".

Once you have identified the SQL State »p897 value that accompanies an Error Message, you
can tell SQL Tools to ignore it. For example, all %SQL_SUCCESS_WITH_INFO messages
(such as the "doesn't support the version... " message above) use the SQL State
value "01000 ". So you could do this at the very beginning of your program...

SQL_ErrorIgnore %ALL, %ALL, "01000"

...to tell SQL Tools not to report any errors with the SQL State 01000 that occur with all
Databases (the first %ALL parameter) and regardless of the statement number (the second
%ALL).

Or you could do this if you only wanted to ignore that error when a specific SQL Statement
was executed...

lResult& = SQL_Stmt(%IMMEDIATE, sSQLStatement$, "01 000")

Note that all of the sIgnoreErrors$ parameters are optional. If you wanted to execute that
statement without ignoring any errors, you could do this...

lResult& = SQL_Stmt(%IMMEDIATE, sSQLStatement$)

The optional parameter can simply be omitted if you don't need to use it.

 184

If you want to ignore more than one SQL State at a time, use a comma-delimited list of five-
character SQL State codes, like "12345,54321,98765,S101A ".

Every time you use the SQL_ErrorIgnore function to specify a list of SQL States that
should be ignored, it replaces the old list. See the SQL_ErrorIgnore »p418 function for more
information.

 185

Miscellaneous Error Handling Techniques

Whenever your program ends, if there are any errors in the error stack »p181 that have not
been cleared by your program, SQL Tools can automatically use functions called
SQL_ErrorQuickAll »p423 and SQL_MsgBox »p514 to display a standard Windows message
box. If you activate this feature by using this code...

SQL_SetOption »p681 %OPT_EXIT_CHECK, %TRUE

...and you see a message box when your program ends, you probably have some
troubleshooting to do. The message box can be disabled again when your program is ready
for distribution, and/or it can be customized to include your program's name and icon. See
SQL_SetOption »p681(%OPT_ERROR_MSGBOXTYPE) for more details.

SQL Tools can also display a message box every time an error is detected. You can activate
this feature during program development by adding this code...

SQL_SetOption(%OPT_ERROR_MSGBOXTYPE,lMsgBoxType&)

...to your program, where lMsgBoxType& is a constant that tells SQL Tools the types of
buttons that the message box should have. For more details, see SQL_SetOption »p681.

SQL Tools also provides a function that is conceptually similar to ON ERROR GOTO. You can
"register" one of your program's functions with SQL Tools in such a way that when an error is
detected, SQL Tools will call your error-handling function. For complete information see
SQL_OnErrorCall »p531.

Finally, SQL Tools provides several different minor variations on the techniques described
above, plus a "diagnostic" feature (SQL_Diagnostic »p388) that allows your program to ask
an ODBC driver for more information about an error.

 186

SQL Tools Trace Mode

To make troubleshooting easier, SQL Tools includes a "trace mode" feature. You can
activate the trace mode by using the line...

SQL_Trace %TRACE_ON

...and turn it off by using...

SQL_Trace %TRACE_OFF

Other options are also available, including "detailed" tracing modes and ODBC API Tracing.

During the time that tracing is turned on, SQL Tools will create a text file that contains the
name of every SQL Tools function that your program uses, including the values of every
parameter that is passed to the functions, all errors that are detected, and the return values
that are produced by the functions.

For lots more information about Trace Files see SQL_Trace »p845.

Also see the No Trace #LINK and Runtime Files »p72.

 187

ODBC API Tracing

The ODBC Driver Manager »p76 (the part of Windows that manages all of your ODBC drivers)
also contains a tracing function. It is limited to the "API level", i.e. it logs all of the Windows
ODBC API functions that SQL Tools uses when you use a SQL Tools function.

You can use the SQL_Trace »p845 function to turn the API trace mode on and off by using
%TRACE_ODBC.

The default ODBC trace file is called SQL.LOG. Different versions of Windows and ODBC
place the file in different folders, so you may have to search for it. The SQL_SetDBAttrib

»p672 function can be used to change the name of the trace file, by using
%DB_ATTR_ODBC_TRACEFILE.

The resulting log file can be interesting if you want to know more about the ODBC API and
how SQL Tools performs various functions, but it is usually of little value during
troubleshooting. We suggest that you use the SQL Tools trace mode »p186 instead, because it
usually supplies more pertinent information.

WARNING: Because it involves the creation of a large text file, the use of the ODBC Trace
Mode can greatly slow down a program. One of our very small test programs took 40.50
seconds to execute when the ODBC Trace Mode was turned on, but less than 0.05 seconds
with ODBC tracing turned off. And the slowdown can be made worse if the SQL Tools Trace
Mode »p186 is used at the same time, or if an existing Trace File is being appended (which is
the default behavior). Instead of activating the ODBC Trace Mode at the very beginning of
your program, we suggest that you attempt to isolate a small section of code that is likely to
be causing a problem, and turn the ODBC Trace Mode on then off again as quickly as
possible.

 188

SQL Tools Audit Mode

If you turn on the Audit Mode by using the SQL_Audit »p260 function, SQL Tools will create
an Audit File that records all of the SQL Statements that your program executes.

These items are recorded:

� The exact SQL Statement that was executed
� The date/time of execution
� The User Name of the person who was logged in at that time
� The workstation's Computer Name as reported by Windows
� Optionally, your program can add data to the Audit File.

The Audit Mode is often used for, well, auditing purposes, to track the changes that are made
in an important database. Audit Files can also be useful for troubleshooting, because it can
help you identify exactly when a particular change took place.

An Audit File can also be used to reproduce the state of a database at a particular point in
time. For example you could begin with a backup copy of a database from last month, and
execute the statements in the Audit File one by one until you reach the desired date/time.

By default, ithe Audit Mode records all SQL Statements except those which it executes
internally, such as statements that are used to retrieve Information and Attributes »p241. You
can also tell SQL Tools to records only non-SELECT statements. See SQL_Audit »p260 for
lots more information.

 189

SQL Tools Utility Functions

SQL Tools contains many different functions that can be used to simplify and enhance your
programs.

SQL_DateTimePart »p314 and SQL_DateTimePartStr »p315 allow you to extract many
different "parts" of a date/time value, such as the hour, month, day of week, and so on.

SQL_IString »p498 is a "string interpreter" function that can allow you to embed hard-to-type
characters in your strings, like quotation marks, carriage returns, and tabs.

SQL_TextStr »p836 is a function that can convert any string into a displayable string.
Characters that cannot normally be displayed are converted into things like [hXX] so that
they are visible when printed or otherwise displayed.

SQL_BinaryStr »p268 can covert the [hXX] notation back into binary form.

SQL_LimitTextLength »p501 automatically shortens strings that are over a certain length,
and adds "... " to the end to indicate that they have been shortened.

SQL_SelectFile »p664 can be used to display a standard Windows "Open File" dialog box.

SQL_SaveFile »p661 is available to SQL Tools Pro programs, for creating disk files.

SQL_MsgBox »p514 can be used to display a standard Windows Message Box, with several
different options including custom icons and six different combinations of buttons.

SQL_MsgBoxButton »p516 can be used to determine which button was selected the last time
that the SQL_MsgBox function was used.

SQL_Okay »p529 is a function that returns a Logical True »p912 value if the parameter that is
passed to it is either %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO.

SQL_Fail »p433 produces True/False values that are the opposite of SQL_Okay. If the
passed parameter is not %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO it returns True.

SQL_StringToType »p734 is a function that can be used to assign the value of a string to a
User Defined Type.

SQL_CurrentThread »p287 is used by multi-threaded SQL Tools Pro programs,

And finally, SQL_ToolsVersion »p842 and SQL_ToolsVersionStr »p843 can be used to
determine which version of SQL Tools is installed on a computer, and other useful
information.

 190

Database Information and Attributes

When you use the SQL_OpenDB »p536 function to open a database »p78, certain "database
attribute" and "database information" values become available to your program.

Generally speaking, an 'information" value is fixed, and can't be changed by your program.
An "attribute" (with a few exceptions and limitations) is a value that you can change
programmatically.

The SQL_DBInfoStr »p377 and SQL_DBInfo »p338 functions can be used to obtain nearly 200
different types of information about an open database, in string and numeric form.

It would be difficult to over-emphasize the importance of the two SQL_DBInfo functions. We
strongly recommend that you take the time to familiarize yourself with these powerful
functions.

The SQL_DBAttrib »p322 function can be used to obtain many different attribute values, and
the SQL_SetDBAttrib »p672 function can be used to set new attribute values.

 191

Statement Information and Attributes

When you use the SQL_Stmt function to execute a statement, certain "statement attribute"
and "statement information" values become available to your program.

Generally speaking, an 'information" value is fixed, and can't be changed by your program.
An "attribute" (with a few exceptions and limitations) is a value that you can change
programmatically.

The SQL_StmtInfoStr »p722 function can be used to obtain different types of information
about an open statement, in string form.

The SQL_StmtAttrib »p719 function can be used to obtain several different statement
attribute values, and under certain circumstances the SQL_SetStmtAttrib »p701 function
can be used to set new attribute values. Most of the time, however, your programs should
use the SQL_StmtMode »p725 function to pre-set statement attributes, before a SQL statement
is opened. Setting the attributes of an already-open statement can be very difficult.

 192

Environment Attributes

After the SQL_Initialize »p495 function has been used to "start up »p61" SQL Tools, you
can use the SQL_EnvironAttrib »p405 function to obtain certain values that are related to
the ODBC "environment", i.e. values which affect all databases. This function can be used
even before you open a database.

It is also possible to use the SQL_SetEnvironAttrib »p679 function to change the
environment, but in most cases your program will pre-set the environment values with the
SQL_Initialize »p495 function, and then leave them alone.

 193

Info/Attribute Labels

NOTE: Labels are not available when the No Trace Runtime Files »p72 are used.
See Label Availability below for more information.

Nearly all of the SQL Tools Info ...Str and Attrib ...Str functions -- and certain other
functions -- have the ability to return "label" strings that correspond to the names of the
information. For example if you use this code to get the name of table #1...

sResult$ = SQL_TblInfoStr(1,%TABLE_NAME)

...it might return "MyTable ". If you then want to display that name you might do something
like this...

PRINT "Table Name: ";sResult$

The built-in label functions can make this process easier.

sResult$ = SQL_TblInfoStr(1,%TABLE_NAME)
sLabel$ = SQL_TblInfoStr(%INFO_LABEL,%TABLE_NAME)
PRINT sLabel$;": ";sResult$

The result would be...

TABLE_NAME: MyTable

The label "TABLE_NAME" is produced by the SQL_TblInfoStr function when you use
%INFO_LABEL instead of a table number. You can also use the internal labeling system to
obtain the "format" of the data. This code...

sFormat$ = SQL_TblInfoStr(%INFO_FORMAT,%TABLE_NAME)

...would return "STR" to indicate that the %TABLE_NAME is a string.

STR String
NUM Number
HEX Number, best displayed as Hex Number/Bitmask
ANY Data that can be STR, NUM, or HEX (such as DRIVER_DEFINED values)

In addition to the many Info ...Str and Attrib ...Str functions, the SQL_ErrorText »p430
function can return strings like "SQL_SUCCESS_WITH_INFO" that correspond to the numeric
error codes; the SQL_ErrorStr »p428 function can return labels like "ERROR_SQL_STATE";
the SQL_DataTypeStr »p320 function can return strings like "SQL_LONGVARBINARY" and
"BAS_DWORD"; and the SQL_DateTimePartStr »p315 function can return useful labels such
as "Month " and "HH:MM:SS A/p ".

For an exhaustive example of how the %INFO_LABEL and %INFO_FORMAT functions can be
used, see the SQL_Inventory.BAS sample program.

Label Availability

The internal labeling system is used extensively by the SQL Tools Trace Mode »p186 to make

 194

Trace Files easier to read. Because the label strings take up quite a bit of space in the
Runtime Files, if you disable the tracing functions by using the No Trace #LINK and DLL
Runtime Files »p72, the labels will also be disabled. The main reason for using the No Trace
files is to make a program smaller, and this is enhanced by the removal of the labeling
system.

All that means is that if you want to use the labeling system, you must use the "regular" #LINK

»p68 or DLL Files »p71 instead of the No Trace files, even if you don't need the tracing functions
themselves.

 195

Manually Opening and Closing Databases

Normally, your program will use the SQL_OpenDB »p536 function to open a database »p78
before it attempts to use the SQL_Stmt »p716 function to execute a SQL statement »p123.

If you attempt to use the SQL_Stmt function before you have used SQL_OpenDB to open a
database, the SQL_Stmt function will automatically call the SQL_OpenDB function for you.
An empty string will be used for the sConnectionString$ parameter, to allow the user to
"navigate »p81" to a database. This is rarely necessary, however, since most SQL statements
only have meaning in the context of a database connection. In other words, you are unlikely
to need to execute a SQL statement like SELECT * FROM MYTABLE unless your
program has already opened a database that contains a table called MYTABLE. The auto-
open feature is primarily provided as a programmer convenience, for those times that you are
writing quick-and-dirty test programs.

The Database AutoOpen feature can be disabled by using the SQL_SetOption »p681

(%OPT_AUTOOPEN_DB, 0) function.

Normally, if your program is finished using one database and uses the SQL_OpenDB function
to open a different database (using the same database number), SQL Tools will automatically
close the first database for you. The Database AutoClose feature can be disabled by using
the SQL_SetOption »p681(%OPT_AUTOCLOSE_DB, 0) function.

If your program frequently opens and closes databases, you might want to consider disabling
the Database AutoOpen and AutoClose functions, and perform these operations manually.
(This can make bugs easier to find.) If you do, and if your program attempts to 1) use the
SQL_Stmt function before using SQL_OpenDB, or 2) use SQL_OpenDB when a database
number is already in use (i.e. without first using SQL_CloseDB »p279), an Error Message »p181
will be generated.

 196

Manually Opening and Closing Statements

Normally, SQL Tools takes care of opening and closing statements for you. All you have to
do is use the SQL_Stmt »p716 function, and SQL Tools will automatically open the statement
and execute it for you. And if you use SQL_Stmt again, SQL Tools will automatically close
the first statement and open the second.

In some cases you may wish to disable the Statement AutoOpen and AutoClose options.
You can do this by using the SQL_SetOption »p681(%OPT_AUTOOPEN_DB,0) and
SQL_SetOption(%OPT_AUTOCLOSE_DB,0) functions.

If you disable these options, your program is responsible for using the SQL_OpenStmt »p542
function before it uses SQL_Stmt , and for using SQL_CloseStmt »p282 before using
SQL_Stmt for a second (or subsequent) time. If you fail to perform these operations in the
correct order, an Error Message »p181 will be generated.

 197

Using Database Numbers and Statement Numbers

Most small- and medium-sized programs will only use one database, and most will only
execute one SQL statement »p123 at a time. There will probably be times, however, when you
will need to 1) use two or more databases at the same time, or 2) use two or more SQL
statements at the same time (on a single database), or 3) use multiple databases and multiple
statements.

The word "concurrent" is used to describe the condition "two or more at the same time". The
most common use of the term is "concurrent statements", which is when your program has
two or more statements open at the same time, using a single database.

SQL Tools Standard »p29 is limited to two (2) concurrent databases, each with a maximum of
two concurrent statements. (Within certain restrictions »p199, three concurrent statements can
be used.)

SQL Tools Pro »p29 can theoretically handle up to 256 concurrent databases and 256
concurrent statements per database, all at the same time. It is very unlikely, however, that
you program will ever be that large and complex. It is far more likely that you would need to
access a large number of databases, using one statement each, or you will need to use a
large number of concurrent statements on a single database.

VERY IMPORTANT NOTE: Not all ODBC Drivers »p76 support an unlimited number of
concurrent databases and/or statements. Some are limited to a single database and a single
statement. If an ODBC driver can only support a certain number, SQL Tools is also limited to
that number.

The SQL_Initialize »p495 function is used to tell SQL Tools how many concurrent
databases and statements your program will use. If you use the SQL_Init »p494 function, it
will use the values "2" and "2", so that your program can use two concurrent databases, each
with two concurrent statements. You should be careful not to specify unnecessarily-large
values, so that SQL Tools does not reserve large blocks of memory for no reason.

When you use a SQL Tools function, you may specify any Database number between one (1)
and the lMaxDatabaseNumber& value that you specify with SQL_Initialize , or, if you use
SQL_Init , between one (1) and the default lMaxDatabaseNumber& value of two (2).

You may use any Statement number between one (1) and the lMaxStatementNumber& value
that you specify with SQL_Initialize , or between one (1) and the default
lMaxStatementNumber& value of two (2) if you use SQL_Init .

VERY IMPORTANT NOTE: If you are building an Interoperable Application (i.e. a application
that needs to work with more than one ODBC driver) you should not assume that all ODBC
drivers will allow you to use concurrent databases and statements. Some drivers allow only
one active statement per database "connection", so you may be required to incur the
additional overhead of using SQL_OpenDB to open the same database twice, so that you can
use a statement on each of the connections. Some ODBC drivers, unfortunately, do not allow
multiple connections to the same database. If you are faced with an ODBC driver that does
not allow these things, you should carefully review Statement Zero Operation »p199.

If your program only needs to use a single database and statement, you should use the
"abbreviated »p55" SQL Tools functions, which do not allow you to specify a database number
or statement number as a parameter. In fact, if your program uses a small number of
databases and/or statements -- perhaps two or three of each -- you may still prefer to use the

 198

abbreviated functions.

But if your program uses more than a few concurrent databases or concurrent statements,
you will probably benefit from using the "verbose »p55" functions, which allow you to specify a
database number and an statements number for every function that you use.

VERY IMPORTANT NOTE: If you are writing a multithreaded application, it will be nearly
impossible for you to use the abbreviated functions. The SQL_UseDB »p859 and
SQL_UseStmt »p861 functions (which are used to tell the abbreviated functions which
database and statement numbers to use) affect all threads at the same time, so it is not
usually practical to use them in multi-threaded applications.

 199

Statement Zero Operation

If the ODBC driver »p76 that you are using will only allow your program to use one statement at
a time (see Using Database Numbers and Statement Numbers »p197), you will probably still be
able to write a program that will do what you need it to do. You will simply be required to
execute SQL statements »p123 sequentially, and while this can be less efficient that concurrent
statements, it can be done.

There is an added complication, however, if your program uses any of the SQL Tools "Info"
functions. Nearly all of the Info functions (also known as ODBC Catalog Functions) require
SQL Tools to execute "behind the scenes" SQL statements to retrieve the information that
you request. That means that if you attempt to use an Info function while a SQL statement is
open, the ODBC driver won't let SQL Tools open the statement it needs in order to get the
requested information.

Normally, your program should always use statement numbers between one (1) and the
lMaxStatementNumber& value that you specified with the SQL_Initialize »p495 function.
SQL Tools uses "statement zero" for all of its Info functions, so it will never conflict with a
statement that you are using.

If your ODBC driver can only handle one concurrent statement, you have three basic
alternatives:

1) Do not use any Info functions. If you are working with a database of known design,
this is usually not difficult.

2) Pre-load all of the Info functions that your program is going to need, by using the
appropriate SQL_Get »p250 functions. These functions execute a SQL "Info"
statement and cache the Information, so that your program can access the
information later without needing to execute a SQL statement. If the Information is
subject to change while your program is running -- such as when columns are added
to a database -- this may not be a practical technique. See Cached Information »p200
for more details.

3) Make sure that your program alternates between using open statements and Info
functions, so that it does not attempt to use an Info statement while a SQL statement
is open.

To make the third alternative easier to implement, SQL Tools provides a special option called
Statement Zero Operation. Under normal circumstances, to avoid conflict with your
statements, SQL Tools automatically uses statement number zero for all Info functions. That
way, your program is free to use statement numbers one (1) and above, without being
concerned about conflicts.

If you use statement number zero for your program's SQL statements (by using
SQL_UseStmt 0 , for example), the SQL Tools Statement AutoOpen and AutoClose features

»p196 will make sure that statement zero is opened and closed properly, no matter which
functions you use. You must keep in mind that once you use an Info function, any open SQL
statement will be automatically closed, and you must write your program accordingly.

If you disable the Statement AutoOpen and AutoClose function (see SQL_SetOption »p681

(%OPT_AUTOOPEN_STMT), then executing an Info function while a statement is open will
generate a %ERROR_STMT_NOT_CLOSED Error Message, and the Info function will return a
zero value or an empty string.

 200

Cached Information

In order to obtain values for most of the "Info" functions (SQL_DBInfo , SQL_TblInfoStr ,
SQL_TblColInfo , etc.), it is necessary for SQL Tools to execute a special kind of "behind
the scenes" SQL statement. It does so by automatically using statement number zero (see
Statement Zero Operation »p199), so that it does not interfere with your program's SQL
statements.

When your program uses a SQL Tools Info function to request one piece of information, such
as a column name, the ODBC driver »p76 automatically supplies a large amount of related
information. In fact it returns all of the table's column names, their data types, their size, their
precision... and on and on. The same thing is true for nearly all of the Info functions.

SQL Tools automatically caches all of that extra information (i.e. it stores it internally) so that if
your program requests another column's name, it can give you an immediate answer from the
cache instead of re-executing the SQL statement.

This technique works very well under most circumstances, and allows SQL Tools to provide
fast, accurate information upon request. You will usually find that the first use of a given Info
function is relatively slow, while the cache is being loaded, and that subsequent, related Info
requests are very fast. For example, after you have used the SQL_TblColInfoStr »p780
function to obtain a column's name, you'll find that the SQL_TblColInfoStr »p780,
SQL_TblColInfo »p776, and SQL_TblColCount »p774 functions will all return values for the
same table very quickly

There is a potential problem with this system, however, and (of course) a solution that your
program may need to implement.

Nearly all Info values are static. For example, a table's column names do not usually change
while your program is running. But if your program uses a SQL statement to add a column to
a table, or to delete a column, the information in the SQL Tools cache will become out-of-
date. If you attempt to use a SQL Tools Info function to obtain information about the new
column, SQL Tools will return incorrect information. The same thing can happen if another
program adds, deletes, or changes a column while your program is running.

The solution is to use the appropriate SQL_Get »p250 function to "refresh" the information in
the SQL Tools cache. The SQL_Get functions force SQL Tools to re-read Info values and re-
initialize the cached values. For example, if you add a column to a table you could use the
SQL_GetTblInfo function to force SQL Tools to re-read the Table Information.

If your program is "mission critical" and there would be serious consequences if incorrect
information was returned by a SQL Tools Info function, you should probably add the
appropriate SQL_Get function to your program before every use of an Info function. This will
greatly slow down the use of the Info functions, and is still not a guarantee of accurate
information. For example, it is possible (albeit unlikely) that another program could add a
column to a table in the split-second between the time that your program requests and uses
the information.

Also see SQL_InfoExport »p490 and SQL_InfoImport »p492.

 201

Indexes

An Index is a structure that is maintained by a database, in order to speed up access to
columns that have been indexed.

If your database maintains an Index for a particular column, it will be able to find values in that
column much more quickly. However, it will take slightly longer to update an indexed column,
because both the row and the index must be changed. It is therefore usually not a good idea
to index every column in a database. (Not only that, but adding indexes tends to make
databases significantly larger.)

To find out whether or not an ODBC driver »p76 supports indexes, you should use the following
code:

IF SQL_FuncAvail »p446(%SQL_SQLSTATISTICS) THEN
 'THE DRIVER SUPPORTS INDEXES
END IF

(The reason that ODBC drivers require the %SQL_SQLSTATISTICS constant to be used is
obscure and unimportant.)

If a driver does support indexes, you can use the following three functions to obtain
information about them:

SQL_TblIndexCount »p800 returns the number of columns that have indexes.

SQL_TblIndexInfoStr »p804 and SQL_TblIndexInfo »p801 can be used to obtain
information about the indexes, such as the column names and data types.

Example code:

'Display the names of the indexes for table #3.
FOR lIndex& = 1 TO SQL_TblIndexCount(3)
 PRINT SQL_TblIndexInfoStr(3, lIndex&, %INDEX_CO LUMN_NAME)
NEXT

 202

AutoColumns

An AutoColumn is a column which is automatically updated when any value in the row is
updated. (An AutoColumn is sometimes called a 'Special" column. Another type of Special
Column is the Unique Column »p203.)

For example, many databases have a column called COUNTER. It is usually a
%SQL_INTEGER »p91 column that is not allowed to have a Null value »p171, and the database
automatically inserts a unique value into the column whenever the row is changed. It usually
adds a predefined value (like 1) to the last-used value, to make sure that the same value is
never used twice.

AutoColumns do not always contain unique values. Another common AutoColumn is often
called LASTUPDATE, and it contains the date or date/time that the row was last changed. If
the row is changed, the database automatically puts a new value in the LASTUPDATE column,
so two or more rows could theoretically have exactly the same LASTUPDATE value.

If your ODBC driver supports AutoColumns, you can use these three SQL Tools functions to
obtain information about them:

SQL_TblAColCount »p768 returns the number of AutoColumns that a table has.

SQL_TblAColInfoStr »p772 and SQL_TblAColInfo »p769 can be used to obtain information
about the AutoColumns.

Example code:

IF SQL_FuncAvail »p446(%SQL_SQLSPECIALCOLUMNS) THEN
 'THE DATABASE SUPPORTS SPECIAL COLUMNS
 'Print AutoColumn names...
 FOR lCol& = 1 TO SQL_TblAColCount
 PRINT SQL_TblAColInfoStr(lCol&,%ACOL_NAME)
 NEXT
END IF

 203

Unique Columns and Primary Columns

According to the Microsoft ODBC Software Developer Kit »p915...

A Primary Key is a "column or columns that uniquely identifies a row in a table", and...

A Unique Column is the "optimal column or set of columns that, by retrieving values from the
column or columns, allows any row in the specified table to be uniquely identified."

As you can see, they are very similar. Both of those definitions are part of the ODBC 1.0
specification, but Primary Keys are only supported by ODBC drivers »p76 that support Level 2

»p53 functionality. In other words, nearly all ODBC drivers will allow you to use the
SQL_TblUCol functions to obtain a list of Unique Columns, but only the more sophisticated
ODBC drivers which support Level 2 will allow you to use the SQL_TblPKey functions to
obtain a list of Primary Keys. (For example, Microsoft Access 97 does not support the
SQL_TblPKey functions.)

For that reason, the rest of this discussion will focus on Unique Columns.

Another common name for a Unique Column is a "Special" column. (Another type of Special
Column is the AutoColumn »p202.)

The correct use of Unique Columns is critical to most non-SELECT SQL statements. For
example, when an UPDATE statement is used to change a row's data, you will usually use
the WHERE clause to specify which rows should be changed. Unique Columns provide a
method of specifying which rows should be changed, without risking the possibility that other
rows will be updated accidentally.

Well-designed tables almost always contain Unique Columns. For example, many tables
contain a COUNTER »p202 column, which is automatically assigned a unique numeric value
whenever a row is added or updated. (The database usually takes the last-used value and
adds one, to make sure that the same value is never used twice.) A COUNTER column could
be used to uniquely identify a row of a table without any possibility of error, because no two
rows can ever have the same value. Your program could use an UPDATE...WHERE
statement with complete confidence that only one row would be affected.

In some cases, two or more rows are combined to create a unique key or "Row ID". For
example, if you were designing a database that contained one (and only one) row for each
day of the year, you might have a MONTH column and a DAY column. You would have 31
different rows of data with the value JANUARY in the MONTH column (one row for each day in
January), and you would have 12 different rows of data with "1" in the DAY column (one for
each month), but you would only have one row with JANUARY and "1". Those two columns
could be "added together" to make a unique key, in which case the table would be said to
have two Unique Columns, i.e. two columns that are used together to create a unique key.

SQL Tools provides three functions that allow you to determine which Unique Columns a
table contains.

SQL_TblUColCount »p828 tells you how many Unique Columns are used to create a RowID.
If this value is one (1), then a single column is sufficient to make sure that a row is identified.

SQL_TblUColInfoStr »p832 and SQL_TblUColInfo »p829 provide information about the
Unique Columns.

 204

Also see Cached Information »p200.

Example code:

IF SQL_FuncAvail »p446(%SQL_SQLSPECIALCOLUMNS) THEN
 'THE DATABASE SUPPORTS SPECIAL COLUMNS
 FOR lCol& = 1 TO SQL_TblUColCount
 PRINT SQL_TblUColInfoStr(lCol&,%UCOL_COLUMN _NAME)
 NEXT
END IF

 205

Foreign Keys

A Foreign Key is a column (or a set of columns) in one table which matches the Primary Key

»p203 in another table. Generally speaking, ODBC drivers that do not support Primary Keys do
not support Foreign Keys either.

If your ODBC driver »p76 supports Foreign Keys, SQL Tools provides three functions that can
return information about them.

The SQL_TblFKeyCount »p791 function returns the number of Foreign Keys that a table has.

The SQL_TblFKeyInfoStr »p797 and SQL_TblFKeyInfo »p793 functions provide information
about the Foreign Keys.

Also see Cached Information »p200.

 206

Table Privileges and Column Privileges

A Privilege is an "access right" that is granted to a user, called the Grantee, by another user,
called the Grantor. There are two basic kinds of Privileges: Table Privileges and Column
Privileges. An ODBC driver »p76 may support one, both, or neither type. (For instance, the
Microsoft Access 97 driver does not support either type of privilege.)

If Table Privileges have been specified for a certain table like PAYROLL, a certain user may
have a "SELECT" privilege (the right to use the SELECT statement to retrieve data from the
table) but not an "UPDATE" privilege (the right to change the values in the table). Other users
might not have any rights to access the PAYROLL table in any way.

If Column Privileges have been specified for a certain column of the PAYROLL table, like
ANNUALSALARY, a certain user may have a "SELECT" privilege (the right to use the
SELECT statement to retrieve data from the column) but not an "UPDATE" privilege (the
right to change the values in the column). Other users might not have any rights to access
the ANNUALSALARY column in any way.

If your ODBC driver supports Privileges, SQL Tools provides functions that can return
information about them.

The SQL_TblPrivCount »p817 and SQL_TblColPrivCount »p785 functions return the
number of privileges that a table has.

The SQL_TblPrivInfoStr »p819 and SQL_TblColPrivInfoStr »p787 functions provide
information about the privileges.

Also see Cached Information »p200.

Example code:

'Display the privileges for Table #7...

FOR lPriv& = 1 TO SQL_TblPrivCount
 PRINT SQL_TblPrivInfoStr(7, lPriv&, %TABLE_PRIV _GRANTEE);
 PRINT " has the right to ";
 PRINT SQL_TblPrivInfoStr(7, lPriv&, %TABLE_PRIV _PRIVILEGE);
 PRINT " table number 7."
NEXT

 207

Committing Transactions Manually

Normally, every SQL statement »p123 that your program executes is "committed" immediately.
In other words, database changes (if any) are made as soon as you execute the statement
with the SQL_Stmt »p716 function.

But there may be times when you want to be more cautious than that. Many ODBC drivers

»p76 support a "manual commit" mode, which allows your program to execute a SQL
statement, examine the results (such as the value of the SQL_ResRowCount »p622 function),
and then issue either 1) a "commit" command that tells the database to make the changes
permanent, or 2) a "rollback" command that tells the database to return to the condition that it
was in before the statement was executed.

You can determine whether or not a database can use the manual-commit mode by
examining the results of the SQL_DBInfo »p338(%DB_TXN_CAPABLE) function.

If your ODBC driver allows it, you can activate the manual-commit mode with the
SQL_DBAutoCommit »p327 function. (The manual-commit mode is often called the
"transaction mode", because each SQL statement is treated as an individual transaction.)

Activate the manual-commit mode (i.e. disable the auto-commit mode) with this line of code
after a database has been opened:

SQL_DBAutoCommit 0

After that, every time your program executes a SQL statement that can change the database,
your program is responsible for using the SQL_EndTrans »p402 function like this:

SQL_EndTrans %TRANS_COMMIT

...to commit the transaction, or...

SQL_EndTrans %TRANS_ROLLBACK

...to tell the database not to make the changes.

It is not necessary to use the SQL_EndTrans function unless you have turned off the
AutoCommit mode, or when your are using SELECT statements (which cannot change a
database).

WARNING: If you do not use the SQL_EndTrans function to specify how a transaction
should be completed, the default action is not defined by the ODBC specification. The
transaction may or may not be automatically committed, so you should always use
SQL_EndTrans to terminate a transaction.

It is also possible to re-activate the AutoCommit mode by using this code:

SQL_DBAutoCommit 1

 208

Stored Procedures

As you probably know, the execution of a SQL statement »p123 is actually a two-step
procedure »p124. First the ODBC driver »p76 must "prepare" the statement, and convert it from
a plain-language string into an executable program. Then it must "execute" the program.
Even when you use the SQL_Stmt »p716(%IMMEDIATE) function, the ODBC driver breaks the
process down into those two steps.

That means that SQL statements are treated as an "interpreted" language, and they cannot
be executed as quickly as a "fully compiled" language would allow.

Fortunately, SQL Tools allows you to use something called a Stored Procedure to reduce or
eliminate this problem. A Stored Procedure is actually a pre-compiled SQL statement that is
stored in the database itself. Since the "preparation" step is performed long before your
program is run, Stored Procedures can be executed more quickly than string-based SQL
statements.

For example, if your program will need to use the following statement...

SELECT MYCOLUMN FROM MYTABLE WHERE YOURCOLUMN = 10

... you could pre-compile and save the statement as a Stored Procedure.

IMPORTANT NOTE: The Microsoft ODBC specification does not provide standard functions
for creating Stored Procedures, so SQL Tools is (of course) unable to provide those functions.
It is usually possible to create and save a Stored Procedure by executing a SQL statement,
but you should consult the documentation that was provided with your ODBC driver or your
DBMS program (Microsoft Access, SQL*Plus, etc.) for specific instructions.

Stored Procedures are allowed to have bound parameters »p128, so it is not necessary for the
entire SQL statement to be pre-written and stored in the database. For example, you could
compile and save the following Stored Procedure...

SELECT MYCOLUMN FROM MYTABLE WHERE YOURCOLUMN = ?

...and then insert the ? value at the last minute, with the SQL_BindParam »p269 function.

The SQL_ProcCount »p567 function can be used to obtain the number of procedures that are
stored in a database, and the SQL_ProcInfoStr »p576 and SQL_ProcInfo »p574 functions
can be used to obtain information like the procedure's name, the bound parameters that it
requires (if any), and the result set that it will produce.

Please note that (according to Microsoft) some ODBC drivers do not always return
information about all of the Stored Procedures in a database. Applications can use any valid
procedure, regardless of whether it is recognized by the various SQL Tools info functions
(which rely on ODBC). You may need to use the DBMS database-design software itself to
retrieve the names and parameters of some Stored Procedures.

Once you have the necessary information, you can (if necessary) use the SQL_BindParam
function to bind the parameters of the procedure. Then you can use the SQL_Stmt function
to execute the procedure. See the CALL »p875 syntax for some examples.

Stored Procedures produce result sets »p144 that are exactly like those produced by string-

 209

based SQL statements, so you can use the entire range of SQL_ResCol functions to access
the results.

 210

MultiRow Cursors

A MultiRow Cursor (also called a Block Cursor or a Row Array) is a cursor that contains more
than one row of a result set.

The current group of rows in a MultiRow cursor is called a "rowset". A rowset is a subset of a
result set »p144.

MultiRow cursors are useful for things like "data bound grid" displays and "spreadsheet"
displays, where several rows of data can be displayed and edited on the screen, all at the
same time. They can also be used for bulk operations »p213 and positioned operations »p219.

When your program needs to handle more than one row at a time, it can retrieve and store
the values for multiple rows internally, or, if your ODBC driver »p76 supports them, you can use
a MultiRow Cursor.

When the SQL_Fetch »p435 or SQL_FetchRel »p441 function is used with a normal single-row
cursor, the ODBC driver retrieves one row of data and places the various column and
Indicator »p170 values into memory buffers »p145. Each data buffer must be large enough to
hold the longest value that a column can contain, and each Indicator buffer must be four bytes
long.

When the SQL_Fetch or SQL_FetchRel function is used with a MultiRow cursor, instead of
a single row of data, the ODBC driver retrieves two or more rows of data and places all of the
column and Indicator values into extra-long memory buffers. Each data buffer must be large
enough to hold the longest value that a column can contain times the number of rows in the
cursor. Each Indicator buffer must be large enough to hold the number of rows times four
bytes.

These extra-large buffers are often called "buffer arrays", because their memory structure
resembles arrays of fixed-length data.

So if a certain result column can return a 256 byte string and you are using a 32 -row cursor,
the memory buffer for the column data would have to be 8192 (256 times 32) bytes long.
The column value for the first row in the rowset would be stored in the first 256 bytes of the
buffer, the column value for the second row would be stored in the next 256 bytes, and so on.

And since Indicator values are 4 -byte %BAS_LONG »p121 values, the Indicator buffer for each
result column would have to be 128 (4 times 32) bytes long.

MultiRow data buffers are usually created using the same techniques that are used for
manual result column binding »p162. In fact, you must use the SQL_ManualBindCol »p508
function to bind each buffer array and Indicator array to a column of a result set.

MultiRow Indicator buffers are usually created with %BAS_LONG arrays, so that the individual
Indicator values can be accessed easily.

MultiRow cursors can be very complex, and they are usually accessed via direct-from-
memory techniques, so SQL Tools does not directly support them, i.e. it does not provide
ready-to-use functions (like SQL_AutoBindCol »p265, which is used for single-row cursors)
that can be used to bind MultiRow cursors. SQL Tools does, however, give you access to
100% of the tools that you will need to create a MultiRow cursor, no matter how complex it is.

Before you attempt to create a MultiRow cursor, you should familiarize yourself with two

 211

relatively complex topics:

1) You should experiment with using Manual Result Column Binding »p162 with a normal,
single-row cursor. This will familiarize you with the techniques that are required for creating,
binding, and maintaining data buffers and Indicator buffers. (It is not enough to practice with
Proxy Binding »p161 and Direct Binding »p163, which are less complex than Manual Binding.)
You may also need to experiment with retrieving data and Indicator values from manually-
bound columns, which cannot be accessed with the normal SQL_ResCol functions.

2) You should then review the six SQL_SetStmtAttrib »p701 functions that are related to
MultiRow cursors. The attributes that you will need to use all start with %STMT_ATTR_ROW_.

We also recommend that you study the Microsoft ODBC Software Developer Kit »p915, which
contains extensive information about MultiRow cursors.

 212

Named Cursors

Named Cursors are used only in "positioned" update and delete statements. For example, if
you execute a SQL statement »p123 and position the statement's cursor on a certain row, you
can then execute another statement that uses the first statement's cursor position as a
parameter. (The second statement would have to use a different Statement Number »p197 so
that the first statement won't be automatically closed. Both statements must be open at the
same time.) The second SQL statement would look something like this:

UPDATE table-name ...WHERE CURRENT OF cursor-name

...where cursor-name is the name of the first statement's cursor.

Whenever you prepare or execute a SQL statement that creates a cursor, the ODBC driver

»p76 automatically gives it a name. The automatically-assigned name will always start with the
string "SQL_CUR", and it will be less than 18 characters long.

You can obtain the name of an open cursor by using the SQL_CurName »p284 function, and
you can assign a new name with the SQL_NameCur »p518 function.

All of the cursor names that are used with a database must be unique, i.e. no two open
cursors may have the same name.

Cursor names may not exceed 18 characters in length, and may not contain any special
characters (as defined by the SQL_DBAttrib »p322(%DB_SPECIAL_CHARACTERS) function).

ODBC 3.x+ drivers always treat quoted cursor names in a case-sensitive manner, and quoted
names can contain characters that would not normally be permitted, such as blanks and
reserved words.

 213

Bulk Operations

"Bulk Operations" (the SQL_BulkOp »p276 function) can be used to perform the following
operations on a table that has been accessed with a SELECT statement:

1) Fetch one or more rows that are identified by bookmarks.

2) Update one or more rows that are identified by bookmarks.

3) Delete one or more rows that are identified by bookmarks.

4) Add new rows.

IMPORTANT NOTE: Not all ODBC drivers »p76 support bulk operations. In fact, according to
the Microsoft ODBC Software Developer Kit »p915, bulk operations are "not widely supported".
For that reason, and because bulk operations can be very complex, they are not covered in
great detail in this document. This document provides an overview of bulk operations that
should be sufficient to get you started, but for details and advanced techniques you should
refer to the Microsoft ODBC SDK.

To determine which bulk operations a driver supports (if any), you can use the SQL_DBInfo

»p338(%SQL_type_CURSOR_ATTRIBUTES1) function, where type is the type of cursor that is
being used (STATIC, DYNAMIC, etc.).

All bulk operations use MultiRow cursors »p210. If you are not familiar with multi-row or "block"
cursors, you should read about MultiRow Cursors for background information before reading
this section.

Bulk operations also use Bookmarks »p154, so you should also be familiar with that topic
before reading this section.

How Bulk Operations Work

Visualize a memory structure that you have used to create a ten-row MultiRow Cursor for a
SQL statement. Each column of the result set would be bound to a data buffer and an
Indicator »p170 buffer, each of which is really a "buffer array" that is large enough to hold ten
rows of data (or ten Indicators) for a given column.

Nearly all bulk operations are based on bookmarks, so you should also picture a data buffer
array and Indicator array for column zero »p156.

If you execute a SELECT statement, manually bind »p162 the result columns to the buffer
arrays, and use the SQL_Fetch »p435 function, the buffer arrays will be automatically filled
with data. The buffer arrays will then contain the column data for ten rows of the result set
(assuming that the SQL statement generated ten or more rows).

If your program was to then change the values in the data and Indicator buffers, and then use
the SQL_BulkOp »p276(%BULK_UPDATE) function, the ODBC driver would change the
database to reflect the new values. (Keep in mind that this was done without using an
UPDATE statement.)

If you were to use the SQL_BulkOp(%BULK_DELETE) function, all of the rows in the

 214

database that correspond to the rows in the current rowset would be deleted. (Note that this
was done without using a DELETE statement.)

And if you were to use the SQL_BulkOp(%BULK_FETCH) function after you had used
%BULK_UPDATE or %BULK_DELETE, the buffer arrays would be "refreshed" with data from the
table, so that you could confirm that the operation worked. (You do not have to use
SELECT again to refresh the rowset.)

Finally, you can create a MultiRow Cursor buffer structure and fill it with new values, and then
use SQL_BulkOp(%BULK_ADD) to add new rows to a table without using an INSERT
statement.

A more sophisticated method of using bulk operations would be to create buffer arrays that
are larger than you actually need for the original rowset. For example, if the rowset was 32
rows long you might create buffers that are large enough for 64 rows. SQL_Fetch would be
used to load values into the buffers for 32 rows, and then your program could copy data and
Indicator values for selected rows into the buffer space for the other 32 rows. For instance, if
the first 32 rows were being displayed to a user, a row's column and Indicator values might be
copied when the user "tagged" a row by double-clicking on it. Then, when the user clicked a
"Delete All Tagged Rows" button, your program would re-bind the columns of the result set to
the sections of the buffers that contain the selected rows, and then use the
SQL_BulkOp(%BULK_DELETE) function to delete them.

 215

Using %BULK_UPDATE

It is important to remember that when the SQL_BulkOp »p276(%BULK_UPDATE) function is
used, all of the data in the currently-bound data and Indicator buffers will be transferred to the
database.

That means that if your result set contains a Long column »p167 that is bound to a narrow
"preview" buffer, only the data that is currently in the buffer will be sent to the database. So
there is a very good chance that the Long column value in the database will be truncated.

To avoid this problem, you can set a column's Indicator to the special value %SQL_IGNORE (in
all of the rows of the rowset), which tells the SQL_BulkOp function not to update a column's
value.

 216

Using %BULK_ADD

In order to use any of the SQL_BulkOp »p276 functions, you must first execute a SQL
statement »p123 that creates a result set »p144. That means that, even if you don't care about
the current contents of a database, in order to use SQL_BulkOp(%BULK_ADD) you must first
execute a SQL SELECT statement.

It is therefore usually more efficient to use an INSERT statement to add rows to a
database than it is to use SELECT and %BULK_ADD.

If you decide to use %BULK_ADD you must execute a SQL statement to create a non-empty
result set (i.e. a result set that contains at least one row), but you are not required to use
SQL_Fetch to actually retrieve any of the rows.

VERY IMPORTANT NOTE: If you do decide to use %BULK_ADD, you must create data and
Indicator buffer arrays for the bookmark »p154 column, and you must use them to bind result
column zero »p156. You do not have to provide values for column zero -- the ODBC driver will
automatically fill them in when it inserts the rows into the table -- but if you fail to create and
bind bookmark buffers the rows may be added to the table without bookmarks, which can
cause the table to be corrupted.

 217

Using %BULK_FETCH

It can be dangerous to use %BULK_FETCH to create a rowset »p210 that is then modified and
used for %BULK_UPDATE. For example, if your result set contains a Long column »p167 that is
bound to a narrow "preview" buffer, only a small amount of the data that the column actually
contains will be placed in the buffer by SQL_BulkOp »p276(%BULK_FETCH). That means that
when %BULK_UPDATE is used and the data in the buffer is sent to the database, there is a
very good chance that the Long column value in the database will be truncated.

To avoid this problem, you can set a column's Indicator (in all of the rows of the rowset) to the
special value %SQL_IGNORE, which tells the SQL_BulkOp function not to update a column's
value.

 218

Using %BULK_DELETE

You must, of course, use this function with caution. It can cause large numbers of rows to be
deleted. You should treat SQL_BulkOp »p276(%BULK_DELETE) with the same respect that is
given to the SQL DELETE statement.

 219

Positioned Updates and Deletes

Positioned updates and positioned deletes are performed with the SQL_SetPos »p696
function. They are very similar to bulk operations »p213, but with some added complexities.

1) Unlike bulk operations, positioned operations can optionally be performed on a
single row of a MultiRow Cursor »p210.

2) Positioned "add row" operations are not supported. You must use SQL_BulkOp

»p276(%BULK_ADD).

3) Row locking is supported.

Not all ODBC drivers support positioned operations. To determine which operations a driver
supports (if any), you can use the SQL_DBInfo »p338(%SQL_type_CURSOR_ATTRIBUTES1)
function, where type is the type of cursor that is being used (STATIC, DYNAMIC, etc.).

For more information, see SQL_SetPos »p696 or consult the Microsoft ODBC Software
Developer Kit »p915.

 220

Using Long Values with Bulk and Positioned Operatio ns

Long values »p167 can be sent to the SQL_BulkOp »p276 and SQL_SetPos »p696 functions in
"chunks" by using the SQL_LongParam »p503 function.

The Long columns of a result set »p144 are not usually bound to data buffers, but this process
requires you to manually bind »p162 Long columns in an unusual way.

First, create data and Indicator »p170 buffers for all of the non-Long columns.

You should then create a data buffer for each Long column that is large enough to hold a 4-
byte %BAS_LONG »p121 value for each row in the rowset. For example, if you are using a 32-
row rowset, you would need a 128 -byte (4 times 32) buffer.

You should also create a "normal" Indicator buffer for the Long column, just as you would if it
was not a Long column.

Bind all of the non-Long columns, then bind the Long column(s) to the data buffer(s) and
Indicator buffer(s) by using the SQL_ManualBindCol »p508 function. (If you are using
MultiRow Cursors »p210 you should already be familiar with this process.)

Next you must set the Indicator value for each Long column in every row of the rowset to a
special value. To determine which special value you must use, examine the results of the
SQL_DBInfoStr »p377(%DB_NEED_LONG_DATA_LEN) function. If it does not return "Y" you
should simply set every Long column's Indicator value to %SQL_LONG_DATA. If it does return
"Y", you must set each Long column's Indicator value to the number that is given by the
following formula:

Indicator = 0 - (DataLength + 100)

In other words, add 100 to the length of the Long data, and make the value negative. If the
Long data for a certain column in a certain row is 9000 bytes long, the special Indicator value
that you must use for that column in that row would be -9100 .

Note: Once you have determined whether or not "Y" is returned by a certain ODBC driver for
a certain database, you do not need to repeat the %DB_NEED_LONG_DATA_LEN test. You
can assume that the answer will always be the same, and remove the test code.

Then you must set the value of the data buffer for each Long column in every row of the
rowset to a different (i.e. unique) value. For a simple example, let's assume that there is only
one Long column in the rowset. Creating a different value for the Long column in each row is
easy: you would simply use the row number. The value of the %BAS_LONG data buffer for the
Long column in row 1 would be 1, the value of the data buffer in the Long column in row 2
would be 2, and so on.

It gets a little more complicated if you have more than one Long column per row. Each Long
cell (each Long column in each row) must be given a unique value. You can create the
unique value in any way that you want to, as long as your program can "decode" it later. For
example, you might use the number 1001 for row 1, column 1, and the value 1002 for row 1,
column 2, and the value 2001 for row 2, column 1, and so on. As long as every Long column
in every row is given a unique value, you can use whatever numbering system that you like.
No two cells may have the same value.

 221

Now that the Indicator buffers and data buffers for all of the Long columns in all of the rows
have all been set to the required values (so that the ODBC driver will know that the columns
contain Long data), we can continue with the processing of the rowset...

When the SQL_BulkOp »p276 or SQL_SetPos »p696 function is used, if there are any Long
columns that need data, the function's return value will be %SQL_NEED_DATA instead of
%SQL_SUCCESS.

1) Your program must then use the SQL_NextParam »p526 function to obtain the unique
number that identifies the row/column that needs data. You must use the SQL_NextParam
function even if you know that only one Long column needs data. The number that will be
returned by this function will be the "unique" value that you chose above, and it indicates that
the ODBC driver is ready to receive the data for a certain cell.

2) Your program should then use the SQL_LongParam »p503 function one or more times, to
send data for the Long Column in the row that is identified by the unique value. To send a
value that is stored in a string variable called sLongData$, use this code:

SQL_LongParam sLongData$, LEN(sLongData$)

If you want to send a Null value »p171 to a Long Column, use...

SQL_LongParam "", %SQL_NULL_DATA

You can use SQL_LongParam repeatedly, to send the data in "chunks", if that is convenient.
For example, if the Long parameter value was stored in two different variables called
sLong1$ and sLong2$, you would use this code...

SQL_LongParam sLong1$, LEN(sLong1$)
SQL_LongParam sLong2$, LEN(sLong2$)

...and SQL Tools would automatically add together all of the strings that you submit in this
way.

3) When you are done sending the first Long value, your program must use the
SQL_NextParam function again, A) to tell SQL Tools that you are done sending Long data
for the cell, and B) to get the unique number of the next Long column (if any) that needs data.

4) If there are more Long columns that need data, the SQL_NextParam function's return
value will indicate the cell's "unique" number, and you must use SQL_LongParam to send the
appropriate value.

5) When SQL_NextParam finally returns %SQL_SUCCESS (or an Error Code) the data-
sending process is finished, and the SQL_BulkOp or SQL_SetPos operation will be
automatically completed using the Long data that you supplied.

6) If an error occurs before SQL_NextParam returns %SQL_SUCCESS and your program is
unable to recover from the error, it should always use the SQL_StmtCancel »p720 function to
make sure that the SQL_BulkOp or SQL_SetPos operation is aborted correctly.

7) If your program is going to use SQL_Fetch »p435 or SQL_FetchRel »p441 again after
sending Long data in this way, you must remember to use the SQL_UnbindCol »p852 function
to unbind the Long column(s), or an Error Message will be generated by the fetch operation
when the ODBC driver tries to use the 4-byte buffer for a Long value.

 222

"Cleaning Up" After a Bulk Operation

After the SQL_BulkOp »p276 function has been used, the MultiRow Cursor's »p210 position is
"undefined". That means that the ODBC driver momentarily "gets lost", and your program
must use SQL_Fetch »p435 or SQL_FetchRel »p441 to set the cursor position after every
SQL_BulkOp operation.

IMPORTANT NOTE: You may not use SQL_FetchRel to perform a Relative Fetch without a
bookmark after a SQL_BulkOp operation. You may use SQL_Fetch , and you many use
SQL_FetchRel with a bookmark »p154 string, but you may not use SQL_FetchRel to
perform a fetch that is relative to the current cursor location, because the current cursor
location is undefined.

 223

Using SQL Tools with a Grid

A grid is a user-interface element (i.e. a "visual" part of a program) that resembles a
spreadsheet. Grids have rows and columns, so they are a natural way to display the contents
of a table or result set »p144.

Depending on what you are doing, a simple listbox, combobox, or listview control may suffice.

A number of grid controls have been created specifically for PowerBASIC programmers. We
recommend that you search the PowerBASIC Forums (powerbasic.com/support/pbforums)
for current examples.

For more complex displays, a number of third-party grids are available. For the most part
they are COM/ActiveX Controls, but (as of this writing) the powerful FarPoint Spread grid is
still available as a DLL for those that prefer non-COM programming.

A "data bound grid" is a one that is connected directly to a database. The database and the
grid control are linked -- "bound" together -- in a way that allows a result set to directly affect
the display, and sometimes vice versa. SQL Tools is not intended for use as a data source
that is bound to a grid control. That doesn't mean, however, that you can't display a SQL
Tools result set in a grid control.

Virtually all third-party grids can be used in an "unbound" mode as well.

Some third-party grid controls can also be used in a "virtual mode" where your program, not
the grid, stores the strings and numbers that the grid displays. (In fact, that is the most
efficient way to use most grids.) When the grid needs to display a row, it performs a
"callback" operation to ask your program for the necessary data. This can be a very good
way to display a result set -- particularly a large result set -- because it allows your program to
manage the data. For example, your program could fetch just the rows that are needed to
display the current "page" of the grid, and fetch other rows only as necessary, when the user
scrolls the grid. While this is usually slower than fetching all of the rows and storing them in an
array, it requires far less memory. If the result set is extremely large, you may have no choice
but to use the virtual mode. (Tip: It's a good strategy to "cache" extra rows when using the
virtual mode. For example, your program could store the current page, plus the pages just
above and below the current page. If the user scrolls the display down one page, the grid
could instantly display the necessary rows. Then, while the user is looking at those rows,
your program could fetch the next "cache" page.)

 224

Multi-Threaded Programs

There are two different ways to use SQL Tools in a "multi-threaded" mode. The first is
"asynchronous execution" which is covered in the section of this document called
Asynchronous Execution of SQL Statements »p125. The second method is true Windows
multi-threading, which is covered in this section.

Generally speaking, when a Windows program is run it creates one "thread of execution".
This thread is usually where 100% of the program's operations take place. It is possible,
however, for one Windows program to execute two (or more) different threads, each
performing its own operations. A program's threads all share global-scope variables. It's like
having two different functions in the same program executing at the same time, one managing
the user interface (for example) and another performing some other activity "in the
background".

PowerBASIC programmers can use the THREAD functions (THREAD CREATE, etc.) to create
and manage threads. Many other programming languages such as C and Delphi also
support threads using different syntax. Some languages, however, do not support true multi-
threading. If you need to perform multi-threaded operations in a VB program (for example)
you must use the "async" functions described in Asynchronous Execution of SQL Statements

»p125.

IMPORTANT NOTE: SQL Tools can, but not all ODBC drivers »p76 can handle multithreaded
operation. If your ODBC driver is not "thread safe" you should not attempt to create a
multithreaded program.

IMPORTANT NOTE: If you use the PowerBASIC THREAD functions (or the equivalent
functions in another language) we strongly recommend that you become very familiar with
them before reading this section of this document. Using threads can be very complicated!
However, if you use the SQL Tools "async »p125" functions, most of the common problems can
be easily avoided.

For the purposes of this discussion, we need to define some terms. When this document
refers to a "primary thread", it is referring to your program's original thread of execution, i.e.
the thread that is automatically launched when your program is executed. A "secondary
thread", on the other hand, is any thread that is launched with a PowerBASIC THREAD
CREATE statement or a comparable function in another language. Keep in mind that your
program can have many secondary threads running at the same time. "Secondary" does not
necessarily imply "two".

Multithreading can introduce a number of programming complexities. For example, consider
the following code:

SQL_ErrorClearAll

SQL_OpenDB "*.DSN"

IF SQL_ErrorPending THEN
 'an error occurred during SQL_OpenDB process
END IF

First, the SQL_ErrorClearAll »p410 function is used to remove any error messages that
might be in the Error Stack »p181. Then, after the SQL_OpenDB »p536 function has been used
to open a database, the value of the SQL_ErrorPending »p422 function is checked, to find

 225

out whether or not any error messages have been added to the stack. Presumably, if
SQL_ErrorPending returns a Logical True »p912 value at that point, the SQL_OpenDB
function must have generated an error message.

In a single-threaded program that is a reasonable assumption, but if two or more threads are
running at the same time, another thread may have added an error message to the Error
Stack while the SQL_OpenDB function was executing. An error that is in the stack may have
nothing to do with the SQL_OpenDB function. Or it may have come from the SQL_OpenDB
function.

As you can see, using multiple threads can greatly complicate a program. Fortunately, SQL
Tools contains a function called SQL_Thread »p839 which was specifically designed to make
things easier. While it is theoretically possible to use SQL Tools in a multithreaded program
without using SQL_Thread , we do not recommend it.

At the very beginning of your program, right after the SQL_Init »p494 function, you should use
the SQL_Thread function to tell SQL Tools how many different threads you expect to use. In
this example, we'll anticipate using four (4) different threads:

SQL_Thread %THREAD_MAX, 4

That line tells SQL Tools "get ready for up to four threads that use SQL Tools functions". (If
your program creates threads dynamically and you're not sure how many threads it will use at
one time, don't worry. You can use SQL_Thread %THREAD_MAX to increase or decrease the
value later.)

IMPORTANT NOTE: The SQL_Thread %THREAD_MAX function can be used only in your
program's primary thread. It can not be used in a thread that is launched with THREAD
CREATE. We suggest that you add it to your WINMAIN, MAIN, or PBMAIN function
immediately following SQL_Init »p494 or SQL_Initialize »p495. If you attempt to use
%THREAD_MAX in a secondary thread, an Error Message will be generated.

The next step is to set up your THREAD CREATE statement and launch a second thread of
execution. For details, see your programming language documentation. For this example,
we will assume that you have launched a thread that executes a function called MyThread .

The very first executable line of FUNCTION MyThread should look like this:

SQL_Thread %THREAD_START, 1

That line assigns the number one (1) to the thread. You can use any number between one
and the %THREAD_MAX value that you chose, but each thread that you create must use a
different thread number. (To be clear, you can start thread number one, allow it to finish, and
then start another thread using the number one. But no two threads can use the same thread
number at the same time.)

The very last executable line of FUNCTION MyThread should look like this:

SQL_Thread %THREAD_STOP, 1

If FUNCTION MyThread contains any EXIT FUNCTION statements, you must also use
SQL_Thread %THREAD_STOP,1 immediately before every possible exit point from the
thread.

 226

TIP: If you use a "wrapper" function, like this...

FUNCTION MyThread(BYVAL lParam&) AS LONG
 SQL_Thread %THREAD_START,1
 FUNCTION = ThreadFunc(lParam&)
 SQL_Thread %THREAD_STOP,1
END FUNCTION

...and you then place all of your code in the ThreadFunc function, you won't have to worry
about EXIT FUNCTION . In this example, no matter what happens in your code, when
ThreadFunc ends, the SQL_Thread %THREAD_STOP,1 function will be executed
properly. (The names MyThread and ThreadFunc are only examples. You can use any
names that you like.)

IMPORTANT NOTE: While the SQL_Thread %THREAD_MAX function can be used only in
your program's primary thread, SQL_Thread %THREAD_START and %THREAD_STOP can be
used only in secondary threads. They can not be used in your program's primary thread.
The primary thread is handled automatically by SQL Tools.

The SQL_Thread %THREAD_START,1 function tells SQL Tools "a new thread has been
launched, and it is called thread number 1". SQL Tools then creates an Error Stack for the
thread, so that when you use the various SQL_Error functions (SQL_ErrorPending »p422,
SQL_ErrorText »p430, SQL_ErrorQuickOne »p424, etc »p248.) they will provide information
only about errors that were produced by that thread.

If you use one of the SQL_Error functions in your primary thread it will return information
about errors that were generated by the primary thread, and if you use one of the SQL_Error
functions in thread number 1, it will return information about errors that were generated by
thread number 1.

You are then free to use THREAD CREATE to launch additional secondary threads. As long
as each new thread uses %THREAD_START with a different thread number, each thread will
have its own error stack.

The use of %THREAD_START also tells SQL Tools to track the value of the
SQL_MsgBoxButton »p516 function for each thread individually. For example, if the
SQL_MsgBox function is used in one thread and somebody selects the Ok button, only that
thread's SQL_MsgBoxButton function will be affected.

Functions to AVOID in Multithreaded Programs

There are a few SQL Tools functions that are very difficult to use in a multithreaded program.
In particular, the SQL_New functions (SQL_NewDBNumber »p521, etc.) should be avoided
because if two threads happen to use it at exactly the same time, they will both receive the
same return value. For example, consider this code:

'Get an unused statement number for database number 1:
lStatementNumber& = SQL_NewStatementNumber(1)

'Open a statement using that statement number:
SQL_OpenStatement 1, lStatementNumber&

In a single-threaded program that will work perfectly. But in a multithreaded application, it
would be possible for the SQL_NewStatementNumber function to return a value like 2, but

 227

for Statement Number 2 to be used by another thread a split-second later, so the
SQL_OpenStatement function could fail.

In multithreaded programs, it is usually best to 1) use hard-coded database and statement
numbers or 2) use database and/or statement numbers that are based on the thread number.
For example, thread zero (the primary thread) might always use statement number 1, and
thread number 1 might always use statement number 2, and so on.

Cached Information Functions

Multithreaded programs can also have trouble with the various cached »p200 information
functions that SQL Tools provides.

If your program requests a piece of information (such as a column name or the number of
tables in a database), SQL Tools first checks its internal cache of information. If the cache
does not contain the requested value, SQL Tools automatically uses one of the SQL_Get
»p250 functions to get the information from your ODBC driver. The information is then returned
to your program and it is stored in the cache, in case similar information is requested in the
future. (See Cached Information »p200 for more details about this process.)

The use of cached information greatly speeds up your program's access to certain types of
information, but it can sometimes cause problems for a multithreaded program. Imagine that
your program's primary thread has just used the SQL_TblCount function for the first time.
SQL Tools checks the cache and finds that the necessary information is not there, so it
begins the process of filling the cache. This process can take up to several seconds. While it
is working, imagine that your program's second thread calls another Table Information
function, such as SQL_TableInfoStr . SQL Tools checks the cache and finds that the
necessary information is not there, so the second thread also begins the process of filling the
cache. In most cases this will simply result in a small amount of wasted processor time, but it
is possible for the two processes to "collide" and to return incorrect values.

To avoid potentially serious problems, we suggest that your primary thread use the
appropriate SQL_Get functions »p250 to fill the various Info caches before it launches any
threads.

See the SQL_Thread »p839 function for more information about multithreaded programs.

Also see Asynchronous Execution of SQL Statements »p125.

 228

SQL Handles

Perhaps the most "advanced" uses of SQL Tools require the use of ODBC Handles. The
SQL_hEnvironment »p485, SQL_hDatabase »p482, and SQL_hStatement »p488 functions
can be used to obtain the actual handle values that SQL Tools uses to interact with the ODBC
driver »p76.

WARNING: SQL Tools supports virtually 100% of the functions that ODBC provides. If an
ODBC feature is not supported »p37 by SQL Tools, there is probably a very good reason for it,
and you should consider whether or not you really need to use the feature.

For example, while SQL Tools does support thread-based asynchronous execution of SQL
statements »p125, it does not support ODBC-based Asynchronous Execution. According to the
Microsoft ODBC Software Developer Kit »p915, "In general, applications should execute
functions asynchronously only on single-threaded operating systems. On multithread
operating systems," [such as Windows] "applications should execute functions on separate
threads, rather than executing them asynchronously on the same thread. No functionality is
lost if drivers that operate only on multithread operating systems do not support asynchronous
execution." If you attempt to add support for this feature to SQL Tools, you will probably find
that most of the Info function will fail to work properly, and you will have to manually add
support for those functions as well.

After all of that, you're probably asking yourself "so why are the SQL_h handle functions even
provided by SQL Tools?" The primary reason is something called "descriptors". Here is what
the ODBC SDK has to say about them: "An application calling ODBC functions need not
concern itself with descriptors. No database operation requires that the application gain direct
access to descriptors. However, for some applications, gaining direct access to descriptors
streamlines many operations. For example, direct access to descriptors provides a way to
rebind column data that may be more efficient than calling SQLBindCol again."

The various SQL Tools "handle" functions are provided so that you can use Descriptors if you
need them.

 229

Reference Guide Format

Each SQL Tools function has a page in the Reference Guide that looks something like this:

SQL_NameOfFunction

Summary

A brief description of the function's purpose.

Twin

The verbose or abbreviated function (see) that performs the same purpose as this
function.

Family

The "functional family »p230" to which the function belongs.

Availability

Either "Standard and Pro" or "SQL Tools Pro only " (see »p29)

Warning

Critical warnings will be shown here in RED. Important but less-than-urgent warnings
are shown in DARK RED .

Syntax

The basic syntax that you must use in your source code.

Parameters

A list of the parameters that you must pass to the function, and their basic purposes.

Return Values

The numeric or string values that can be returned by the function.

Remarks

A detailed discussion of the function.

Diagnostics

The Error Codes and Error Messages that the function can generate.

Example

A brief BASIC source code example.

Driver Issues

This section is reserved for known issues with various drivers (such as driver bugs),
and for other specific warnings. This section will not say things like "This function is
only supported by SQL Tools if your ODBC driver supports it", because that
statement is true for virtually all SQL Tools functions.

Speed Issues

A discussion of speed- and performance-related issues, such as the optimum way to
use a function.

See Also brief list of related topics.

 230

Functional Families

Each SQL Tools function has been assigned to a "family", to make it easier to find related
functions. Each page of the Reference Guide lists the function's family, so you can easily
look up related functions.

Here is an alphabetical list of all of the SQL Tools Functional Families. (If you read the
following pages in order, the Families will be presented in an order that naturally leads from
one to the next.)

Configuration Family »p231
Database Info/Attrib Family »p235
Database Open/Close Family »p234
Environment Family »p232
Error/Trace Family »p248
Get Info Family »p250
Handle Family »p251
Result Column Binding Family »p245
Result Column Family »p247
Result Count Family »p246
Statement Binding Family »p242
Statement Family »p240
Statement Info/Attrib Family »p241
Statement Open/Close Family »p239
Stored Procedure Family »p243
Table Column Info Family »p237
Table Info Family »p236
Use Family »p233
Utility Family »p249

 231

Configuration Family

SQL Tools Initialization and Shutdown functions, plus functions that allow you to set and get
various "option" values, which are used to configure SQL Tools.

Program startup and shutdown:

SQL_Authorize »p263

SQL_Initialize »p495, SQL_Init »p494

SQL_Shutdown »p706

SQL Tools Options:

SQL_Option »p544, SQL_OptionStr »p547

SQL_SetOption »p681, SQL_SetOptionStr »p682

SQL_OptionResetAll »p546

Save/Load Info:

SQL Tools Pro only...

SQL_InfoExport »p490

SQL_InfoImport »p492

Thread startup and shutdown:

SQL Tools Pro only...

SQL_Thread »p839

 232

Environment Family

Functions for setting and getting attributes and information about the overall ODBC
environment in which your program operates. These values include the ODBC version, the
names of the various ODBC drivers and datasources that are available to your program, and
information about things like "connection pooling", which affect all of the databases in the
environment.

ODBC Environment Attributes:

SQL Tools Pro only...

SQL_SetEnvironAttrib »p679

SQL_EnvironAttrib »p405

SQL_EnvironAttribStr »p407

Available ODBC Drivers:

SQL Tools Pro only...

SQL_DriverCount »p395

SQL_DriverInfoStr »p397

SQL_DriverNumber »p399

Available ODBC Datasources:

SQL Tools Pro only...

SQL_DataSourceAdd »p301

SQL_DataSourceAdmin »p303

SQL_DataSourceCount »p305

SQL_DataSourceInfoStr »p306

SQL_DataSourceModify »p308

SQL_DataSourceNumber »p313

 233

Use Family

Function that allow you to set and get the Current Database and Current Statement numbers,
which are used by all of the SQL Tools "abbreviated »p55" functions.

Setting:

SQL_UseDB »p859

SQL_UseStmt »p861

SQL_UseDBStmt »p860

Getting:

SQL_CurrentDB »p285

SQL_CurrentStmt »p286

 234

Database Open/Close Family

Functions related to the opening and closing of Databases.

SQL_NewDatabaseNumber »p521, SQL_NewDBNumber »p521

SQL_OpenDatabase »p533, SQL_OpenDB »p536

SQL_OpenDatabase1 »p534, SQL_OpenDatabase2 »p535

SQL_DatabaseIsOpen »p300, SQL_DBIsOpen »p383

SQL_CloseDatabase »p278, SQL_CloseDB »p279

 235

Database Info/Attrib Family

Functions that allow you to obtain various Database Attribute and Information values, and to
set Database Attribute values. (Generally speaking, SQL Tools "Attribute" settings can be
changed, and "Information" settings cannot be changed.)

General Database Information:

SQL_DatabaseInfoStr »p299, SQL_DBInfoStr »p377

SQL_DatabaseInfo »p298, SQL_DBInfo »p338

SQL_DBMS »p384

SQL_DBMSName »p386

Information about a database's basic ODBC capabilities:

SQL_FunctionAvailable »p449, SQL_FuncAvail »p446

Database Attributes:

SQL_DatabaseAttribStr »p292, SQL_DBAttribStr »p325

SQL_DatabaseAttrib »p291, SQL_DBAttrib »p322

Most sub-functions are limited to SQL Tools Pro only...

SQL_SetDatabaseAttrib »p670, SQL_SetDBAttrib »p672

Information about the Data Types that are supported by a database:

SQL Tools Pro only...

SQL_DatabaseDataTypeCount »p294, SQL_DBDataTypeCount »p328

SQL_DatabaseDataTypeInfo »p295, SQL_DBDataTypeInfo »p330

SQL_DatabaseDataTypeInfoStr »p296, SQL_DBDataTypeInfoStr »p334

SQL_DatabaseDataTypeNumber »p297, SQL_DBDataTypeNumber »p337

SQL_DataTypeStr »p320

Database Transaction Mode:

SQL Tools Pro only...

SQL_DatabaseAutoCommit »p293, SQL_DBAutoCommit »p327

SQL_EndTransaction »p404, SQL_EndTrans »p402

 236

Table Info Family

Functions that allow you to obtain information about the tables in a database, such as the
number of tables, their names, their Table Types, and any remarks that the table's creator
included in the database.

General Table Information:

SQL_TableCount »p747, SQL_TblCount »p790

SQL_TableInfoStr »p755, SQL_TblInfoStr »p808

SQL_TableNumber »p756, SQL_TblNumber »p810

Table Statistics:

SQL Tools Pro only...

SQL_TableRowCount »p762, SQL_TblRowCount »p822

SQL_TableStatisticInfo »p763, SQL_TblStatInfo »p824

SQL_TableStatisticInfoStr »p764, SQL_TblStatInfoStr »p826

Table Privileges:

SQL Tools Pro only...

SQL_TablePrivilegeCount »p760, SQL_TblPrivCount »p817

SQL_TablePrivilegeInfoStr »p761, SQL_TblPrivInfoStr »p819

 237

Table Column Info Family

Functions that allow you to obtain information about the columns in a table, such as how
many columns there are, their names and types, and whether or not they are nullable »p171.

(For functions related to Result Columns, see the Result Column family.)

General Table Column Information:

SQL_TableColumnCount »p741, SQL_TblColCount »p774

SQL_TableColumnInfo »p742, SQL_TblColInfoStr »p780

SQL_TableColumnInfoStr »p743, SQL_TblColInfo »p776

SQL_TableColumnNumber »p744, SQL_TblColNumber »p783

Column Privileges:

SQL Tools Pro only...

SQL_TableColumnPrivilegeCount »p745, SQL_TblColPrivCount »p785

SQL_TableColumnPrivilegeInfoStr »p746, SQL_TblColPrivInfoStr »p787

Unique Columns:

SQL Tools Pro only...

SQL_TableUniqueColumnCount »p765, SQL_TblUColCount »p828

SQL_TableUniqueColumnInfoStr »p767, SQL_TblUColInfoStr »p832

SQL_TableUniqueColumnInfo »p766, SQL_TblUColInfo »p829

AutoColumns:

SQL Tools Pro only...

SQL_TableAutoColumnCount »p738, SQL_TblAColCount »p768

SQL_TableAutoColumnInfoStr »p740, SQL_TblAColInfoStr »p772

SQL_TableAutoColumnInfo »p739, SQL_TblAColInfo »p769

Columns which are indexed:

SQL Tools Pro only...

SQL_TableIndexCount »p751, SQL_TblIndexCount »p800

SQL_TableIndexInfoStr »p753, SQL_TblIndexInfoStr »p804

SQL_TableIndexInfo »p752, SQL_TblIndexInfo »p801

 238

Columns that are used as Primary Keys:

SQL Tools Pro only...

SQL_TablePrimaryKeyCount »p757, SQL_TblPKeyCount »p812

SQL_TablePrimaryKeyInfoStr »p759, SQL_TblPKeyInfoStr »p815

SQL_TablePrimaryKeyInfo »p758, SQL_TblPKeyInfo »p813

Columns in other tables that are linked to this table:

SQL Tools Pro only...

SQL_TableForeignKeyCount »p748, SQL_TblFKeyCount »p791

SQL_TableForeignKeyInfoStr »p750, SQL_TblFKeyInfoStr »p797

SQL_TableForeignKeyInfo »p749, SQL_TblFKeyInfo »p793

 239

Statement Open/Close Family

Functions related to the opening and closing of Statements. (SQL Tools handles most
statement open/close operations automatically. These functions allow you to take control of
the process, for special circumstances.)

SQL_NewStatementNumber »p523, SQL_NewStmtNumber »p524

SQL_OpenStatement »p541, SQL_OpenStmt »p542

SQL_StatementIsOpen »p713, SQL_StmtIsOpen »p724

SQL_CloseStatement »p281, SQL_CloseStmt »p282

 240

Statement Family

Functions related to SQL statements.

SQL_Statement »p708, SQL_Stmt »p716

SQL_FetchResult »p445, SQL_Fetch »p435

SQL_EndOfData »p401, SQL_EOD »p409

SQL_UpdateMemo »p857

SQL Tools Pro only...

SQL_UpdateBLOB »p855

SQL_FetchRelative »p444, SQL_FetchRel »p441

SQL_AsyncStatement »p253 SQL_AsyncStmt »p256

SQL_AsyncStatus »p254

SQL_Bookmark »p275, SQL_Bkmk »p273

SQL_StatementCancel »p711, SQL_StmtCancel »p720

SQL_MoreResults »p513, SQL_MoreRes »p511

SQL_BulkOperation »p277, SQL_BulkOp »p276

SQL_SetPosition »p699, SQL_SetPos »p696

SQL_FetchPosition »p440 SQL_FetchPos »p437

SQL_SyncFetchPosition »p737 SQL_SyncFetchPos »p736

 241

Statement Info/Attrib Family

Functions that allow you to obtain SQL statement Attribute and Information values, and to set
statement Attributes. (Generally speaking, SQL Tools "Attribute" settings can be changed,
and "Information" settings cannot be changed.)

General Information about a statement:

SQL_StatementInfoStr »p712, SQL_StmtInfoStr »p722

SQL_StatementNativeSyntax »p715, SQL_StmtNativeSyntax »p732

Statement Attributes:

SQL_StatementMode »p714, SQL_StmtMode »p725

SQL_ResetStatementMode »p620, SQL_ResetStmtMode »p621

SQL_StatementAttrib »p709, SQL_StmtAttrib »p719

SQL_StatementAttribStr »p710

SQL Tools Pro only...

SQL_SetStatementAttrib »p700, SQL_SetStmtAttrib »p701

Named Cursors:

SQL Tools Pro only...

SQL_NameCursor »p520, SQL_NameCur »p518

SQL_CursorName »p290, SQL_CurName »p284

 242

Statement Binding Family

Functions related to the Bound Parameters of SQL statements:

SQL Tools Pro only...

SQL_ParameterCount »p551, SQL_ParamCount »p549

SQL_ParameterInfo »p552, SQL_ParamInfo »p554

SQL_ParameterInfoStr »p553, SQL_ParamInfoStr »p556

SQL_BindParameter »p272, SQL_BindParam »p269

SQL_NextParameter »p528, SQL_NextParam »p526

SQL_LongParameter »p505, SQL_LongParam »p503

 243

Stored Procedure Family

Functions related to Stored Procedures »p208, which are pre-compiled SQL Statements that
are stored in a database:

SQL Tools Pro only...

SQL_ProcedureCount »p571, SQL_ProcCount »p567

SQL_ProcedureInfoStr »p573, SQL_ProcInfoStr »p576

SQL_ProcedureInfo »p572, SQL_ProcInfo »p574

Information about the parameters that a Stored Procedure requires, and the result columns
that it produces:

SQL Tools Pro only...

SQL_ProcedureColumnCount »p568, SQL_ProcColCount »p558

SQL_ProcedureColumnInfoStr »p570, SQL_ProcColInfoStr »p564

SQL_ProcedureColumnInfo »p569, SQL_ProcColInfo »p560

 244

Result Set Family NEW

Functions that return an entire Result Set in a single operation.

SQL_ResultSet »p660 SQL_ResSet »p623

SQL_ResultSetArray »p660 SQL_ResSetArray »p623

SQL_ResultSetSafeArray »p660 SQL_ResSetSafeArray »p623

 245

Result Column Binding Family

Functions related to the binding of result columns. (This family is rarely used because of the
SQL Tools "AutoBind »p145" feature, which handles most binding operations automatically.)

SQL_AutoBindColumn »p267, SQL_AutoBindCol »p265

SQL_ManualBindColumn »p510, SQL_ManualBindCol »p508

SQL_UnbindColumn »p854, SQL_UnbindCol »p852

SQL Tools Pro only...

SQL_DirectBindColumn »p394, SQL_DirectBindCol »p392

SQL_ResultColumnBufferPtr »p633 SQL_ResColBufferPtr »p582

SQL_ResultColumnIndicatorPtr »p641, SQL_ResColIndicatorPtr »p591

 246

Result Count Family

Functions that provide general information about the results of a SQL statement's, such as
the number of Rows affected by an UPDATE or the number of Columns in a result set.

SQL_ResultRowCount »p659, SQL_ResRowCount »p622

SQL_ResultColumnCount »p635, SQL_ResColCount »p584

 247

Result Column Family

Functions that provide actual values (i.e. data) from the columns of a result set, provide
information about a column's Indicator value, and provide information about the columns
themselves (type, name, etc.).

Result Column Values:

SQL_ResultColumnString »p653, SQL_ResColString »p613

SQL_ResultColumnWString »p653, SQL_ResColWString »p613

SQL_ResultColumnNumeric »p649, SQL_ResColNumeric »p607

SQL_ResultColumnMemo »p645 SQL_ResColMemo »p602

SQL Tools Pro only...

SQL_ResultColumnBLOB »p631 SQL_ResColBLOB »p579

SQL_ResultColumnBuffer »p632 SQL_ResColBuffer »p581

SQL_ResultColumnRaw »p650 SQL_ResColRaw »p610

Information about Result Columns:

SQL_ResultColumnInfo »p642, SQL_ResColInfo »p593

SQL_ResultColumnInfoStr »p643, SQL_ResColInfoStr »p597

SQL_ResultColumnType »p657, SQL_ResColType »p618

SQL_ResultColumnSize »p652, SQL_ResColSize »p612

SQL_ResultColumnLength »p644, SQL_ResColLength »p600

SQL_ResultColumnNumber »p648, SQL_ResColNumber »p606

Result Column Indicator values:

SQL_ResultColumnNull »p647, SQL_ResColNull »p605

SQL_ResultColumnIndicator »p641, SQL_ResColIndicator »p591

 248

Error/Trace Family
Various functions related to error handling and tracing.

SQL_ErrorClearAll »p410

SQL_ErrorClearOne »p411

SQL_ErrorColumnNumber »p412

SQL_ErrorCount »p413

SQL_ErrorDatabaseNumber »p414

SQL_ErrorFuncName »p415

SQL_ErrorIgnore »p418

SQL_ErrorNativeCode »p420

SQL_ErrorNumber »p421

SQL_ErrorPending »p422

SQL_ErrorQuickAll »p423

SQL_ErrorQuickOne »p424

SQL_ErrorSimulate »p426

SQL_ErrorStatementNumber »p427

SQL_ErrorText »p430

SQL_ErrorTime »p432

SQL_State »p707

SQL_Trace »p845

SQL_TraceStr »p850

SQL_CurrentTrace »p288

SQL Tools Pro only...

SQL_Audit »p260
SQL_AuditStr »p262
SQL_ErrorStr »p428
SQL_Diagnostic »p388
SQL_OnErrorCall »p531
SQL_AsyncErrors »p252

 249

Utility Family

Various utility functions, such as text-to-binary and binary-to-text conversions, a "string
interpreter" that simplifies the use of certain characters in strings (such as quotation marks),
and a simple Message Box function.

SQL_DateTimePart »p314

SQL_DateTimePartStr »p315

SQL_BinaryStr »p268

SQL_TextStr »p836

SQL_MsgBox »p514

SQL_MsgBoxButton »p516

SQL_IString »p498

SQL_LimitTextLength »p501

SQL_Okay »p529

SQL_Fail »p433

SQL_SelectFile »p664

SQL_StringToType »p734

SQL_ToolsVersion »p842

SQL_ToolsVersionStr »p843

SQL Tools Pro only...

SQL_CurrentThread »p287

SQL_SaveFile »p661

 250

Get Info Family

SQL Tools Internal "Get" Functions. These functions are rarely used in programs because
SQL Tools automatically uses these functions (internally) whenever an Info function is used.
When an Info function is first used, SQL Tools caches »p200 all of the information that is
related to the function, for faster access in the future. The Get functions can be used to force
SQL Tools to "refresh" the Info data, if you have reason to believe that, while your program is
running, a table has been added, a column has been deleted, etc.

SQL_GetTblInfo »p475, SQL_GetTableInfo »p463

SQL_GetTblCols »p471, SQL_GetTableColumns »p460

SQL Tools Pro only...

SQL_GetTblStats »p480 SQL_GetTableStatistics »p466

SQL_GetDataSources »p451

SQL_GetDrivers »p453

SQL_GetTblACols »p468, SQL_GetTableAutoColumns »p458

SQL_GetTblColPrivs »p469, SQL_GetTableColumnPrivileges »p459

SQL_GetDBDataTypes »p452, SQL_GetDatabaseDataTypes »p450

SQL_GetTblFKeys »p472, SQL_GetTableForeignKeys »p461

SQL_GetTblIndexes »p473, SQL_GetTableIndexes »p462

SQL_GetTblPKeys »p478, SQL_GetTablePrimaryKeys »p464

SQL_GetProcCols »p454, SQL_GetProcedureColumns »p455

SQL_GetProcs »p457, SQL_GetProcedures »p456

SQL_GetTblPrivs »p479, SQL_GetTablePrivileges »p465

SQL_GetTblUCols »p481, SQL_GetTableUniqueColumns »p467

 251

Handle Family

These functions can be used to obtain certain window handles, plus the actual ODBC handles
of the ODBC Environment, each ODBC database connection, and each ODBC statement.

SQL_hParentWindow »p486

SQL Tools Pro only...

It should not be necessary to use most of these functions unless you wish to write
API-level functions that SQL Tools does not provide »p37. (Of which there are very,
very few.):

SQL_hDatabase »p482, SQL_hDB »p483

SQL_hStatement »p488, SQL_hStmt »p489

SQL_hEnvironment »p485

 252

SQL_AsyncErrors

Summary

If an asynchronous »p125 SQL statement generates one or more Error Messages, this
function must be used before your program can access them.

Twin

None.

Family

Error/Trace Family »p248

Availability

SQL Tools Pro only (see »p29)

Warning

SQL_AsyncErrors cannot be used from within a thread

Syntax

lResult& = SQL_AsyncErrors(lThreadNumber&)

Parameters

lThreadNumber&
A thread number that was specified in a previous SQL_AsyncStatement

»p253 or SQL_AsyncStmt »p256 function.

Return Values

After this function makes them visible, this function will return the number of errors
that have been made visible to your program, from zero (0) to the maximum capacity
of the SQL Tools Error Stack.

Remarks

See SQL_AsyncStmt »p256 for a complete discussion of this function.

Diagnostics

This function does not return Error Codes or Error Messages.

Example

See SQL_AsyncStmt »p256.

Driver Issues

None.

Speed Issues

None.

See Also

Asynchronous Execution of SQL Statements »p125

 253

SQL_AsyncStatement

Syntax

lResult& = SQL_AsyncStatement(lDatabaseNumber&, _
 lStatementNumber&, _
 lAction&, _
 sStatement$, _
 lThreadNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_AsyncStatement is identical to SQL_AsyncStmt »p256. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 254

SQL_AsyncStatus

Summary

Indicates the current status of a SQL statement that was executed with the
SQL_AsyncStatement »p253 or SQL_AsyncStmt »p256 function.

Twin

None.

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

You should familiarize yourself with Asynchronous Execution of SQL Statements »p125
before attempting to use this function.

Syntax

lResult& = SQL_AsyncStatus(lThreadNumber&)

Parameters

lThreadNumber&
A thread number that was specified in a previous SQL_AsyncStatement

»p253 or SQL_AsyncStmt »p256 function.

Return Values

This function will return %SQL_STILL_EXECUTING if the asynchronous SQL
statement with the specified thread number has not yet finished executing.

If the specified SQL statement has finished executing, this function will return either
%SQL_SUCCESS (zero) or an ODBC Error Code »p895 to indicate the results of the
statement. (These values are identical to those returned by SQL_Stmt »p716.)

If you attempt to use this function to obtain the result of a statement that has not yet
been started with SQL_AsyncStatement or SQL_AsyncStmt (i.e. if you use
SQL_AsyncStatus before one of those two functions) it will also return
%SQL_SUCCESS (zero). This is the most logical return value for this condition,
because the statement is not "still executing" and has not returned an error.

Remarks

See SQL_AsyncStmt »p256 for a complete discussion of this function.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

See SQL_AsyncStmt »p256.

Driver Issues

None.

 255

Speed Issues

None.

See Also

Asynchronous Execution of SQL Statements »p125
Multi-Threaded Programs »p224

 256

SQL_AsyncStmt

Summary

Executes a SQL statement "asynchronously", i.e. in a separate thread. (This function
can be used by programming languages that do not support true multi-threading.
PowerBASIC programs have the option of using this function or the THREAD
functions that are built into PowerBASIC. Generally speaking, using this function is
more convenient than using THREAD.)

Twin

SQL_AsyncStatement »p253

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

You should familiarize yourself with Asynchronous Execution of SQL Statements »p125
before attempting to use this function.

Syntax

lResult& = SQL_AsyncStmt(lAction&, _
 sStatement$, _
 lThreadNumber&)

Parameters
lAction&

One of the following constants: %PREPARE, %EXECUTE, or %IMMEDIATE. (A
number of aliases for these values are also recognized.) See SQL_Stmt

»p716 for a complete discussion of these values.
sStatement$

The SQL statement »p123 to be prepared and/or executed »p124. The exact
syntax that you use will depend on the capabilities of the ODBC driver »p76
that your program uses. For a summary of the basic syntax that is
recognized by all ODBC-compliant drivers, see Appendix A: SQL Statement
Syntax »p862. See SQL_Stmt »p716 for a complete discussion of this
parameter

lThreadNumber&
A number between one (1) and the number that your program most recently
used for SQL_Thread(%THREAD_MAX) »p839.

Return Values

This function will return...

%ERROR_BAD_PARAM_VALUE if you use an invalid value for the lThreadNumber&
parameter. (This is usually caused by failing to use the SQL_Thread »p839

(%THREAD_MAX) function before using SQL_AsyncStmt). Or...

%ERROR_CANNOT_BE_DONE if a SQL statement is currently using the specified
thread number, or...

%ERROR_UNKNOWN if Windows fails to create the requested thread, or...

 257

%SQL_SUCCESS (zero) if the specified SQL statement has been executed.

IMPORTANT NOTE: A return value of %SQL_SUCCESS does not indicate that the
specified SQL statement executed properly. It simply means that SQL Tools was
able to create a thread and "launch" the SQL statement. To find out whether or not
the SQL statement itself generated any errors, use the SQL_AsyncStatus »p254
function. Also see SQL_AsyncErrors »p252.

Remarks

Except for the lThreadNumber& parameter, SQL_AsyncStmt is identical to
SQL_Stmt »p716. To avoid errors when this document is updated, information that is
common to both functions is not duplicated here. Only information that is unique to
SQL_AsyncStmt is shown below.

Most program use the SQL_Stmt »p716 or SQL_Statement »p708 function to
prepare and/or execute SQL statements. When that is done, your program "pauses"
until the SQL statement generates a result.

But that is not always desirable. For example, most GUI-style programs need to
continuously update their screens, and because it can take seconds, minutes, or
even hours for some SQL statements to execute, you may wish to execute a SQL
statement "asynchronously". That term means "in the background, while my main
program continues to run". Asynchronous execution can allow your program to do
many different things while waiting, such as checking to see if the user has clicked a
Cancel button, and/or displaying a "WORKING... PLEASE WAIT" animation.

In order to use the SQL_AsyncStmt function, you should first be familiar with using
the simpler SQL_Stmt »p716 function. If you are not familiar with SQL_Stmt , we
strongly suggest that you read about that function before attempting to use this one.

Here is the code for a simple program that uses SQL_AsyncStmt . It is based on the
SQL_Dump example code that is provided and explained in A Simple Program, Step
By Step »p936.

SQL_Authorize &h........
SQL_Init

SQL_Thread %THREAD_MAX, 1

SQL_OpenDB "\SQLTOOLS\SAMPLES\SQLTools_Example.DSN"

OPEN "\SQLTOOLS\SAMPLES\SQL_DUMP.TXT" FOR OUTPUT AS #2

sStatement$ = "SELECT * FROM ADDRESSBOOK"

SQL_AsyncStmt %IMMEDIATE, sStatement$, 1

DO
 IF SQL_AsyncStatus(1) <> %SQL_STILL_EXECUTING T HEN
 EXIT LOOP
 END IF
 'You can do other useful work here, while
 'waiting for the query to execute.
LOOP

 258

DO
 SQL_Fetch %NEXT_ROW
 IF SQL_EOD THEN EXIT LOOP
 IF SQL_ErrorPending THEN EXIT LOOP
 PRINT #2, SQL_ResColString(%ALL_COLs) + "<"
LOOP

IMPORTANT NOTE: For clarity, this program does not include Error Checking code,
which is an important part of any program. See Error Handling below.

The SQL_Authorize »p263 and SQL_Init »p494 lines at the very beginning of the
example code are required for all SQL Tools programs.

The line that says SQL_Thread %THREAD_MAX, 1 tells SQL Tools that you intend
to use one thread (one asynchronous statement at a time) in this program. More
complex programs may need to use larger values for the second parameter. See
SQL_Thread »p839 for more information.

The next three lines...

SQL_OpenDB "\SQLTOOLS\SAMPLES\SQLTools_Example.DSN"
OPEN "\SQLTOOLS\SAMPLES\SQL_Dump.TXT" FOR OUTPUT AS #2
sStatement$ = "SELECT * FROM ADDRESSBOOK"

...are covered in detail in A Simple Program, Step By Step »p936. They are fairly
straightforward so we will not explain them here.

The next line...

SQL_AsyncStmt %IMMEDIATE, sStatement$, 1

...tells SQL Tools to execute the SQL statement immediately, asynchronously, using
thread number 1. The SQL_AsyncStmt function will return almost instantly, leaving
the SQL statement executing "in the background".

The first DO/LOOP structure waits for the SQL_AsyncStatus(1) function to return
a value other than %SQL_STILL_EXECUTING for thread number 1. When that
happens, it means that the asynchronous SQL statement is ready to return a result.
See SQL_AsyncStatus »p254 for more information.

The second DO/LOOP structure is exactly the same as the one described in A
Simple Program, Step By Step »p936. It retrieves the data from the SQL statement.

As you can see, using SQL_AsyncStmt is very much like using SQL_Stmt , but
with a few extra steps and a few extra benefits.

Also see SQL_StmtCancel »p720.

Error Handling

There is one additional complexity that must be considered when using asynchronous
execution: Error Handling.

 259

Normally, when SQL Tools is used in two or more threads of the same program, each
thread is given its own Error Stack. The program's threads can use the various
SQL_Error »p248 functions, and they will provide information about errors that have
been detected in that thread only. (If threads could see each other's error
information, it would be very difficult to figure out what was going on. For more
information about this, see Multi-Threaded Programs »p224.)

When you use a SQL Tools "async" function, however, your program operates in a
single thread and all of the multi-threading operations are handled automatically.
SQL Tools creates a thread, executes your SQL statement, checks the result, and
terminates the thread, all automatically. Because your program operates in the main
thread, it can't see errors that may have taken place in the "async" thread.

So SQL Tools provides the SQL_AsyncErrors »p252 function, which "transfers"
errors from an async thread to your program's main thread. After the
SQL_AsyncStatus »p254 function has told your program that an asynchronous SQL
statement has finished executing (see above) you should use the
SQL_AsyncErrors function with the same thread number. Continuing the example
above, it would look like this:

DO
 IF SQL_AsyncStatus(1) <> %SQL_STILL_EXECUTING T HEN
 EXIT LOOP
 END IF
 'You can do other useful work here, while
 'waiting for the query to execute.
LOOP

IF SQL_AsyncErrors <> 0 THEN
 'handle errors here
END IF

By the way, you might be wondering why SQL Tools doesn't automatically make the
errors visible. It's because your program may have two or more asynchronous
statements executing at the same time, and you may want to make the errors visible
to your program one thread at a time, to make your error-handling code easier to
manage.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

See Remarks above.

Driver Issues

None.

Speed Issues

None.

See Also

Asynchronous Execution of SQL Statements »p125
Multi-Threaded Programs »p224

 260

SQL_Audit NEW

Summary

Turns the SQL Tools Audit Mode on or off.

Twin

None

Family

Error/Trace Family »p248

Availability

SQL Tools Pro only (see »p29)

Warning

None

Syntax

lResult& = SQL_Audit(lMode&, _
 OPTIONAL lFileNumber&)

...or...

SQL_Audit lMode&, OPTIONAL lFileNumber&

Parameters

lMode&
One of the following values:
1) %AUDIT_ON (and the alias %AUDIT_STATEMENTS) turn on the Audit
Mode.
2) %AUDIT_CHANGES turns on the Audit Mode but does not record SELECT
statements. (See Remarks .)
3) %AUDIT_OFF turns off the Audit Mode.
4) %AUDIT_RESET turns off the Audit Mode, deletes the contents of the
current file, and then turns the Audit Mode back on.

OPTIONAL lFileNumber&
If you omit this parameter or use zero, SQL_Audit(%AUDIT_ON) will
automatically use FREEFILE to choose a file number for the Audit File. If you
specify a file number with this parameter, SQL_Audit will use that number
instead.

Return Values

This function normally returns %SQL_SUCCESS. It returns
%ERROR_BAD_PARAM_VALUE if an invalid lMode& is specified, or an error code
between %ERROR_FIRST_RT_ERROR and %ERROR_LAST_RT_ERROR if SQL Tools is
unable to open the Audit File. For example %ERROR_FIRST_RT_ERROR+70 would
indicate Run Time Error 70, Permission Denied.

Remarks

By default, the name of the Audit File is based on the name and location of your
program. For example if your program is C:\MyDir\MyProgram.EXE the Audit File
would be called C:\MyDir\MyProgram.audit . You can change the name and

 261

location by using SQL_SetOptionStr »p682 %OPT_AUDIT_FILE, "filespec" . If
you change the Audit File name while the Audit Mode is turned on, SQL Tools will
automatically close the current file and open the new one.

The Audit File will contain entries that look like this:

[111213082915][COMPUTERNAME][USERNAME] SELECT * FRO M
AddressBook

The first [block] is a date/time stamp in the form YYMMDDhhmmss. For example
111213082915 would mean 13 December, 2011 at 08:29:15 local time.

The second [block] is the Computer Name of the system where the program was
running.

The third [block] is the User Name of the person who was logged in at the time the
statement was executed.

The rest of the entry is the SQL Statement that was executed.

If your program uses the SQL_ResRowCount »p622 or SQL_ResultRowCount
function to check the number of rows that were changed by a SQL Statement, you
will also see Audit File entries that look like this:

[111213082916][COMPUTERNAME][USERNAME] 2 rows affec ted

All SQL Tools Error Messages are also automatically added to the Audit File.

You can add additional information to the Audit File by using the SQL_AuditStr

»p262 function.

If you use %AUDIT_CHANGES, SQL Tools will not record statements if the first six
characters of the statement are SELECT because those statements usually do not
change the database. Be careful, however, if you use more complex syntax like
SELECT INTO . A statement like that would not be recorded if you use
%AUDIT_CHANGES, when in fact it could change the database.

By default, an existing Audit File is appended when it is opened. You can change this
behavior by using SQL_SetOption »p681 %OPT_AUDIT_APPEND, %FALSE.

Diagnostics

This function can return Error Codes »p180 and generate SQL Tools Error Messages.

Example

SQL_Audit %AUDIT_ON

Driver Issues

None

Speed Issues

None.

See Also

SQL_AuditStr »p262

 262

SQL_AuditStr NEW

Summary

Adds information to a SQL Tools Audit File.

Twin

None

Family

Error/Trace Family »p248

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_AuditStr(sString$)

...or...

SQL_AuditStr sString$

Parameters

sString$
The string that you want to add to the Audit File. It can be a literal string, a
variable, or any PowerBASIC code that produces a string.

Return Values

This function always returns %SQL_SUCCESS. If the Audit Mode is currently turned
off, this function is simply ignored.

Remarks
See the SQL_Audit »p260 function for complete information about using Audit Files.

Diagnostics

None

Example

SQL_Audit %AUDIT_ON
SQL_AuditStr "About to delete old records from MYTA BLE..."

Driver Issues

None.

Speed Issues

Excessive use of this function can slow down your program by a small amount.

See Also

SQL_Audit »p260

 263

SQL_Authorize

Summary

Tells SQL Tools that it is authorized to begin operating.

Twin

None.

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

Every program that uses SQL Tools must use this function before any other SQL
Tools functions are used, including SQL_Init and SQL_Initialize .

The incorrect use of this function will cause your programs to malfunction. See
Remarks below for more information.

Syntax

lResult& = SQL_Authorize(%MY_SQLT_AUTHCODE)

...or...

SQL_Authorize %MY_SQLT_AUTHCODE

(See Example below for recommended use.)

Parameters

%MY_SQLT_AUTHCODE
This equate represents your Authorization Code, as set up in the
SQLT3.INC »p66 file. Every SQL Tools licensee is provided with a unique
Authorization Code in the form of an eight-digit hexadecimal number. Note
that the prefix &h must be added to your Authorization Code in order to
create a hexadecimal number that your compiler will recognize. (C and C++
users should use the C notation 0x instead of &h.)

See Example below.

Return Values

This function will return %ERROR_CANNOT_BE_DONE if an invalid Authorization Code
is used.

A return value of %SQL_SUCCESS (zero) indicates that either the correct
Authorization Code or a "Dummy Code" was accepted by the function. See Remarks
below for more information.

A return value of negative one (-1) means that your program called SQL_Authorize
more than once. SQL_Authorize should be called only once by each program.

Remarks

 264

Every SQL Tools Runtime File is "serialized". That means that it contains a unique,
embedded key number called an Authorization Code. In order to use SQL Tools,
you must prove to the Runtime File that you know its correct Authorization Code.

If you don't use the SQL_Authorize function at all, the SQL_Init »p494 and
SQL_Initialize »p495 functions will refuse to work, making it impossible for your
program to use SQL Tools in any way.

If you use the SQL_Authorize function with the Authorization Code that matches
your Runtime File -- the exact number that was provided with your Runtime Files --
then SQL Tools will work normally.

If you use the SQL_Authorize function with a "Dummy Code", SQL Tools will
randomly, intentionally malfunction.

See SQL Tools Authorization Codes »p21 for a complete description of how
Authorization Codes and Dummy Codes are used.

Diagnostics

This function returns Error Codes »p180, and can generate SQL Tools Error Messages.

Example

'If the Authorization Code for your copy of
'SQL Tools is "ABCD1234", you would add the
'"&h" prefix and use...

%MY_SQLT_AUTHCODE = &hABCD1234

'...in the SQL Tools declaration file SQLT3.INC

'Then, in your program, use...

SQL_Authorize %MY_SQLT_AUTHCODE

'PLEASE NOTE THAT "ABCD1234" IS *NOT*
'A VALID AUTHORIZATION CODE! YOU MUST
'USE THE AUTHORIZATION CODE THAT WAS
'PROVIDED WITH YOUR COPY OF SQL TOOLS.

'If you are not confident that you have typed your
'Authorization Code correctly, you could use...

IF SQL_Authorize(%MY_SQLT_AUTHCODE) <> %SQL_SUCCESS THEN
 SQL_MsgBox "ERROR! WRONG AUTH CODE!", 0
 EXIT FUNCTION
END IF

'Note, however, that if your program uses SQL_Autho rize
'more than once, it will not return %SQL_SUCCESS. See Return
Values.

Driver Issues: None.
Speed Issues: None.
See Also: Four Critical Steps For Every SQL Tools Program »p61

 265

SQL_AutoBindCol

Summary

Automatically binds »p145 one column (or all of the columns) of a result set to a
memory buffer and an Indicator buffer, so that your program can access the values.
(Please note that, unless you tell it not to, SQL Tools automatically AutoBinds all
columns in a result set, so it is not usually necessary for your program to use this
function.)

Twin

SQL_AutoBindColumn »p267

Family

Result Column Binding Family »p245

Availability

Standard and Pro

Warning

If you use this function when you don't need to, your program will be performing
unnecessary work. See Remarks below.

Syntax

lResult& = SQL_AutoBindCol(lColumnNumber&)

Parameters

lColumnNumber&
The number of the column that you wish to AutoBind. The first column of a
result set is column number 1, the second is column number 2, and so on.
(The Bookmark Column, if it is supported by your ODBC driver, is always
Column Zero (0). You should not usually AutoBind a Bookmark Column.)

You may specify any nonzero, positive number for lColumnNumber&, up to
and including the highest-numbered column in a result set. Using a number
that is too large will result in an %ERROR_BAD_PARAM_VALUE error.

You may also use the constant %ALL_COLs for lColumnNumber&, to tell the
SQL_AutoBindCol function to automatically bind all of the columns in a
result set (except for the Bookmark Column, if it exists).

Return Values

This function will return %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
binding process is performed without any errors, or an Error Code »p180 if it is not.

Remarks

Unless you tell it not to, SQL Tools automatically AutoBinds all of the columns in
every result set this is created by the SQL_Stmt »p716 function. You can deactivate
this "AutoAutoBinding" feature by using the following code...

SQL_SetOption »p681 %OPT_AUTOAUTO_BIND, 0

If you deactivate the AutoAutoBinding feature, your program is responsible for binding
all of the columns in all result sets.

 266

You can perform result column binding with the SQL_ManualBindCol »p508 and/or
SQL_DirectBindCol »p392 functions, and/or by using the SQL_AutoBindCol
function on selected columns. In other words, you can use any combination of
AutoBinding »p159, Manual Binding »p164, and Direct Binding »p163 that you choose.

If you find it necessary to Manually Bind or Direct Bind one column of a result set, it
will often be desirable to AutoBind the rest of the columns. The SQL_AutoBindCol
function can be used to AutoBind selected columns of a result set after the
AutoAutoBind feature has been deactivated.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'AutoBind column 10...
SQL_AutoBindCol 10

Driver Issues

None.

Speed Issues

Autobound columns are very slightly slower than Manually- and Direct-Bound »p162
columns. This is because your program must access the column data and Indicator

»p170 via SQL Tools functions, and it takes a small amount of time to enter and exit
from those functions. If you Manually or Direct-Bind a column or Indicator, your
program can access the memory buffer directly, without going through a SQL Tools
function. However, if you do not use AutoBinding »p159, many different SQL Tools
function (such as the SQL_ResCol »p247 functions) cannot be used.

If speed is an extremely critical design factor in your program, you may wish to use
Manual and/or Direct Binding instead of AutoBinding.

See Also

Result Column Binding »p158

 267

SQL_AutoBindColumn

Syntax

lResult& = SQL_AutoBindColumn(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_AutoBindColumn is identical to SQL_AutoBindCol »p265. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 268

SQL_BinaryStr

Summary

Converts a string that has been coded by the SQL_TextStr »p836 function (or in a
similar manner) back into a binary string.

Twin

None.

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_BinaryStr(sText$)

Parameters

sText$
A string variable or literal that 1) contains text, 2) may or may not contain
[hXX] markers which represent single characters, and 3) may not contain
literal control characters (less than ASCII 32).

Return Values

The return value of this function is a copy of the sText$ string in which all of the
[hXX] markers (if any) have been converted into the appropriate single characters.

Remarks

A more complete discussion of the interaction between SQL_BinaryStr and
SQL_TextStr is provided in the Reference Guide entry for SQL_TextStr »p836.

Diagnostics

None.

Example

sText$ = "A[h00]B"

sBinary$ = SQL_BinaryStr(sText$)

'sBinary$ now contains a three-character
'string where the first character is A,
'the middle character is CHR$(0), and
'the third character is B.

Driver Issues None.
Speed Issues None.
See Also Utility Family »p249

 269

SQL_BindParam

Summary

Binds »p128 a ? placeholder in a prepared SQL statement »p123 (or in a Stored
Procedure »p208) to memory buffers that your program provides.

Twin

SQL_BindParameter »p272

Family

Statement Binding Family »p242

Availability

SQL Tools Pro only (see »p29)

Warning

The incorrect use of this function will cause Application Errors. Please see Binding
Statement Input Parameters »p128 for background information and complete
instructions.

Also see the IMPORTANT NOTE below, about the lIndicator& parameter.

Syntax

lResult& = SQL_BindParam(lParameterNumber&, _
 lParamType&, _
 lBasType&, _
 lSQLType&, _
 lDisplaySize&, _
 lDigits&, _
 lPointerToBuffer&, _
 lBufferLen&, _
 lIndicator&)

Parameters

lParameterNumber&
The number of the parameter placeholder that is being bound. If a Stored
Procedure is being used, a value between one (1) and the number returned
by SQL_ProcColCount »p558. Otherwise a value from one (1) to the number
of ? markers in the SQL statement, which can be determined with the
SQL_ParamCount »p549 function.

lParamType&
The type of parameter that is being bound, either %SQL_PARAM_INPUT,
%SQL_PARAM_OUTPUT, or %SQL_PARAM_INPUT_OUTPUT. If you are not
using a Stored Procedure »p208, the value of lParamType& must be always be
%SQL_PARAM_INPUT. See Remarks below for details.

lBasType&
The BASIC Data Type »p121 of the data buffer that is being used for the
parameter. This should always be a constant that starts with %BAS_.

lSQLType&
The SQL Data Type »p87 of the parameter that is being bound. This should
always be a constant that starts with SQL_ .

lDisplaySize&
The display size »p119 of the parameter's SQL data type.

 270

lDigits&
The number of digits »p120 after the decimal point of the SQL data type. (For
string, integer, and binary data types, always use zero (0)).

lPointerToBuffer&
A memory pointer to the first byte of the data buffer. This should normally be
a value that was produced by the BASIC VARPTR or STRPTR function. For
STRPTR, see Binding Dynamic String/Binary Parameters »p138.

lBufferLen&
The data buffer size »p116, in bytes.

lIndicator&
The name of the %BAS_LONG variable that will be used for the parameter's
Indicator. IMPORTANT NOTE: For technical reasons, this must not be a
REGISTER variable. We strongly recommend the use of #REGISTER OFF at
the very beginning of any SUB or FUNCTION which creates (declares or
DIMs) a variable that will be used for an Indicator.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
parameter is successfully bound to the memory buffers. Otherwise, an ODBC Error
Code or SQL Tools Error Code »p180 will be returned.

Remarks

For background information and complete instructions for using this function, see
Binding Statement Input Parameters »p128. An extensive explanation is provided,
including sample source code.

If you are not using a Stored Procedure »p208, the value of lParamType& must be
always be %SQL_PARAM_INPUT.

If you are using a Stored Procedure that requires bound parameters, the
lParamType& value must be one of the following constants:

%SQL_PARAM_INPUT (Indicates that the ? marks a parameter in a SQL statement
which does not call a procedure, such as a SELECT or INSERT statement, or
that it marks an input parameter in a Stored Procedure. If a program can't determine
the type of a parameter in a Stored Procedure call, it should use
%SQL_PARAM_INPUT.)

%SQL_PARAM_INPUT_OUTPUT (The ? marks an input/output parameter in a Stored
Procedure.)

%SQL_PARAM_OUTPUT (The ? marks the return value or an output parameter of a
Stored Procedure.)

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

See Binding Statement Input Parameters »p128 for several examples. Also see the
BindDateParam.BAS sample program.

Driver Issues

See Binding Statement Input Parameters »p128. This function is supported by most
but not all ODBC Drivers. The SQL_FuncAvail »p446 function can be used to

 271

determine a driver's capabilities.

Speed Issues

See Binding Statement Input Parameters »p128.

See Also

Stored Procedures »p208

 272

SQL_BindParameter

Syntax

lResult& = SQL_BindParameter(lDatabaseNumber&, _
 lStatementNumber&, _
 lParameterNumber&, _
 lParamType&, _
 lBasType&, _
 lSQLType&, _
 lDisplaySize&, _
 lDigits&, _
 lPointerToBuffer&, _
 lBufferLen&, _
 lIndicator&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_BindParameter is identical to SQL_BindParam »p269. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 273

SQL_Bkmk

Summary

Retrieves a bookmark »p154 (a string that identifies a row) for the current row of a
result set.

Twin

SQL_Bookmark »p275

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_Bkmk

Parameters

None.

Return Values

This function returns a string that can be used to identify a row of a result set.

Remarks

A bookmark is a string that can be used to identify a row of a result set »p144, to make
it easy (for example) to return to that row in the future.

For a complete discussion, see Bookmarks »p154.

Diagnostics

This function does not return Error Codes because it returns string values. It can,
however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'save the bookmark
sResult$ = SQL_Bkmk

'(other operations which re-position the cursor)

'return to the bookmarked row
SQL_FetchRel(sResult$,0)

Driver Issues

The Microsoft Access 97 ODBC Driver does not support bookmarks if ODBC 2.0
behavior is used, i.e. when an lODBCVersion& value of 2 is used for the
SQL_Initialize »p495 function.

This function is supported by most other ODBC Drivers, but not all. The

 274

SQL_FuncAvail »p446 function can be used to determine a driver's capabilities.

Speed Issues

See Using Bookmarks »p154 for a discussion of bookmark speed issues.

See Also

Relative Fetches »p157

 275

SQL_Bookmark

Syntax

sResult$ = SQL_Bookmark(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_Bookmark is identical to SQL_Bkmk »p273. To avoid errors when this document
is updated, and to reduce the size of the Help Files, information that is common to
both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 276

SQL_BulkOp

Summary

Performs a Bulk Operation »p213 (Bulk Add, Bulk Delete, Bulk Update, or Bulk Fetch)
on a MultiRow cursor »p210.

Twin
SQL_BulkOperation »p277

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

None. (See Driver Issues below.)

Syntax

lResult& = SQL_BulkOp(lOperation&)

Parameters

lOperation&
One of the following constants, which corresponds to the desired operation:
%BULK_ADD, %BULK_UPDATE, %BULK_DELETE, or %BULK_FETCH.

Return Values

If the operation is performed without errors, this function returns %SQL_SUCCESS or
%SQL_SUCCESS_WITH_INFO.

If errors are detected during the operation, this function will return an ODBC Error
Code »p180 or a SQL Tools Error Code.

Remarks

For a complete discussion of this function, see Bulk Operations »p213.

Diagnostics

This function returns Error Codes »p180, and can return ODBC Error Messages »p181
and SQL Tools Error Messages.

Example

SQL_BulkOp %BULK_DELETE

Driver Issues

According to the Microsoft ODBC Software Developer Kit »p915, this function is "not
widely supported". The SQL_FuncAvail »p446 function can be used to determine a
driver's capabilities.

Speed Issues

None.

See Also Positioned Operations »p219

 277

SQL_BulkOperation

Syntax

lResult& = SQL_BulkOperation(lDatabaseNumber&, _
 lStatementNumber&, _
 lOperation&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_BulkOperation is identical to SQL_BulkOp »p276. To avoid errors when this
document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 278

SQL_CloseDatabase

Syntax

lResult& = SQL_CloseDatabase(OPTIONAL lDatabaseNumber&)

Parameters
lDatabaseNumber&

If the optional lDatabaseNumber& parameter is missing, this function will use
the current database number (as specified with the SQL_UseDB »p859
function).

If lDatabaseNumber& is specified, it must be either 1) the number of a
database between one (1) and the maximum database number that was
specified with the lMaxDatabaseNumber& parameter of the
SQL_Initialize »p495 function, or 2) the number zero, to indicate the
current database (as specified with SQL_UseDB), or 3) the value %ALL_DBs,
to indicate "close all databases".

Remarks

Except for the lDatabaseNumber& parameter, SQL_CloseDatabase is identical to
SQL_CloseDB »p279. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 279

SQL_CloseDB
Summary

Closes a database that has been opened with SQL_OpenDB »p536 or
SQL_OpenDatabase »p535.

Twin

SQL_CloseDatabase »p278

Family

Database Open/Close Family »p234

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_CloseDB

Parameters

None.

Return Values

If the database is closed without errors, this function returns %SQL_SUCCESS or
%SQL_SUCCESS_WITH_INFO.

If errors are detected, this function will return an ODBC Error Code »p180 or a SQL
Tools Error Code.

Remarks

The SQL_CloseDB operation automatically performs all of the steps that are
necessary to close a database, including the unbinding »p852 of all result set columns,
the closing of all open statements (see SQL_CloseStmt »p282), and the releasing of
all internal SQL Tools buffers and handles that are related to the database.

After a database has been closed, your program can no longer use SQL Tools
functions to access it, or any statements or result columns that are related to it.
(Unless, of course, your program first uses SQL_OpenDB »p536 to re-open the
database.) If you attempt to use a SQL Tools function to access a database that has
been closed, an %ERROR_DB_NOT_OPEN error message will be generated.

Generally speaking, most programs do not really need to use the SQL_CloseDB
function. The SQL_Shutdown »p706 function -- which all programs are required to use
-- automatically uses the SQL_CloseDB function to close all open databases, so it is
not necessary to explicitly use the SQL_CloseDB function in your programs.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

SQL_CloseDB

 280

Driver Issues

None.

Speed Issues

None.

See Also

Opening a Database »p78

 281

SQL_CloseStatement

Syntax

lResult& = SQL_CloseStatement(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_CloseStatement is identical to SQL_CloseStmt »p282. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 282

SQL_CloseStmt

Summary

Closes a statement that was previously opened with the SQL_Stmt »p716,
SQL_Statement »p708, SQL_OpenStmt »p542, or SQL_OpenStatement »p541
function.

Twin

SQL_CloseStatement »p281

Family

Statement Open/Close Family »p239

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_CloseStmt

Parameters

None.

Return Values

If the statement is closed without errors, this function returns %SQL_SUCCESS or
%SQL_SUCCESS_WITH_INFO.

If errors are detected, this function returns an ODBC Error Code »p180 or a SQL Tools
Error Code.

Remarks

The SQL_CloseStmt operation automatically performs all of the steps that are
necessary to close a statement, including the unbinding »p145 of all result set columns,
and the releasing of all internal SQL Tools buffers and handles that are related to the
statement.

After a statement has been closed, your program can no longer use SQL Tools
functions to access it, or result columns that are related to it. (Unless, of course, your
program first re-opens the statement.) If you attempt to use a SQL Tools function to
access a statement that has been closed, an %ERROR_STMT_NOT_OPEN error
message will be generated.

Generally speaking, most programs do not really need to use the SQL_CloseStmt
function. The SQL_Shutdown »p706 function -- which all programs are required to use
-- automatically uses the SQL_CloseStmt function to close all open statement, so it
is not necessary to explicitly use the SQL_CloseStmt function in your programs.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

 283

Example

SQL_CloseStmt

Driver Issues

None.

Speed Issues

None.

See Also

SQL_OpenStmt »p542

 284

SQL_CurName

Summary

Returns the name that has been assigned to a cursor »p147 with the SQL_NameCur
»p518 or SQL_NameCursor »p520 function.

Twin

SQL_CursorName »p290

Family

Statement Info/Attrib Family »p241

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_CurName

Parameters

None.

Return Values

This function returns the name of a cursor, in string form, that was assigned by using
the SQL_NameCur »p518 or SQL_NameCursor »p520 function.

If no name has been assigned, this function will return either the default cursor name
(as assigned by the ODBC driver) or an empty string ("") if the driver does not
support Named Cursors.

Remarks

See Using Named Cursors »p212 for information about using this function.

Diagnostics

This function does not return Error Codes »p180, but it can generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

PRINT SQL_CurName

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

Named Cursors »p212

 285

SQL_CurrentDB

Summary

Returns the Database Number »p197 of the current database, i.e. the database
number that is currently being used by SQL Tools "abbreviated" functions »p55.

Twin

None.

Family

Use Family »p233

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_CurrentDB

Parameters

None.

Return Values

This function always returns an integer value between one (1) and the maximum
database number that was specified with the lMaxDatabaseNumber& parameter of
the SQL_Initialize »p495 function.

If the SQL_Init »p494 function was used instead of SQL_Initialize , this function
will always return the number one (1) or two (2).

Remarks

If your program uses the SQL_UseDB and/or SQL_UseDBStmt »p860 functions to
change the default database number, it can obtain the current setting by using this
function.

Diagnostics

This function does not generate errors of any type.

Example

PRINT SQL_CurrentDB

Driver Issues

None.

Speed Issues

None.

See Also

Using Database Numbers »p197

 286

SQL_CurrentStmt

Summary

Returns the Statement Number »p197 of the current statement, i.e. the statement
number that is currently being used by SQL Tools "abbreviated" functions »p55.

Twin

None.

Family

Use Family »p233

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_CurrentStmt

Parameters

None.

Return Values

This function always returns an integer value between one (1) and the maximum
statement number that was specified with the lMaxStatementNumber& parameter of
the SQL_Initialize »p495 function.

If the SQL_Init »p494 function was used instead of SQL_Initialize , this function
will always return the number one (1) or two (2).

Remarks

For more information about Statement Numbers, please see Using Database
Numbers and Statement Numbers »p197.

Diagnostics

This function does not generate errors of any type.

Example

PRINT SQL_CurrentStmt

Driver Issues

None.

Speed Issues

None.

See Also

Using Statement Numbers »p197

 287

SQL_CurrentThread NEW

Summary

Identifies the current thread number, as set by SQL_Thread »p839.

Twin

None

Family

Utility Family »p249

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_CurrentThread

Parameters

None.

Return Values

This function returns the thread number of the current thread.

Remarks

If this function is called by your program's main thread it will return zero (0). If it is
called by a thread of execution that properly identified itself by calling SQL_Thread

»p839(%THREAD_START), it will return the thread number that was specified in that
call.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "thread #1".

Example
lResult& = SQL_CurrentThread

Driver Issues

None

Speed Issues

None.

See Also

SQL_Thread »p839, SQL_AsyncStmt »p256, SQL_AsyncStatus »p254,
SQL_AsyncErrors »p252

 288

SQL_CurrentTrace NEW

Summary

Returns information about the most recent SQL_Trace »p845 setting.

Twin

None

Family

Error/Trace Family »p248

Availability

Standard and Pro, but only when you are not using the No Trace »p72 runtime
modules.

Warning

None.

Syntax

lResult& = SQL_CurrentTrace(lDetail&)

Parameters

lDetail&
One of the following equates. See Remarks for details.

%TRACING_ON
%TRACING_BASIC
%TRACING_TIMES
%TRACING_BASIC
%TRACING_API
%TRACING_DETAILS
%TRACING_INTERNALS
%TRACING_RAW_DATA

It is important to note that (for example) %TRACING_ON is not the same as
%TRACE_ON, which is also a SQL Tools equate. You must use the ING
equates with this function.

Return Values

This function will return True (negative one (-1)) if the specified detail is currently
being traced, or False (zero) if it is not.

Remarks

This function can be used to determine exactly which details are being added to a
SQL Tools Trace File. See the SQL_Trace »p845 function for complete information
about the various levels of detail.

Diagnostics

None

 289

Example

IF SQL_CurrentTrace(%TRACING_RAW_DATA) THEN
 'The program is adding Raw Data to the trace fil e.
END IF

Driver Issues

None.

Speed Issues

None, although the SQL_Trace function can slow down your program.

See Also

SQL_Trace »p845, SQL_TraceStr »p850

 290

SQL_CursorName

Syntax

sResult$ = SQL_CursorName(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_CursorName is identical to SQL_CurName »p284. To avoid errors when this
document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 291

SQL_DatabaseAttrib

Syntax

dwResult??? = SQL_DatabaseAttrib(lDatabaseNumber&, _
 lAttribute&)

Except for the lDatabaseNumber& parameter, SQL_DatabaseAttrib is identical to
SQL_DBAttrib »p322. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 292

SQL_DatabaseAttribStr

Syntax

sResult$ = SQL_DatabaseAttribStr(lDatabaseNumber&, _
 lAttribute&)

Except for the lDatabaseNumber& parameter, SQL_DatabaseAttribStr is
identical to SQL_DBAttribStr »p325. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 293

SQL_DatabaseAutoCommit

Syntax

lResult& = SQL_DatabaseAutoCommit(lDatabaseNumber&, _
 lOnOff&)

Except for the lDatabaseNumber& parameter, SQL_DatabaseAutoCommit is
identical to SQL_DBAutoCommit »p327. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 294

SQL_DatabaseDataTypeCount

Syntax

lResult& = SQL_DatabaseDataTypeCount(OPTIONAL lDatabaseNumber&)

Except for the lDatabaseNumber& parameter, SQL_DatabaseDataTypeCount is
identical to SQL_DBDataTypeCount »p328. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 295

SQL_DatabaseDataTypeInfo

Syntax

lResult& = SQL_DatabaseDataTypeInfo(lDatabaseNumber &, _
 lDataTypeNumber &, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_DatabaseDataTypeInfo is
identical to SQL_DBDataTypeInfo »p330. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 296

SQL_DatabaseDataTypeInfoStr

Syntax

sResult$ = SQL_DatabaseDataTypeInfoStr(lDatabaseNum ber&, _
 lDataTypeNum ber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_DatabaseDataTypeInfoStr is
identical to SQL_DBDataTypeInfoStr »p334. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 297

SQL_DatabaseDataTypeNumber

Syntax

lResult& = SQL_DatabaseDataTypeNumber(lDatabaseNumb er&, _
 sTypeName$)

Except for the lDatabaseNumber& parameter, SQL_DatabaseDataTypeNumber is
identical to SQL_DBDataTypeNumber »p337. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 298

SQL_DatabaseInfo

Syntax

dwResult??? = SQL_DatabaseInfo(lDatabaseNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_DatabaseInfo is identical to
SQL_DBInfo »p338. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 299

SQL_DatabaseInfoStr

Syntax

sResult$ = SQL_DatabaseInfoStr(lDatabaseNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_DatabaseInfoStr is identical
to SQL_DBInfoStr »p377. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 300

SQL_DatabaseIsOpen

Syntax

lResult& = SQL_DatabaseIsOpen(OPTIONAL lDatabaseNumber&)

Parameters
lDatabaseNumber&

If the optional lDatabaseNumber& parameter is missing, this function will use
the current database number (as specified with the SQL_UseDB »p859
function).

If lDatabaseNumber& is specified, it must be either 1) the number of a
database between one (1) and the maximum database number that was
specified with the lMaxDatabaseNumber& parameter of the
SQL_Initialize »p495 function, or 2) the number zero, to indicate the
current database (as specified with SQL_UseDB).

Remarks

Except for the lDatabaseNumber& parameter, SQL_DatabaseIsOpen is identical to
SQL_DBIsOpen »p383. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 301

SQL_DataSourceAdd

Summary

Allows your program's user to add a Data Source to their system by navigating
though a series of standard ODBC dialogs.

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DataSourceAdd(sDataSourceName$)

Parameters

sDataSourceName$
An empty string (""), or the name of the Data Source you wish to add. This
can be an arbitrary name like "My New Data Source" but it must be a legal
Data Source name, i.e. it must not contain backslashes (\), control
characters, or other invalid characters.

Return Values

This function normally returns %SQL_SUCCESS (zero) if a Data Source is created, or
%ERROR_USER_CANCEL if it is not. This function can also return
%ERROR_CANNOT_BE_DONE if the ODBCCP32.DLL file is not properly installed on
the system (or if the file is corrupt) but this should be extremely rare because that file
is a standard ODBC component.

Remarks

This function gives your programs the ability to access certain parts of the ODBC
Data Source Administrator programmatically, i.e. without instructing the user to
manually open the Control Panel and the ODBC Administrator program.

It is important to note that if you specify a Data Source Name by using the
sDataSourceName$ parameter, the user will be given the opportunity to change that
name so this function may not always create the Data Source that you intend. We
recommend that even if this function returns %SQL_SUCCESS you should enumerate
the available Data Sources using the technique shown in SQL_DataSourceCount

»p305, to make sure that the user created the Data Source that you intended.

Because this function displays dialogs, it requires a "parent window" to be specified.
SQL Tools will automatically use the Windows desktop as the parent window for the
dialogs, unless you specify one of your program's windows or forms by using the
SQL_SetOption »p681 %OPT_H_PARENT_WINDOW option. See
SQL_hParentWindow »p486 for more information.

 302

Diagnostics
This function returns Error Codes »p180 and can generate SQL Tools Error Messages

»p181.

Example

lResult& = SQL_DataSourceAdd("My Data Source")

Driver Issues

None.

Speed Issues

None.

See Also

SQL_DataSourceAdmin »p303, SQL_DataSourceModify »p308,
SQL_DataSourceCount »p305, SQL_DataSourceInfoStr »p306.

 303

SQL_DataSourceAdmin

Summary

Displays the main dialog of the ODBC Data Source Administrator program, and
allows the user to access all of its functions.

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DataSourceAdmin

Parameters

None.

Return Values

This function always returns %SQL_SUCCESS unless the ODBCCP32.DLL file is not
installed or is corrupt, in which case it returns %ERROR_CANNOT_BE_DONE. This
error should be extremely rare because that file is a standard ODBC component.

Remarks

This function gives your programs the ability to access the ODBC Data Source
Administrator programmatically, i.e. without instructing the user to manually open the
Control Panel and the ODBC Administrator program.

Because this function displays dialogs, it requires a "parent window" to be specified.
SQL Tools will automatically use the Windows desktop as the parent window for the
dialogs, unless you specify one of your program's windows or forms by using the
SQL_SetOption »p681 %OPT_H_PARENT_WINDOW option. See
SQL_hParentWindow »p486 for more information.

Diagnostics

None.

Example

lResult& = SQL_DataSourceAdmin
IF lResult& <> %SQL_SUCCESS THEN
 'The Database Administrator
 'program failed to display.
END IF

Driver Issues

None.

 304

Speed Issues

None.

See Also

SQL_DataSourceModify »p308, SQL_DataSourceAdd »p301,
SQL_DataSourceCount »p305, SQL_DataSourceInfoStr »p306.

 305

SQL_DataSourceCount

Summary

Returns the number of Datasources that are available at runtime.

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DataSourceCount

Parameters

None.

Return Values

This function returns zero or a positive integer, indicating the number of Datasources
that are available on a computer at runtime.

Remarks

The SQL_DataSourceCount »p305, SQL_DataSourceInfoStr »p306 and
SQL_DataSourceNumber »p313 functions can be used to obtain information about
the Datasources that are available to your program. This is basically the same
information that is displayed by the Microsoft ODBC Datasource Administrator
program, but it is available to your program.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with an answer like "there
is one Datasource available". However this function can generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

FOR lDS& = 1 TO SQL_DataSourceCount
 PRINT SQL_DataSourceInfoStr(lDS&,%DATASOURCE_NA ME)
NEXT

Driver Issues

None.

Speed Issues

None.

See Also: SQL_DataSourceInfoStr »p306 and SQL_DataSourceNumber »p313

 306

SQL_DataSourceInfoStr

Summary

Returns the name and/or description of a Datasource.

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_DataSourceInfoStr(lDataSourceNumber& , _
 lInfoType&)

Parameters

lDataSourceNumber&
A number between one (1) and the maximum datasource number (as
reported by the SQL_DataSourceCount »p305 function).

lInfoType&
Either %DATASOURCE_NAME or %DATASOURCE_DESCRIPTION.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

This function will return either a Datasource Name, or the Datasource Description,
depending on the value of lInfoType&.

Remarks

The SQL_DataSourceCount »p305, SQL_DataSourceInfoStr »p306 and
SQL_DataSourceNumber »p313 functions can be used to obtain information about
the Datasources that are available to your program. This is basically the same
information that is displayed by the Microsoft ODBC Datasource Administrator
program, but it is available to your program.

Diagnostics

This function does not return Error Codes »p180 because it returns string values, but it
can generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

See SQL_DataSourceCount »p305 example.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

 307

Speed Issues
None.

See Also

SQL_DataSourceCount »p305 and SQL_DataSourceNumber »p313

 308

SQL_DataSourceModify

Summary

Allows your program to modify Data Sources programmatically, with or without
displaying dialogs which allow the user to change certain values. (When used with
Microsoft Access databases, this function can also be used to create new databases
and to compact/repair databases.)

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DataSourceModify(lRequestType&, _
 sDriverName$, _
 sAttributes$, _
 lPrompt&)

Parameters

lRequestType&
One of the following constants: %ADD_DSN, %CONFIG_DSN, %REMOVE_DSN,
%ADD_SYS_DSN, %CONFIG_SYS_DSN, %REMOVE_SYS_DSN, or
%REMOVE_DEFAULT_DSN. See Remarks below for details.

sDriverName$
If the lRequestType& parameter is %REMOVE_DEFAULT_DSN then the
sDriverName$ parameter can be an empty string. Otherwise it must contain
the name of an ODBC Driver that is currently installed on the system. See
Remarks below for details.

sAttributes$
The attributes of the Data Source. If the lRequestType& parameter is
%REMOVE_DEFAULT_DSN then the sAttributes$ parameter can be an empty
string. Otherwise it must contain at least a DSN= value. See Remarks
below for details.

lPrompt&
If this parameter is False (zero) then no "prompt" dialogs will be displayed. If
this parameter is Logical True »p912 (-1) or any other nonzero value, dialogs
will be displayed to allow the user to view and/or modify the Data Source
attributes. Note that if True or another nonzero value is used, the dialogs will
always be displayed, even if the attributes are complete and correct. (This is
different from the SQL_OpenDB »p536 function, for example, which displays
dialogs only if the supplied information is not sufficient to allow a connection.)

Return Values

This function normally returns %SQL_SUCCESS (zero). If an invalid parameter is
used, it will return %ERROR_BAD_PARAM_VALUE. If the ODBCCP32.DLL file is not

 309

installed or is corrupt, this function will return %ERROR_CANNOT_BE_DONE. (This
error should be extremely rare because that file is a standard ODBC component.)

Remarks

(For information about creating and/or compacting Access databases, see Access
Extensions below.)

In order to use this function you will need to be familiar with the process of creating
and modifying Data Sources. See Appendix G: Connection String Syntax »p910 for
more information. It may also be helpful to familiarize yourself with the ODBC Data
Source Administrator program, which can be invoked from the Windows Control
Panel or with the SQL_DataSourceAdmin »p303 function. It has its own Help File.

IMPORTANT NOTE: This function does not make very many "judgments" about the
correctness or completeness of the Data Source attributes that you supply. This is
intentional. It will, for example, return an Error Code if you attempt to use a DSN=
values that ends in a backslash, because that is clearly not valid. But is entirely
possible to create or modify a Data Source that refers to a non-existent database, or
that has required attributes that are missing. Keep in mind that if the SQL_OpenDB
»p536 function encounters an incomplete or incorrect Data Source, it will automatically
display the dialogs that are necessary to allow a connection. It is completely normal
under some circumstances for a Data Source to be purposely "incomplete", so
SQL_DataSourceModify will not complain if you create an incomplete or incorrect
Data Source.

The lRequestType& parameter must be one of the following values:

%ADD_DSN or %ADD_SYS_DSN

Adds a new Data Source or System Data Source.

The sDriverName$ parameter must be the name of an ODBC Driver that is
currently installed on the system. You can obtain a list of the currently
installed Drivers by using the technique shown under SQL_DriverCount

»p395.

The sAttributes$ parameter must contain a list of Data Source attributes,
delimited with the "pipe" symbol (|) or with Carriage Returns and/or Line
Feeds (ASCII 13 or 10).

Example:

sDriverName$ = "Microsoft Access Driver (*.mdb)"

sAttributes$ =
"DSN=MyDataSource|DBQ=C:\SQLTools\SQL_DUMP\SQLTools
_Example.MDB|DEFAULTDIR=C:\"

lResult& = SQL_DataSourceModify(%ADD_DSN,
sDriverName$, sAttributes$)

For more complete information about the requirements for the sAttributes$
parameter, see Appendix G: Connection String Syntax »p910.

 310

%CONFIG_DSN or %CONFIG_SYS_DSN

Modifies an existing Data Source or System Data Source.

This example reconfigures the %ADD_DSN example (above) to use drive D
instead of drive C:

sDriverName$ = "Microsoft Access Driver (*.mdb)"

sAttributes$ =
"DSN=MyDataSource|DBQ=D:\SQLTools\SQL_DUMP\SQLTools _Examp
le.MDB|DEFAULTDIR=D:\"

lResult& = SQL_DataSourceModify(%CONFIG_DSN,
sDriverName$, sAttributes$)

%REMOVE_DSN or %REMOVE_SYS_DSN

Removes an existing Data Source or System Data Source.

The sDriverName$ parameter must be the name of an ODBC Driver that is
currently installed on the system, such as "Microsoft Access Driver
(*.mdb) ".

The sAttributes$ parameter must contain a valid DSN= value, in order to
identify the Data Source to be removed.

Example:

sDriverName$ = "Microsoft Access Driver (*.mdb)"

sAttributes$ = "DSN=MyDataSource"

lResult& = SQL_DataSourceModify(%REMOVE_DSN,
sDriverName$, sAttributes$, 0)

%REMOVE_DEFAULT_DSN.

Removes the current default Data Source. The sDriverName$ and
sAttributes$ parameters are ignored.

Access Extensions

The Microsoft Access ODBC Driver provides a number of additional functions that
can be used with SQL_DataSourceModify %ADD_DSN .

CREATE_DBV2=
CREATE_DBV3=
CREATE_DBV4=
CREATE_DB=
CREATE_SYSDB=

These sAttributes$ values can be used to create a new Access database.
CREATE_DBV2 creates a database that is compatible with Access 2 (16-bit).

 311

CREATE_DBV3 creates a database that is compatible with Access 95,
Access 97, and later versions of Access. CREATE_DBV4 creates a
database that is compatible with Access 2000 and later versions of Access.
CREATE_DB (without a V-number) creates a database using the most recent
version of Access that the current ODBC driver supports. CREATE_SYSDB
creates a system database file.

Example:

'Create an MDB file that is compatible with Access
97.

sDriver$ = "Microsoft Access Driver (*.mdb)"

sAttribs$ = "CREATE_DBV3=C:\MyNew.mdb"

SQL_DataSourceModify %ADD_DSN, sDriver$, sAttribs$,
0

IMPORTANT NOTE: The CREATE_ functions do not allow quotation marks
to be used around the MDB file name and path, so you can't use file names
or directory names which contain spaces. This is a limitation of the Access
ODBC Driver, not SQL Tools. It is possible, however, to create an MDB file
with an 8.3-compatible name and then rename and/or move the file using
long file and directory names. See KILL and NAME in your BASIC
documentation.

The CREATE_ functions also support an optional parameter called "sort
order", which must be one of the following keywords: General ,
Traditional Spanish , Dutch , Swedish/Finnish ,
Norwegian/Danish , Icelandic , Czech , Hungarian , Polish ,
Russian , Turkish , Arabic , Hebrew , or Greek . To create a database
that uses Polish sorting (for example), change the sample code above like
this:

sAttribs$ = "CREATE_DBV3=C:\MyNew.mdb Polish"

If no sort order is specified, General will be used.

Note that the %ADD_DSN constant is used, even though a new DSN is not
actually created.

COMPACT_DB=

This sAttributes$ value can be used to repair a damaged Access database.
This process is usually called "compacting" the database, because it can also
be used to remove wasted space from a database. (Wasted space can be
created by deleting tables, columns, data, or just about anything else from an
Access database. Wasted space can also be created by UPDATE
operations.)

Note that you must use two file names with this function, a "source" file and a
"target" file, separated by a single space character. The source file is the
MDB file that should be compacted. The target file is the name of the
resulting (compacted) database. The two file names may be the same, but

 312

for maximum safety we recommend using two different names. Then, if (and
only if) the COMPACT_DB operation is successful, delete the source file and
rename the target file.

Example:

'Compact the SQLTools_Example.MDB file:

sDriver$ = "Microsoft Access Driver (*.mdb)"

sAttribs$ =
"COMPACT_DB=C:\SQLTools\Samples\SQLTools_Example.MD
B C:\Temp.MDB"

lResult& = SQL_DataSourceModify(%ADD_DSN, sDriver$,
sAttribs$, 0)

IF lResult& = %SQL_SUCCESS THEN
 'delete
C:\SQLTools\Samples\SQLTools_Example.MDB
 'then rename C:\Temp.MDB to
 'C:\SQLTools\Samples\SQLTools_Example.MDB.
END IF

IMPORTANT NOTE: The COMPACT_DB function does not allow quotation
marks to be used around the MDB file name and path, so you can't use file
names or directory names which contain spaces. This is a limitation of the
Access ODBC Driver, not SQL Tools. You should use BASIC to obtain an
8.3-compatible path/file string for the database, and use that instead of the
"long" path/file name.

Note that the %ADD_DSN constant is used, even though a new DSN is not
actually created.

Note also that the COMPACT_DB function accepts the same optional "sort
order" parameter as the CREATE_ functions. See above for details.

Diagnostics

This function returns Error Codes »p180 and can generate SQL Tools Error Messages

»p181.

Example

See Remarks above for examples.

Driver Issues

None.

Speed Issues

None.

See Also

SQL_DataSourceAdmin »p303, SQL_DataSourceAdd »p301,
SQL_DataSourceCount »p305, SQL_DataSourceInfoStr »p306.

 313

SQL_DataSourceNumber

Summary

Returns the Datasource Number (if any) that corresponds to a Datasource Name.

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DataSourceNumber(sDataSourceName$)

Parameters

sDataSourceName$
A string that contains the name of a datasource.

Return Values

If a Datasource with the name sDataSourceName$ is found, its number will be
returned. Otherwise, negative one (-1) will be returned.

Remarks

This function is not case-sensitive. If a datasource named "dBase Files " exists,
then searching for "DBASE FILES ", "dBase files ", etc. will result in a match.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with the answer "that
string corresponds to Datasource number one". It can, however, generate ODBC
Error Messages »p181.

Example

PRINT SQL_DataSourceNumber("dBase Files")

Driver Issues

None.

Speed Issues

None.

See Also

SQL_DataSourceCount »p305, SQL_DataSourceInfoStr »p306 and
SQL_DataSourceNumber »p313

 314

SQL_DateTimePart NEW

Syntax

eResult## = SQL_DateTimePart(qDateTime&&, _
 lPart&)

Except for the fact that it returns numeric values, SQL_DateTimePart is identical
to SQL_DateTimePartStr »p315. To avoid errors when this document is updated,
and to reduce the size of the Help Files, information that is common to both functions
is not duplicated here.

Exceptions

It should be noted that not all date/time parts are useful as numeric values. For
example if you use SQL_DateTimePartStr(...,%PART_MONTH_NAME_LONG) it
will return a string like "December". Using SQL_DateTimePart will return zero (0)
not 12 as you might expect. For the month number, use %PART_MONTH.

A small number of normally-string values are also useful as numbers. If you use
SQL_DateTimePartStr(...,%PART_QUARTER) you will get a string like "Q4", and
SQL_DateTimePart will return 4. All other lPart& values will return the VAL of the
corresponding string, for example if SQL_DateTimePartStr(...,%PART_TIME)
returns "12:34:56" then SQL_DateTimePart will return 12.

 315

SQL_DateTimePartStr NEW

Summary

Returns a formatted Date/Time value from a Result Column or other source.

Twin

None

Family

Utility Family »p249

Availability

Standard and Pro, but some sub-functions are limited to the Pro version.

Warning

None.

Syntax

sResult$ = SQL_DateTimePartStr(qDateTime&&, _
 lPart&)

Parameters

qDateTime&&
One of the following:
1) A Result Column Number between 1 and 999. (The current Database
Number and Statement Number »p55 are assumed.)
2) A Quad Integer value representing a Date/Time, as returned by
SQL_ResColNumeric »p607 for certain column types.
3) A Quad Integer that corresponds to a Windows FILETIME value.
4) A PowerBASIC PowerTime Object FileTime property.
5) %DATETIME_NOW_LOCAL for the current Local Date/Time.
6) %DATETIME_NOW_UTC for the current Universal Coordinated Time.
7) %DATETIME_2000 for the date 1 January 2000.
8) A negative number representing 1 January of a specific year, for example
-1901 for 1 January 1901.
9) %DATETIME_REPEAT tells SQL_DateTimePartStr to use the same
qDateTime&& value as the last time the function was used. This is useful
(and fast) when the function is used repeatedly for the same Date/Time
value, for example when retrieving a DD/MM/YYYY value and then the
corresponding Day Name or Month Name.
10) %INFO_LABEL returns a string that can be used as a label for a value.

lPart&
A %PART_name equate from the list in Remarks .

Return Values

This function returns a formatted Date/Time value as shown below.

Remarks

Sample values are parts of Thursday, 02 January, 2003 at 04:05:06.789

Items in this color are available only in SQL Tools Pro.

 316

 317

All of the DOW_NAME and MONTH_NAME values are locale-specific, i.e. they will reflect
the language settings of the runtime workstation.

The %PART_..._SYSTEM formats (%PART_DATE_LOCALE_SYSTEM and
%PART_TIME_LOCALE_SYSTEM) are defined by the runtime system's Windows
settings. Typical return values in the USA would be "01/02/2003" and "4:05:06 AM".
%PART_DATETIME_LOCALE_SYSTEM combines the two, returning "01/02/2003 @
4:05:06 AM" The @ symbol can be changed to a comma (or any other string) by
using SQL_SetOptionStr »p682 %OPT_DATE_TIME_SEPARATOR,", " .

The %PART_..._USER formats work exactly the same as %PART_..._SYSTEM but
the formats can be different, based on which Windows user is logged in. In most
cases they will be the same as %PART_..._SYSTEM.

You can define up to four custom Date and four custom Time formats The x in
FORMAT_x (see above) must be replaced with a number from 1 to 4. For example,
you could use use...

SQL_SetOptionStr %OPT_DATE_FORMAT_1, "dddd',' dd MM MM
yyyy"

sResult$ =
SQL_DateTimePartStr(%DATETIME_NOW_LOCAL,%PART_DATE_FORMAT
_1)

...to produce a string like "Thursday, 02 January, 2003" Note that
%OPT_DATE_FORMAT_1 is used when setting the option, and
%PART_DATE_FORMAT_1 when using it. See Windows Date/Time Format Strings
below for more information.

 318

Using %PART_DATETIME_FORMAT_1 produces a combination of
%PART_DATE_FORMAT_1 and %PART_TIME_FORMAT_1. (Custom formats 2 through
4 cannot be combined in this way.)

You can of course create even more complex formats by calling
SQL_DateTimePartStr more than once and using PowerBASIC code to assemble
the string.

if you need an unusual format that is not shown in this list, you may be able to define
it yourself. For example, this value is defined in SQLT3.INC »p66:

%PART_DD_MM_YYYY = &h0108DA00& + &h2F

...which produces a string like "02/01/2003". The &h2F represents the slash
character CHR$(&h2F) . If you create a new definition such as...

%PART_DD_MM_YYYY_DASHED = &h0108DA00& + &h2D

you'll get a string like "02-01-2003". CHR$(&h2D) is the dash character.

Windows Date/Time Format Strings

You can build formatting strings for ...FORMAT_1 through ...FORMAT_4 with the
following codes. Note that you must use the appropriate case (MM vs. mm). Date
codes cannot be used in Time formats, and vice versa.

Dd Day of Month with leading zero for single-digit days (01-31)
D Day of Month without leading zero for single-digit days (1-31)
Ddd Short Day of Week (like Thu)
Dddd Long Day of Week (like Thursday
MM Month Number with leading zero for single-digit months (01-12)
M Month Number without leading zero for single-digit months (1-12)
MMM Short Month Name (like Jan)
MMMM Long Month name (like January)
Yy Year Number with leading zero for years less than 10 (00-99)
Y Year Number without leading zero for years less than 10 (1-99)
Yyyy Four-digit Year (like 2003)

HH Hours (24-hour clock) with leading zero for single-digit hours (00-23)
H Hours (24-hour clock) without leading zero for single-digit hours (0-23)
Hh Hours (12-hour clock) with leading zero for single-digit hours (00-12)
H Hours (12-hour clock) without leading zero for single-digit hours (0-12)
Mm Minutes with leading zero for single-digit minutes (00-59)
M Minutes without leading zero for single-digit minutes (0-59)
Ss Seconds with leading zero for single-digit seconds (00-59)
S Seconds without leading zero for single-digit seconds (0-59)
T One letter time marker string, such as A or P
Tt Multi-letter time marker string, such as AM or PM

'any string' Enclosing part of a formatting string in single quotes tells Windows
to include that literal string in the formatted date/time. The most common use is

 319

punctuation, as shown in this »p317 example.

Note that Windows Format Strings do not support many of the formats that
SQL_DateTimePartStr provides, such as Day of Year, Quarter, Day of Week
number, Julian Dates, fractional seconds, etc. As always, you can call
SQL_DateTimePartStr more than once and combine the results with PowerBASIC
code to get the format you need.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate SQL Tools Error Messages.

Examples

To obtain a formatted Time string for the Date/Time in Result Column 2, use...

sResult$ = SQL_DateTimePartStr(2,%PART_TIME_AMPM)

To build a formatted Date and Time for the current Local Time you could use...

sResult$ = _

SQL_DateTimePartStr(%DATETIME_NOW_LOCAL,%PART_YYYY_MM_DD)
+ _
 " at "+ _
 SQL_DateTimePartStr(%DATETIME_REPEAT,%PART_TIME_A MPM)

If you use...

sResult$ =
SQL_DateTimePartStr(%INFO_LABEL,%PART_TIME_AMPM)

...the return value will be the string HH:MM:SS A/p as shown in the %INFO_LABEL
column of the list above.

To use a PowerTime Object...

LOCAL PT AS IPowerTime
LET PT = CLASS "PowerTime"

PT.FileTime = %PB_COMPILETIME

sResult$ = SQL_DateTimePartStr(PT.FileTime,
%PART_MM_DD_YYYY)

Driver Issues

None.

Speed Issues

Use %DATETIME_REPEAT when possible.

See Also

SQL_DateTimePart »p314

 320

SQL_DataTypeStr NEW

Summary

Returns names (labels) for the various data types that are used by ODBC and SQL
Tools.

Twin

None

Family

Utility Family »p249

Availability

Standard and Pro, but not available when the No Trace Runtime Files »p72 are used.

Warning

None.

Syntax

sResult$ = SQL_DataTypeStr(lBASorSQL&, _
 lDataType&)

Parameters

lBASorSQL&
Either %BASIC_LABEL or %SQL_C_LABEL. See Remarks .

lDataType&
A number between %SQL_DATATYPE_FIRST (-28) and
%SQL_DATATYPE_LAST (+99) that corresponds to a data type.

Return Values

This function returns a string that describes a data type.

Remarks

This is strictly a Label »p193 function It does not return information about a specific
database, table, column, etc.

To obtain the name for a BASIC Data Type »p121, use %BASIC_LABEL for the
lBASorSQL& parameter. The standard BASIC return values are:

BAS_BYTE
BAS_DEFAULT (same as SQL_C_DEFAULT)
BAS_DOUBLE
BAS_DWORD
BAS_GUID
BAS_INTEGER
BAS_LONG
BAS_QUAD
BAS_SINGLE
BAS_STRING
BAS_TIMESTAMP
BAS_WORD

If the numeric value of lDataType& does not have a BASIC name, the SQL name will

 321

be returned.

To obtain the SQL name of a data type (also known as a C type) use
%SQL_C_LABEL. Data types that correspond exactly to the standard SQL Data
Types »p87 will return labels like "SQL_INTEGER" and "SQL_LONGVARCHAR". Data
types that are defined by ODBC but are not standard will return standard ODBC
labels such as "SQL_C_UBIGINT" and "SQL_C_STINYINT". Certain values like
"SQL_SIGNED_OFFSET" represent offsets, not actual data types. Data types that do
not have names will return labels that include their numeric absolute value, like
"SQL_C_12". Numeric values outside the valid range will return
"SQL_UNKNOWN_TYPE".

Diagnostics

This function does not return Error Codes »p180 because it returns string values.

An error message (%ERROR_FEATURE_NOT_AVAILABLE) will be generated if this
function is used when the No Trace »p72 runtime files are in use.

Examples

sResult$ = SQL_DataTypeStr(%SQL_C_LABEL, -5) 'retur ns
"SQL_BIGINT"

sResult$ = SQL_DataTypeStr(%BASIC_LABEL, -5) 'retur ns
"BAS_QUAD"

Driver Issues

None.

Speed Issues

None.

See Also

Info/Attribute Labels »p193

 322

SQL_DBAttrib

Summary

Returns a Database Attribute in numeric form. (Generally speaking, an "Attribute" is
a value that can be changed by your program.)

Twin

SQL_DatabaseAttrib »p291

Family

Database Info/Attrib Family »p235

Availability

Standard and Pro

Warning

None.

Syntax

dwResult??? = SQL_DBAttrib(lAttribute&)

Parameters

lAttribute&
A %DB_ATTR_ constant. See Remarks below for more information.

Return Values

If lAttribute& has a valid value, and if the requested attribute type is supported by the
ODBC driver that you are using, this function will return the attribute in numeric form.
Otherwise, a value of zero (0) will be returned.

Remarks

Only certain Database Attributes are useful in numeric form. For a list of string
Database Attributes, as well as %INFO_LABEL strings, see SQL_DBAttribStr »p325.

The following constants can be used to obtain database attributes in numeric form:

%DB_ATTR_ACCESS_MODE

This value will always be %SQL_MODE_READ_WRITE (value zero) or
%SQL_MODE_READ_ONLY (value one).

%DB_ATTR_AUTOCOMMIT

This value will always be %SQL_AUTOCOMMIT_OFF (value zero) or
%SQL_AUTOCOMMIT_ON (value one).

%DB_ATTR_CONNECTION_DEAD Read Only

ODBC 3.x+ ONLY : This value will be zero (0) if the connection to the
database is active, or one (1) if it is dead.

This is a "read only" attribute that can be obtained with the SQL_DBAttrib
function but can't be set with SQL_SetDBAttrib »p672.

 323

%DB_ATTR_CONNECTION_TIMEOUT

The number of seconds that the ODBC driver will wait for any request to be
completed before returning to your program. The default value is zero (0),
which indicates that the driver should wait indefinitely.

%DB_ATTR_CURRENT_CATALOG

See SQL_DBAttribStr »p325.

%DB_ATTR_DISCONNECT_BEHAVIOR

This attribute is not fully documented by the Microsoft ODBC Software
Developer Kit »p915. It appears to be related to connection pooling. This
attribute will always be %SQL_DB_RETURN_TO_POOL (value zero) or
%SQL_DB_DISCONNECT (value one).

%DB_ATTR_LOGIN_TIMEOUT

The number of seconds that the database will wait for a login request to be
completed before returning to your program. The default value is driver-
dependent but it is usually zero (0), which indicates that the driver should wait
indefinitely.

%DB_ATTR_METADATA_ID

This value determines how certain characters are interpreted in "Info"
requests. Since SQL Tools handles all Info ("catalog") functions internally,
this value should always be zero (0).

%DB_ATTR_ODBC_CURSORS

This value indicates how the ODBC Driver Manager uses the ODBC Cursor
Library, which is used to simulate certain cursor behavior if an ODBC driver
does not support the behavior. This value will always be one of the following
values:

%SQL_CUR_USE_IF_NEEDED (value zero) to indicate that the ODBC Driver
Manager uses the ODBC Cursor Library as it needs to, in order to simulate
cursor behaviors that are requested by your program. This is the default SQL
Tools value, but it is not the native ODBC default. (In other words, SQL
Tools explicitly sets this value instead of relying on the ODBC default value.)

%SQL_CUR_USE_ODBC (value one) to indicate that the Driver Manager uses
the ODBC Cursor Library for all cursor functions, even if a driver supports the
function.

%SQL_CUR_USE_DRIVER (value two) to indicate that the Driver Manager
does not use the ODBC Cursor Library. This is the ODBC native default, but
it is not the SQL Tools default. (In other words, SQL Tools explicitly sets this
value instead of relying on the ODBC default value.)

%DB_ATTR_ODBC_TRACE

The current state of the ODBC API Trace »p187 Mode, either

 324

%SQL_TRACE_OFF (value zero) or %SQL_TRACE_ON (value one).

%DB_ATTR_ODBC_TRACEFILE

See SQL_DBAttribStr »p325.

%DB_ATTR_PACKET_SIZE

An unsigned integer value that indicates the network packet size, in bytes.
Many Datasources do not support this option.

%DB_ATTR_QUIET_MODE

If this value is zero (0), the ODBC driver operates in the "quiet mode" and
does not display any dialog boxes. (This setting does not affect the dialog
boxes that are provided by the SQL Tools SQL_OpenDB »p536 and
SQL_OpenDatabase »p535 functions.) If this value is nonzero, it represents
the handle of the window that the dialog boxes should use as a parent
window. The default value is zero.

%DB_ATTR_TRANSLATE_LIB

See SQL_DBAttribStr »p325.

%DB_ATTR_TRANSLATE_OPTION

A 32-bit bitmasked »p916 value that is passed to the translation DLL. (See
SQL_DBAttribStr »p325(%DB_ATTR_TRANSLATE_LIB.)

%DB_ATTR_TXN_ISOLATION

A 32-bit bitmasked »p916 value that describes the database's Transaction
Isolation Level. For more information, please refer to the Microsoft ODBC
Software Developer Kit »p915.

Diagnostics

This function does not return Error Codes »p180 because they could be confused with
attribute values, but it can generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

PRINT SQL_DBAttrib(%DB_ATTR_LOGIN_TIMEOUT)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

These values are not cached »p200 by SQL Tools, they are requested from the ODBC
driver each time that the SQL_DBAttrib function is used. So if your program needs
to use these values repeatedly, you may be able to increase your program's
performance by using SQL_DBAttrib to obtain a value and then storing it in a
variable.

See Also Database Information and Attributes »p190 SQL_SetDBAttrib »p672

 325

SQL_DBAttribStr

Summary

Returns a Database Attribute in string form. (Generally speaking, an "Attribute" is a
value that can be changed by your program.)

Twin

SQL_DatabaseAttribStr »p292

Family

Database Info/Attrib Family »p235

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_DBAttribStr(lAttribute&)

Parameters

lAttribute&
A %DB_ATTR_ constant. See Remarks below for more information.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If lAttribute& has a valid value, and if the requested attribute type is supported by the
ODBC driver that you are using, this function will return the attribute in string form.
Otherwise, an empty string will be returned.

Remarks

Only certain Database Attributes are useful in string form. For a list of numeric
Database Attributes, see SQL_DBAttrib »p322.

The following constants can be used to obtain database attributes in string form:

%DB_ATTR_CURRENT_CATALOG

The name of the catalog that is used by the Datasource.

%DB_ATTR_ODBC_TRACEFILE

The name of the trace file that will be used if ODBC API Tracing »p187 is
activated.

%DB_ATTR_TRANSLATE_LIB

The name of a library that contains the ODBC API functions called
SQLDriverToDataSource and SQLDataSourceToDriver, which the ODBC
driver uses to perform tasks such as character set translation.

 326

%DB_ATTR_ACCESS_MODE
%DB_ATTR_AUTOCOMMIT
%DB_ATTR_CONNECTION_DEAD
%DB_ATTR_CONNECTION_TIMEOUT
%DB_ATTR_DISCONNECT_BEHAVIOR
%DB_ATTR_LOGIN_TIMEOUT
%DB_ATTR_METADATA_ID
%DB_ATTR_ODBC_CURSORS
%DB_ATTR_ODBC_TRACE
%DB_ATTR_PACKET_SIZE
%DB_ATTR_QUIET_MODE
%DB_ATTR_TRANSLATE_OPTION
%DB_ATTR_TXN_ISOLATION

See SQL_DBAttrib »p322.

Diagnostics
If you attempt to access an attribute that is not supported by your ODBC driver, an
ODBC Error Message »p181 will be generated.

Example

PRINT SQL_DBAttribStr(%DB_ATTR_ODBC_TRACEFILE)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

These values are not cached »p200 by SQL Tools, they are requested from the ODBC
driver each time that the SQL_DBAttribStr function is used. So if your program
needs to use these values repeatedly, you may be able to increase your program's
performance by using SQL_DBAttribStr to obtain a value and then storing it in a
variable.

See Also

Database Information and Attributes »p190

 327

SQL_DBAutoCommit

Summary

Sets a database's AutoCommit »p207 status.

Twin

SQL_DatabaseAutoCommit »p293

Family

Database Info/Attrib Family »p235

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DBAutoCommit(lOnOff&)

Parameters

lOnOff&
Use False (zero) to disable a database's AutoCommit function, or True or any
nonzero value to enable it. The default setting is True (AutoCommit
enabled).

Return Values
If the AutoCommit mode is successfully changed, this function will return
%SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO. If the operation is not successful,
an Error Code »p180 will be returned.

Remarks

The default AutoCommit behavior for all databases is AutoCommit True which tells
the database that it should automatically commit all transactions as soon as they are
executed. You can use this function to turn off the AutoCommit feature, and then use
the SQL_EndTrans »p402 or SQL_EndTransaction »p404 function to manually
Commit or Roll-Back each transaction.

See Committing Transactions Manually »p207 for more information.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

SQL_DBAutoCommit False

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues: None.
See Also Committing Transactions Manually »p207

 328

SQL_DBDataTypeCount
Summary

Returns the number of Datasource-dependent Data Types »p108 that are supported by
a database.

Twin

SQL_DatabaseDataTypeCount »p294

Family

Database Info/Attrib Family »p235

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DBDataTypeCount

Parameters

None.

Return Values

This function returns an integer value that indicates the number of Datasource-
dependent Data Types »p108 that are supported by a database. If the function
encounters an error it will return zero (0).

Remarks

SQL Tools can provide a great deal of information about the various Datasource-
dependent Data Types »p108 that are supported by a database. These data types are
referenced by numbers between one (1) and the number of data types that are
supported.

Be very careful to avoid confusing these numbers with SQL Data Type identifier
values.

For example, the first Datasource-dependent Data Type that a database reports as
being available is always referred to as Data Type 1, the second type that is reported
is Data Type 2, and so on. Data Type 1 may or may not be the %SQL_CHAR data
type, which has a value of one (1).

Diagnostics

This function does not return Error Codes »p180 because they might be confused with
numeric return values. For example, this function does not return
%SQL_SUCCESS_WITH_INFO, which has a numeric value of one (1), because it
might be confused with the result "this database supports one data type" This
function can, however, generate ODBC Error Messages »p181.

Example

FOR lType& = 1 TO SQL_DBDataTypeCount
 PRINT SQL_DBDataTypeInfoStr(lType&,%DTYPE_NAME)
NEXT

 329

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

Datasource-dependent Data Types »p108

 330

SQL_DBDataTypeInfo

Summary

Returns information about a Datasource-dependent Data Type »p108 that is supported
by a database, in numeric form.

Twin

SQL_DatabaseDataTypeInfo »p295

Family

Database Info/Attrib Family »p235

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DBDataTypeInfo(lDataTypeNumber&, _
 lInfoType&)

Parameters

lDataTypeNumber&
A number between one (1) and the value returned by the
SQL_DBDataTypeCount »p328 function, i.e. the number of Datasource-
dependent data types that are supported by a database.

lInfoType&
A constant that indicates the type of information that is being requested. See
Remarks below for details.

Return Values

This function returns signed integers in the %BAS_LONG »p121 range. The value that is
returned will depend on the type of information that is being requested.

Remarks

This function and the SQL_DBDataTypeInfoStr »p334 function are used to obtain
information about the data types that are supported by a database.

When using this function, it is very important for you to avoid confusing a Data Type
Number with the value that is associated with a SQL Data Type. For example, the
first Datasource-dependent Data Type »p108 that is reported by a database is always
referenced as Data Type number one (1), the second is always number two (2), and
so on. Data Type Number one may or may not be the %SQL_CHAR »p88 data type,
which has a numeric value of one (1).

It is also important to avoid confusing the Data Types that are supported by a
database with the "native" SQL Data Types. For example, a Data Type called
COUNTER is supported by many different databases. It is usually implemented as a
%SQL_INTEGER »p91 column that is not nullable, but some databases use a different
SQL Data Type »p87 to create COUNTER columns. The SQL_DBDataTypeInfo
function reports information about COUNTER columns as they are implemented by the
database, not about the native %SQL_INTEGER data type.

 331

Only certain types of Data Type Info are useful in numeric form. See
SQL_DBDataTypeInfoStr »p334 for Info types that are useful in string form.

The lInfoType& parameter that is passed to this function should always be one of the
following values.

%DTYPE_AUTO_UNIQUE_VALUE

This lInfoType& returns a %SQL_TRUE (value 1) or %FALSE (value 0) value to
indicate whether or not the data type is auto-incrementing. Example: a
COUNTER data type is usually auto-incrementing to ensure that duplicate
values are never used.

%DTYPE_CASE_SENSITIVE

This value indicates whether or not a character (string) data type is case-
sensitive in collations and comparisons. This lInfoType& will always return
one of the following values:

%SQL_TRUE (value 1) if the data type is a character data type which is case-
sensitive

%FALSE (value 0) if the data type is not a characters data type, or is a
character data type that is not case-sensitive.

%DTYPE_COLUMN_SIZE

The display size »p119 of the column

%DTYPE_CREATE_PARAMS

See SQL_DBDataTypeInfoStr »p334.

%DTYPE_FIXED_PREC_SCALE

This lInfoType& returns a %SQL_TRUE (value 1) or %FALSE (value 0) value to
indicate whether or not the data type has predefined fixed precision and
scale.

%DTYPE_INTERVAL_PRECISION

ODBC 3.O ONLY: If the data type is a %SQL_ODBCx_INTERVAL_, this
lInfoType& can be used to obtain the value of the interval's leading precision.

%DTYPE_LITERAL_PREFIX,
%DTYPE_LITERAL_SUFFIX, and
%DTYPE_LOCAL_TYPE_NAME

See SQL_DBDataTypeInfoStr »p334.

%DTYPE_MINIMUM_SCALE and
%DTYPE_MAXIMUM_SCALE

These lInfoType& values are used to obtain the minimum and maximum

 332

scales of the data type. If a data type has a fixed scale, these values are the
same. For example, a %SQL_TIMESTAMP column might have a fixed scale
for fractional seconds.

%DTYPE_NAME

See SQL_DBDataTypeInfoStr »p334.

%DTYPE_NULLABLE

This value indicates whether or not a Data Type is nullable »p171. This
lInfoType& will always return one of the following values:

%SQL_NULLABLE if the data type does accept Null values.

%SQL_NO_NULLS if the data type does not accept Null values.

%SQL_NULLABLE_UNKNOWN if it is not known whether or not the column
accepts Null values.

Please note that %DTYPE_NULLABLE information is available from all ODBC
drivers. Compare %DTYPE_ISNULLABLE below, which is available only from
drivers that support ODBC 3.x and above.

%DTYPE_NUM_PREC_RADIX

ODBC 3.x+ ONLY : See Num Prec Radix »p118.

%DTYPE_SEARCHABLE

This value indicates how the data type is used in a SQL statement's WHERE
clause. This lInfoType& will always return one of the following values:

%SQL_PRED_NONE (value 0) means that the column cannot be used in a
WHERE clause.

%SQL_PRED_CHAR (value 1) means that the column can be used in a
WHERE clause, but only with the LIKE predicate.

%SQL_PRED_BASIC (value 2) means that the column can be used in a
WHERE clause with all the comparison operators except LIKE

(comparison, quantified comparison, BETWEEN, DISTINCT , IN ,
MATCH, and UNIQUE).

%DTYPE_SQL_DATA_TYPE

ODBC 3.x+ ONLY : The SQL Data Type »p87 of the column. If an ODBC
driver supports this lInfoType&, the return value will be the same value that is
returned for %DTYPE_TYPE, except for interval and datetime data types. For
intervals and datetimes, the %DTYPE_SQL_DATA_TYPE value will be
%SQL_ODBCx_INTERVAL_ or %SQL_TIMESTAMP, and the
%DTYPE_SQL_DATETIME_SUB value (see below) will contain the subcode for
the specific interval or datetime data type. Also see %DTYPE_TYPE below,
which is supported by all ODBC drivers.

 333

%DTYPE_SQL_DATETIME_SUB

ODBC 3.x+ ONLY : If the value of %DTYPE_SQL_DATA_TYPE (above) is
%SQL_DATETIME or %SQL_ODBCx_INTERVAL_, this lInfoType& can be used
to obtain the datetime/interval subcode. For example, the
%DTYPE_SQL_DATA_TYPE might be %SQL_ODBCx_INTERVAL_, and the
%DTYPE_SQL_DATETIME_SUB might be %SQL_ODBC2_INTERVAL_SECOND
to indicate the type of %SQL_ODBCx_INTERVAL_.

%DTYPE_TYPE

The SQL Data Type »p87 of the Data Type, i.e. a numeric value that
corresponds to %SQL_CHAR, %SQL_INTEGER, and so on. In some cases,
this value is driver-specific. This column is sometimes called the Concise
Data Type »p115 and is almost always a more reliable Indicator of a Data
Type's type than the %DTYPE_SQL_DATA_TYPE (see above).

%DTYPE_UNSIGNED_ATTRIBUTE

This lInfoType& will return %SQL_TRUE (value 1) if the data type is a Signed
numeric data type, and %FALSE (value 0) if it is an Unsigned numeric data
type or a non-numeric data type like %SQL_CHAR »p88.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to five
driver-defined information types. You can use the lInfoType& values
%DTYPE_DRIVERDEF_20 through %DTYPE_DRIVERDEF_24 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because they could be confused with
legitimate return values, but it can generate ODBC Error Messages »p181 and SQL
Tools Error Messages.

Example

'display data type of data type 1
PRINT SQL_DBDataTypeInfo(1, %DTYPE_TYPE)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

Datasource-dependent Data Types »p108

 334

SQL_DBDataTypeInfoStr

Summary

Returns information about a Datasource-dependent Data Type »p108 that is supported
by a database, in string form.

Twin

SQL_DatabaseDataTypeInfoStr »p296

Family

Database Info/Attrib Family »p235

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_DBDataTypeInfoStr(lDataTypeNumber&, _
 lInfoType&)

Parameters
lDataTypeNumber&

A number between one (1) and the value that is returned by the
SQL_DBDataTypeCount »p328 function, i.e. the number of datasource-
dependent data types »p108 that are supported by a database.

lInfoType&
A constant that indicates the type of information that is being requested. See
Remarks below for details.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

This function returns strings. The string value that is returned will depend on the type
of information being requested.

Remarks

This function and the SQL_DBDataTypeInfo »p330 function are used to obtain
information about the data types that are supported by a database.

When using this function, it is very important for you to avoid confusing a Data Type
Number with the value that is associated with a SQL Data Type. For example, the
first datasource-dependent data type »p108 that is reported by a database is always
referenced as data type number one (1), the second is always data type number two
(2), and so on. Data type number one may or may not be the %SQL_CHAR data type,
which has a numeric value of one (1).

It is also important to avoid confusing the Data Types that are supported by a
database with the "native" SQL Data Types. For example, a Data Type called
COUNTER is supported by many different databases. It is usually implemented as a
%SQL_INTEGER »p91 column that is not nullable, but some databases use a different

 335

SQL Data Type »p87 to create COUNTER columns. The SQL_DBDataTypeInfoStr
function reports information about COUNTER columns as they are implemented by the
database, not about the native %SQL_INTEGER data type.

Only certain types of Data Type Info are useful in string form. See
SQL_DBDataTypeInfo »p330 for Info types that are useful in numeric form.

The lInfoType& that is passed to this function should always be one of the following
values.

%DTYPE_AUTO_UNIQUE_VALUE,
%DTYPE_CASE_SENSITIVE and
%DTYPE_COLUMN_SIZE

See SQL_DBDataTypeInfo »p330.

%DTYPE_CREATE_PARAMS

This lInfoType& value can be used to obtain a list of keywords, separated by
commas, in the language of the country where it is used, corresponding to
the parameters that a program may specify (in parentheses) when using the
name that is returned in the %DTYPE_NAME field. The keywords will vary,
depending on the data type and the database that supports it. The keywords
will always appear in the order that the syntax requires them to be used.
Example: a Microsoft Access database TEXT column might specify the
%DTYPE_CREATE_PARAMS string "MAX LENGTH", meaning that you must use
a string like TEXT(MAX LENGTH 10) when referring to the column in a SQL
statement which is intended to create a new TEXT column.

%DTYPE_FIXED_PREC_SCALE and
%DTYPE_INTERVAL_PRECISION

See SQL_DBDataTypeInfo »p330.

%DTYPE_LITERAL_PREFIX and
%DTYPE_LITERAL_SUFFIX

These lInfoType& values can be used to return the strings that are used as
the "literal value" identifiers for a data type. For example, the string "0x "
(zero-ex) might be returned for a binary column to indicate that the prefix 0x
can be used to denote a literal binary value. Or a string containing a single
quote (') might be returned for a string column, to indicate that a single quote
should be used (instead of a double quote) to delimit strings in SQL
statements.

%DTYPE_LOCAL_TYPE_NAME

This lInfoType& can be used to obtain a localized version of the datasource-
dependent name of the data type. An empty string is returned if a localized
name is not supported by the datasource. The %DTYPE_LOCAL_TYPE_NAME
string is intended for display purposes only.

%DTYPE_MAXIMUM_SCALE and
%DTYPE_MINIMUM_SCALE

 336

See SQL_DBDataTypeInfo »p330.

%DTYPE_NAME

The name of the data type. Keep in mind that this name is not the name of
the SQL Data Type »p87 on which the data type is based. For example, this
lInfoType& might return the name "COUNTER" for a column, while the name of
the SQL Data Type is %SQL_INTEGER, not COUNTER.

%DTYPE_NULLABLE,
%DTYPE_NUM_PREC_RADIX,
%DTYPE_SEARCHABLE,
%DTYPE_SQL_DATA_TYPE,
%DTYPE_SQL_DATETIME_SUB,
%DTYPE_TYPE and
%DTYPE_UNSIGNED_ATTRIBUTE

See SQL_DBDataTypeInfo »p330.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to five
driver-defined information types. You can use the lInfoType& values
%DTYPE_DRIVERDEF_20 through %DTYPE_DRIVERDEF_24 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 (because it returns only string values),
but it can generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'display data type name of data type 1
PRINT SQL_DBDataTypeInfoStr(1,%DTYPE_NAME)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

Datasource-dependent Data Types »p108

 337

SQL_DBDataTypeNumber

Summary

Returns the Data Type Number that corresponds to a Datasource-dependent Data
Type »p108 Name.

Twin

SQL_DatabaseDataTypeNumber »p297

Family

Database Info/Attrib Family »p235

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_DBDataTypeNumber(sTypeName$)

Parameters

sTypeName$
The name of a data type that is supported by a database, such as
"COUNTER".

Return Values

If a data type with the specified name is supported by the database, this function will
return the Data Type Number that corresponds to the name.

If no matching data type is found, this function will return negative one (-1).

Remarks

See Datasource-dependent Data Types »p108 for information about using this function.

Diagnostics

This function does not return Error Codes »p180 because they could be confused with
legitimate return values. For example, the Error Code %SQL_SUCCESS_WITH_INFO
(value 1) could be confused with the answer "that string corresponds to Data Type
number 1". This function can, however, return ODBC Error Messages »p181 and SQL
Tools Error Messages.

Example

'Display the data type number
'for the type called COUNTER
PRINT SQL_DBDataTypeNumber("COUNTER")

Driver Issues None.
Speed Issues None.
See Also Datasource-dependent Data Types »p108

 338

SQL_DBInfo

Summary

Provides information about a database »p190, in numeric form. (Generally speaking,
"information" values cannot be changed. "Attributes" are settings that can be
changed by your program.)

Twin

SQL_DatabaseInfo »p298

Family

Database Info/Attrib Family »p235

Availability

Standard and Pro

Warning

None.

Syntax

dwResult??? = SQL_DBInfo(lInfoType&)

...or, in most cases, you can use...

lResult& = SQL_DBInfo(lInfoType&)

Parameters

lInfoType&
A constant that indicates the type of information that is being requested. See
Remarks below for valid values.

Return Values

If a valid lInfoType& is used, the return value of this function will be a numeric value
that represents the information that is being requested. In most cases the return
value will be within the positive range of %BAS_LONG »p121 variables, but some
lInfoType& values return values that are larger than a %BAS_LONG variable can hold,
so this function returns %BAS_DWORD »p121 values.

If an invalid value is used for lInfoType&, zero (0) will be returned.

Remarks

Only certain types of database information are useful in numeric form. For a list of
lInfoType& values that are useful in string form, see SQL_DBInfoStr »p377.

Please note that nearly 200 different types of information can be obtained with the
SQL_DBInfoStr and SQL_DBInfo functions, and many of the numeric values are
bitmasked values »p916 that are capable of returning as many as many as 32 different
sub-values.

The following lInfoType& values can be used to obtain information about a database,
in numeric form.

 339

%DB_ACTIVE_ENVIRONMENTS

ODBC 3.x+ ONLY : The maximum number of active environments that the
ODBC driver »p77 can support. If there is no specified limit or the limit is
unknown, zero is returned. (SQL Tools supports only one active environment
per program.)

%DB_AGGREGATE_FUNCTIONS

ODBC 3.x+ ONLY : A bitmasked »p916 numeric value that describes support
for the ODBC aggregate functions »p879. The bitmask identifiers are:

%SQL_AF_ALL
%SQL_AF_AVG
%SQL_AF_COUNT
%SQL_AF_DISTINCT
%SQL_AF_MAX
%SQL_AF_MIN
%SQL_AF_SUM

%DB_ALTER_DOMAIN

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in an
ALTER DOMAIN statement that are supported by the Datasource. A
return value of zero (0) means that the ALTER DOMAIN statement is not
supported. The following bitmask identifiers are used to determine which
clauses are supported:

%SQL_AD_ADD_DOMAIN_CONSTRAINT

 Adding a domain constraint is supported

%SQL_AD_ADD_DOMAIN_DEFAULT

<alter domain><set domain default clause> is supported

%SQL_AD_CONSTRAINT_NAME_DEFINITION

<constraint name definition clause> is supported for
naming a domain constraint

%SQL_AD_DROP_DOMAIN_CONSTRAINT

<drop domain constraint clause> is supported

%SQL_AD_DROP_DOMAIN_DEFAULT

<alter domain> <drop domain default clause> is
supported

The following bitmask identifiers describe the supported <constraint
attributes> if <add domain constraint> is supported
%SQL_AD_ADD_CONSTRAINT_DEFERRABLE
%SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE
%SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED
%SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE

 340

%DB_ALTER_TABLE

A bitmasked »p916 value that describes the clauses in the ALTER TABLE
statement that are supported by the Datasource. The following bitmask
identifiers are used:

%SQL_AT_ADD_COLUMN_COLLATION

<add column> clause is supported, with the ability to specify
column collation.

%SQL_AT_ADD_COLUMN_DEFAULT

<add column> clause is supported, with the ability to specify
column defaults.

%SQL_AT_ADD_COLUMN_SINGLE

<add column> is supported.

%SQL_AT_ADD_CONSTRAINT

<add column> clause is supported, with the ability to specify
column constraints.

%SQL_AT_ADD_TABLE_CONSTRAINT

<add table constraint> clause is supported.

%SQL_AT_CONSTRAINT_NAME_DEFINITION

<constraint name definition> is supported for naming
column and table constraints.

%SQL_AT_DROP_COLUMN_CASCADE

<drop column> CASCADE is supported.

%SQL_AT_DROP_COLUMN_DEFAULT

<alter column> <drop column default clause> is
supported.

%SQL_AT_DROP_COLUMN_RESTRICT

<drop column> RESTRICT is supported.

%SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE

<drop column> CASCADE is supported.

%SQL_AT_DROP_TABLE_CONSTRAINT_RESTRICT

<drop column> RESTRICT is supported.

 341

%SQL_AT_SET_COLUMN_DEFAULT

<alter column> <set column default clause> is
supported.

The following bitmask identifiers describe the support for <constraint
attributes> if the specifying of column or table constraints is supported:

%SQL_AT_CONSTRAINT_INITIALLY_DEFERRED
%SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE
%SQL_AT_CONSTRAINT_DEFERRABLE
%SQL_AT_CONSTRAINT_NON_DEFERRABLE

%DB_ASYNC_MODE

This value indicates the level of Asynchronous Execution support that is
provided by the ODBC driver. ODBC-based Asynchronous Execution is not
supported by SQL Tools. See Asynchronous Execution »p37. (SQL Tools
does, however, support thread-based asynchronous execution of SQL
statements »p125.)

%DB_BATCH_ROW_COUNT

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the availability of
row counts. The following bitmask identifiers are used:

%SQL_BRC_ROLLED_UP

Row counts for consecutive INSERT, DELETE, or UPDATE
statements are "rolled up" into one value. If this bit is not set, then
row counts are available for each individual statement.

%SQL_BRC_PROCEDURES

Row counts, if any, are available when a batch is executed in a
stored procedure »p208. If row counts are available, they may be
rolled up or individually available, depending on the value of the
%SQL_BRC_ROLLED_UP bit.

%SQL_BRC_EXPLICIT

Row counts, if any, are available when a batch is executed with
SQL_Stmt »p716(%EXECUTE) or SQL_Stmt(%IMMEDIATE) . If row
counts are available, they may be rolled up or individually available,
depending on the value of the %SQL_BRC_ROLLED_UP bit.

%DB_BATCH_SUPPORT

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the driver's
support for batched SQL statements. The following bitmask identifiers are
used to determine which level is supported:

%SQL_BS_SELECT_EXPLICIT

The ODBC driver »p77 supports explicit batches that can have
statements which generate result sets.

 342

%SQL_BS_ROW_COUNT_EXPLICIT

The driver supports explicit batches that can have statements which
generate row counts.

%SQL_BS_SELECT_PROC

The driver supports explicit procedures that can have statements
which generate result sets.

%SQL_BS_ROW_COUNT_PROC

The driver supports explicit procedures that can have statements
which generate row counts.

%DB_BOOKMARK_PERSISTENCE

A bitmasked »p916 value that describes the database operations through
which bookmarks »p154 persist. The following bitmask identifiers are used:

%SQL_BP_CLOSE and %SQL_BP_DROP

Bookmarks are valid after an application closes a statement. When
SQL Tools closes a statement »p196, in ODBC terminology it both
"closes" and "drops" the statement.

%SQL_BP_DELETE

The bookmark for a row is still valid after that row has been deleted.

%SQL_BP_TRANSACTION

Bookmarks are still valid after an application commits or rolls back a
transaction »p207.

%SQL_BP_UPDATE

The bookmark for a row is still valid after any column in the row,
including key columns, has been updated.

%SQL_BP_OTHER_HSTMT

A bookmark that is associated with one statement can be used with a
different statement.

%DB_CATALOG_LOCATION

A numeric value that describes the position of the catalog in a qualified table
name, either %SQL_CL_START or %SQL_CL_END. (The ODBC 2.0 name for
this value was %DB_QUALIFIER_LOCATION.)

%DB_CATALOG_USAGE

The ODBC 2.0 name for this value was %DB_QUALIFIER_USAGE.

 343

A bitmasked »p916 value that describes the statements in which catalogs can
be used. The following bitmask identifiers are used:

%SQL_CU_DML_STATEMENTS

Catalogs are supported in SELECT, INSERT, UPDATE,
DELETE, and, if supported, SELECT FOR UPDATE and
positioned update and delete statements.

%SQL_CU_PROCEDURE_INVOCATION

Catalogs are supported in the ODBC stored procedure »p208
invocation statement call .

%SQL_CU_TABLE_DEFINITION

Catalogs are supported in CREATE TABLE, CREATE VIEW,
ALTER TABLE, DROP TABLE, and DROP VIEW
statements.

%SQL_CU_INDEX_DEFINITION

Catalogs are supported in CREATE INDEX and DROP INDEX
statements

%SQL_CU_PRIVILEGE_DEFINITION

Catalogs are supported in GRANT and REVOKE statements

A value of zero (0) is returned if catalogs are not supported by the
Datasource.

%DB_CONCAT_NULL_BEHAVIOR

A numeric value that indicates how the Datasource handles the
concatenation of null »p171-valued character columns with non-null-valued
character columns:

%SQL_CB_NULL (Result is a null value.)

%SQL_CB_NON_NULL (Result is the concatenation of non-null-valued column
or columns.)

%DB_CONVERT_...

All of the %DB_CONVERT_ functions are covered in this section except for
%DB_CONVERT_FUNCTIONS »p345, which has its own section below.

Each of the %DB_CONVERT_ values that are listed below returns a bitmasked

»p916 value that describes the data-type conversions that are supported by the
Datasource with the CONVERT scalar function »p890 for data of the specified
type. If a bit of the bitmask equals zero (0) the Datasource does not support
any conversions from data of the named type.

 344

The following %DB_CONVERT_ values all work the same way...

%DB_CONVERT_BIGINT
%DB_CONVERT_BINARY
%DB_CONVERT_BIT
%DB_CONVERT_CHAR
%DB_CONVERT_DATE
%DB_CONVERT_DECIMAL
%DB_CONVERT_DOUBLE
%DB_CONVERT_FLOAT
%DB_CONVERT_GUID
%DB_CONVERT_INTEGER
%DB_CONVERT_LONGVARBINARY
%DB_CONVERT_LONGVARCHAR
%DB_CONVERT_NUMERIC
%DB_CONVERT_REAL
%DB_CONVERT_SMALLINT
%DB_CONVERT_TIME
%DB_CONVERT_TIMESTAMP
%DB_CONVERT_TINYINT
%DB_CONVERT_VARBINARY
%DB_CONVERT_VARCHAR

ODBC 3.x ONLY

%DB_CONVERT_INTERVAL_DAY_TIME
%DB_CONVERT_INTERVAL_YEAR_MONTH
%DB_CONVERT_WCHAR

ODBC 3.5+ ONLY

%DB_CONVERT_WLONGVARCHAR
%DB_CONVERT_WVARCHAR

After you have obtained a bitmasked value for one of the functions above,
you can use the following bitmask identifiers to find out whether or not the
conversion is supported.

%SQL_CVT_CHAR
%SQL_CVT_NUMERIC
%SQL_CVT_DECIMAL
%SQL_CVT_INTEGER
%SQL_CVT_SMALLINT
%SQL_CVT_FLOAT
%SQL_CVT_REAL
%SQL_CVT_DOUBLE
%SQL_CVT_VARCHAR
%SQL_CVT_LONGVARCHAR
%SQL_CVT_BINARY
%SQL_CVT_VARBINARY
%SQL_CVT_BIT
%SQL_CVT_TINYINT
%SQL_CVT_BIGINT
%SQL_CVT_DATE
%SQL_CVT_TIME
%SQL_CVT_TIMESTAMP

 345

%SQL_CVT_LONGVARBINARY
%SQL_CVT_INTERVAL_YEAR_MONTH
%SQL_CVT_INTERVAL_DAY_TIME
%SQL_CVT_WCHAR
%SQL_CVT_WLONGVARCHAR
%SQL_CVT_WVARCHAR

For example, to find out whether or not a conversion from a TINYINT to a
NUMERIC value is supported, you would obtain the SQL_DBInfo value for
%DB_CONVERT_TINYINT and check the %SQL_CVT_NUMERIC bit. See
Using Bitmasked Values »p916 for more information.

%DB_CONVERT_FUNCTIONS

A bitmasked »p916 value that describes the scalar conversion functions that
are supported by the driver and associated Datasource. The following
bitmask identifiers are used:

%SQL_FN_CVT_CAST
%SQL_FN_CVT_CONVERT

%DB_CORRELATION_NAME

A numeric value that describes whether or not table correlation names are
supported:

%SQL_CN_NONE

Correlation names are not supported.

%SQL_CN_DIFFERENT

Correlation names are supported, but they must differ from the
names of the tables they represent.

%SQL_CN_ANY

Correlation names are supported and can be any valid user-defined
name.

%DB_CREATE_ASSERTION

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in a
CREATE ASSERTION statement which are supported by the Datasource.
The following bitmask identifier is used to determine which clauses are
supported:

%SQL_CA_CREATE_ASSERTION

The following bits specify the supported constraint attribute if the ability to
explicitly specify constraint attributes is supported:

%SQL_CA_CONSTRAINT_INITIALLY_DEFERRED
%SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE

 346

%SQL_CA_CONSTRAINT_DEFERRABLE
%SQL_CA_CONSTRAINT_NON_DEFERRABLE

%DB_CREATE_CHARACTER_SET

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in a
CREATE CHARACTER SET statement which are supported by the
Datasource. The following bitmask identifiers are used:

%SQL_CCS_CREATE_CHARACTER_SET
%SQL_CCS_COLLATE_CLAUSE
%SQL_CCS_LIMITED_COLLATION

%DB_CREATE_COLLATION

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in a
CREATE COLLATION statement which are supported by the Datasource.
The following bitmask identifier is used:

%SQL_CCOL_CREATE_COLLATION

%DB_CREATE_DOMAIN

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in a
CREATE DOMAIN statement which are supported by the Datasource. The
following bitmask identifiers are used:

%SQL_CDO_CREATE_DOMAIN

The CREATE DOMAIN statement is supported.

%SQL_CDO_CONSTRAINT_NAME_DEFINITION

 <constraint name definition> is supported for naming
domain constraints.

The following bits specify the ability to create column constraints:

%SQL_CDO_DEFAULT

Specifying domain constraints is supported

%SQL_CDO_CONSTRAINT

Specifying domain defaults is supported

%SQL_CDO_COLLATION

Specifying domain collation is supported

The following bits specify the supported constraint attributes if the specifying
of domain constraints is supported:

%SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED
%SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE
%SQL_CDO_CONSTRAINT_DEFERRABLE

 347

%SQL_CDO_CONSTRAINT_NON_DEFERRABLE

A return value of zero (0) means that the CREATE DOMAIN statement is
not supported.

%DB_CREATE_SCHEMA

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in a
CREATE SCHEMA statement which are supported by the Datasource. The
following bitmask identifiers are used:

%SQL_CS_CREATE_SCHEMA
%SQL_CS_AUTHORIZATION
%SQL_CS_DEFAULT_CHARACTER_SET

%DB_CREATE_TABLE

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in a
CREATE TABLE statement which are supported by the Datasource. The
following bitmask identifiers are used:

%SQL_CT_CREATE_TABLE

The CREATE TABLE statement is supported

%SQL_CT_TABLE_CONSTRAINT

Specifying table constraints is supported

%SQL_CT_CONSTRAINT_NAME_DEFINITION

The <constraint name definition> clause is supported for
naming column and table constraints

The following bits specify the ability to create temporary tables:

%SQL_CT_COMMIT_PRESERVE

Deleted rows are preserved on commit.

%SQL_CT_COMMIT_DELETE

Deleted rows are deleted on commit.

%SQL_CT_GLOBAL_TEMPORARY

Global temporary tables can be created.

%SQL_CT_LOCAL_TEMPORARY

Local temporary tables can be created.

The following bits specify the ability to create column constraints:

%SQL_CT_COLUMN_CONSTRAINT

 348

Specifying column constraints is supported.

%SQL_CT_COLUMN_DEFAULT

Specifying column defaults is supported.

%SQL_CT_COLUMN_COLLATION

Specifying column collation is supported.

The following bits specify the supported constraint attributes if specifying
column or table constraints is supported:

%SQL_CT_CONSTRAINT_INITIALLY_DEFERRED
%SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE
%SQL_CT_CONSTRAINT_DEFERRABLE
%SQL_CT_CONSTRAINT_NON_DEFERRABLE

%DB_CREATE_TRANSLATION

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in a
CREATE TRANSLATION statement which are supported by the
Datasource. The following bitmask identifier is used:

%SQL_CTR_CREATE_TRANSLATION

%DB_CREATE_VIEW

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses in a
CREATE VIEW statement which are supported by the Datasource. The
following bitmask identifiers are used:

%SQL_CV_CREATE_VIEW
%SQL_CV_CHECK_OPTION
%SQL_CV_CASCADED
%SQL_CV_LOCAL

A return value of zero (0) means that the CREATE VIEW statement is not
supported.

%DB_CURSOR_COMMIT_BEHAVIOR

A numeric value that indicates how a %TRANS_COMMIT »p207 operation affects
cursors »p147 and prepared statements »p123 in the Datasource:

%SQL_CB_DELETE

Close cursors and delete prepared statements. To use the cursor
again, your program must re-prepare and re-execute the statement.

%SQL_CB_CLOSE

Close cursors. Your program can use SQL_Stmt »p716(%EXECUTE)
on a prepared statement without using SQL_Stmt(%PREPARE)
again.

 349

%SQL_CB_PRESERVE

Preserve cursors in the same position as before the
%TRANS_COMMIT operation. Your program can continue to fetch
data or it can close the statement and re-execute it without re-
preparing it.

%DB_CURSOR_ROLLBACK_BEHAVIOR

A numeric value that indicates how a %TRANS_ROLLBACK »p207 operation
affects cursors »p147 and prepared statements »p123 in the Datasource:

%SQL_CB_DELETE

Close cursors and delete prepared statements. To use the cursor
again, your program must re-prepare and re-execute the statement.

%SQL_CB_CLOSE

Close cursors. Your program can use SQL_Stmt »p716(%EXECUTE)
on a prepared statement without using SQL_Stmt(%PREPARE)
again.

%SQL_CB_PRESERVE (Preserve cursors in the same position as before the
%TRANS_ROLLBACK operation. Your program can continue to fetch data or it
can close the cursor and re-execute the statement without re-preparing it.)

%DB_CURSOR_SENSITIVITY

A numeric value that indicates the database's support for cursor sensitivity:

%SQL_INSENSITIVE

All cursors on a statement show the result set without reflecting any
changes made to it by any other cursor within the same transaction.

%SQL_UNSPECIFIED

It is not specified whether or not cursors make visible the changes
that are made to a result set by another cursor within the same
transaction. Cursors on the statement may make visible none, some,
or all such changes.

%SQL_SENSITIVE

Cursors are sensitive to changes made by other cursors within the
same transaction.

%DB_DATETIME_LITERALS

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the SQL92
datetime literals that are supported by the Datasource.

Note that these are the datetime literals listed in the SQL92 specification and
are separate from the datetime literal escape clauses defined by ODBC. A
bit value of zero (0) means that SQL92 datetime literals are not supported.

 350

The following bitmask identifiers are used

%SQL_DL_SQL92_DATE
%SQL_DL_SQL92_TIME
%SQL_DL_SQL92_TIMESTAMP
%SQL_DL_SQL92_INTERVAL_YEAR
%SQL_DL_SQL92_INTERVAL_MONTH
%SQL_DL_SQL92_INTERVAL_DAY
%SQL_DL_SQL92_INTERVAL_HOUR
%SQL_DL_SQL92_INTERVAL_MINUTE
%SQL_DL_SQL92_INTERVAL_SECOND
%SQL_DL_SQL92_INTERVAL_YEAR_TO_MONTH
%SQL_DL_SQL92_INTERVAL_DAY_TO_HOUR
%SQL_DL_SQL92_INTERVAL_DAY_TO_MINUTE
%SQL_DL_SQL92_INTERVAL_DAY_TO_SECOND
%SQL_DL_SQL92_INTERVAL_HOUR_TO_MINUTE
%SQL_DL_SQL92_INTERVAL_HOUR_TO_SECOND
%SQL_DL_SQL92_INTERVAL_MINUTE_TO_SECOND

%DB_DDL_INDEX

ODBC 3.x+ ONLY : A numeric value that indicates support for creation and
dropping of indexes. This function will return either
%SQL_DI_CREATE_INDEX or %SQL_DI_DROP_INDEX.

%DB_DEFAULT_TXN_ISOLATION

A numeric value that indicates the default transaction isolation level that is
supported by the driver or Datasource, or zero if the Datasource does not
support transactions.

The following terms are used to define transaction isolation levels:

Dirty Read: Transaction 1 changes a row. Transaction 2 reads the changed
row before transaction 1 commits the change. If transaction 1 rolls back the
change, transaction 2 will have read a row that is considered to have never
existed.

Non-repeatable Read: Transaction 1 reads a row. Transaction 2 updates or
deletes that row and commits this change. If transaction 1 attempts to reread
the row, it will receive different row values or discover that the row has been
deleted.

Phantom: Transaction 1 reads a set of rows that satisfy some search criteria.
Transaction 2 generates one or more rows (either through inserts or updates)
that match the search criteria. If transaction 1 re-executes the statement that
reads the rows, it receives a different set of rows.

If a Datasource supports transactions, the ODBC driver will return one of the
following values:

%SQL_TXN_READ_UNCOMMITTED

Dirty reads, non-repeatable reads, and phantoms are possible.

%SQL_TXN_READ_COMMITTED

 351

Dirty reads are not possible. Non-repeatable reads and phantoms
are possible.

%SQL_TXN_REPEATABLE_READ

Dirty reads and non-repeatable reads are not possible. Phantoms
are possible.

%SQL_TXN_SERIALIZABLE

Transactions are serializable. Serializable transactions do not allow
dirty reads, non-repeatable reads, or phantoms.

%DB_DRIVER_HLIB

The hInstance value that was returned to the Driver Manager when it loaded
the driver DLL. The handle is only valid for the current database.

%DB_DROP...

ODBC 3.x+ ONLY : The following %DB_DROP_ constants return bitmasked

»p916 values that can be used (with the corresponding %SQL_Dx_DROP
constants) to determine which clauses are supported by the various DROP
statements:

%DB_DROP_ASSERTION (with %SQL_DA_DROP_ASSERTION)

%DB_DROP_CHARACTER_SET (with %SQL_DCS_DROP_CHARACTER_SET)

%DB_DROP_COLLATION (with %SQL_DC_DROP_COLLATION)

%DB_DROP_DOMAIN (with %SQL_DD_DROP_DOMAIN, %SQL_DD_CASCADE,
and %SQL_DD_RESTRICT)

%DB_DROP_SCHEMA (with %SQL_DS_DROP_SCHEMA, %SQL_DS_CASCADE,
and %SQL_DS_RESTRICT)

%DB_DROP_TABLE (with %SQL_DT_DROP_TABLE, %SQL_DT_CASCADE, and
%SQL_DT_RESTRICT)

%DB_DROP_TRANSLATION (with %SQL_DTR_DROP_TRANSLATION)

%DB_DROP_VIEW (with %SQL_DV_DROP_VIEW, %SQL_DV_CASCADE, and
%SQL_DV_RESTRICT)

%DB_DSN_FILENAME

The name of the DSN File »p79(if any) that was used to open the database.

%DB_DYNAMIC_CURSOR_ATTRIBUTES1

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the attributes of a
dynamic cursor »p149 that are supported by the driver. This bitmasked value

 352

contains only the first subset of attributes. For the second subset, see
%DB_DYNAMIC_CURSOR_ATTRIBUTES2 below.

NOTE: This list of constants is used for DYNAMIC, STATIC, FORWARD-ONLY
and KEYSET-DRIVEN cursors. Where the word dynamic is used below, you
may need to substitute the word static, forward-only, or keyset-driven.

The following bitmask identifiers are used:

%SQL_CA1_NEXT

%NEXT_ROW is supported in a call to SQL_Fetch »p435 when the
cursor is a dynamic cursor.

%SQL_CA1_ABSOLUTE

%FIRST_ROW, %LAST_ROW, and absolute row numbers are
supported in a call to SQL_Fetch »p435 when the cursor is a dynamic
cursor. (Note that in all cases, the row that will be fetched is
independent of the current cursor position.)

%SQL_CA1_RELATIVE

The SQL_FetchRel »p441 function is supported when used for simple
relative fetches »p157.

%SQL_CA1_BOOKMARK

The SQL_FetchRel »p441 function is supported when used with
bookmarks »p154.

%SQL_CA1_LOCK_EXCLUSIVE

A lLockType& value of %LOCK_ON is supported in a call to
SQL_SetPos »p696 when the cursor is a dynamic cursor.

%SQL_CA1_LOCK_NO_CHANGE

A lLockType& value of %LOCK_NO_CHANGE is supported in a call to
SQL_SetPos »p696 when the cursor is a dynamic cursor.

%SQL_CA1_LOCK_UNLOCK

A lLockType& value of %LOCK_OFF is supported in a call to
SQL_SetPos »p696 when the cursor is a dynamic cursor.

%SQL_CA1_POS_POSITION

An lOperation& value of %SET_POSITION is supported in a call to
SQL_SetPos »p696 when the cursor is a dynamic cursor.

%SQL_CA1_POS_UPDATE

An lOperation& value of %SET_UPDATE is supported in a call to
SQL_SetPos »p696 when the cursor is a dynamic cursor.

 353

%SQL_CA1_POS_DELETE

An lOperation& value of %SET_DELETE is supported in a call to
SQL_SetPos »p696 when the cursor is a dynamic cursor.

%SQL_CA1_POS_REFRESH

An lOperation& value of %SET_REFRESH is supported in a call to
SQL_SetPos »p696 when the cursor is a dynamic cursor.

%SQL_CA1_POSITIONED_UPDATE

An "UPDATE WHERE CURRENT OF" SQL statement is
supported when the cursor is a dynamic cursor.

%SQL_CA1_POSITIONED_DELETE

A "DELETE WHERE CURRENT OF" SQL statement is
supported when the cursor is a dynamic cursor.

%SQL_CA1_SELECT_FOR_UPDATE

A "SELECT FOR UPDATE" SQL statement is supported when
the cursor is a dynamic cursor.

%SQL_CA1_BULK_ADD

An lOperation& value of %BULK_ADD is supported in a call to
SQL_BulkOp »p276 when the cursor is a dynamic cursor.

%SQL_CA1_BULK_UPDATE_BY_BOOKMARK

An lOperation& value of %BULK_UPDATE is supported in a call to
SQL_BulkOp »p276 when the cursor is a dynamic cursor.

%SQL_CA1_BULK_DELETE_BY_BOOKMARK

An lOperation& value of %BULK_DELETE is supported in a call to
SQL_BulkOp »p276 when the cursor is a dynamic cursor.

%SQL_CA1_BULK_FETCH_BY_BOOKMARK

An lOperation& value of %BULK_FETCH is supported in a call to
SQL_BulkOp »p276 when the cursor is a dynamic cursor.

%DB_DYNAMIC_CURSOR_ATTRIBUTES2

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the attributes of a
dynamic cursor that are supported by the driver. This bitmasked value
contains only the second subset of attributes. For the first subset, see
%DB_DYNAMIC_CURSOR_ATTRIBUTES1 »p351 above.

NOTE: This list of constants is used for DYNAMIC, STATIC, FORWARD-ONLY
and KEYSET-DRIVEN cursors. Where the word dynamic is used below, you

 354

may need to substitute the word static, forward-only, or keyset-driven.

The following bitmask identifiers are used:

%SQL_CA2_READ_ONLY_CONCURRENCY

A read-only dynamic cursor, in which no updates are allowed, is
supported.

%SQL_CA2_LOCK_CONCURRENCY

A dynamic cursor that uses the lowest level of locking sufficient to
ensure that the row can be updated is supported. These locks must
be consistent with the transaction isolation level set by the value that
is returned by the SQL_DBAttrib »p322

(%DB_ATTR_TXN_ISOLATION) function.

%SQL_CA2_OPT_ROWVER_CONCURRENCY

A dynamic cursor that uses the optimistic concurrency control
comparing row versions is supported.

%SQL_CA2_OPT_VALUES_CONCURRENCY

A dynamic cursor that uses the optimistic concurrency control
comparing values is supported.

%SQL_CA2_SENSITIVITY_ADDITIONS

Added rows are visible to a dynamic cursor; the cursor can scroll to
those rows. Where these rows are added to the cursor is driver-
dependent.

%SQL_CA2_SENSITIVITY_DELETIONS

Deleted rows are no longer available to a dynamic cursor, and do not
leave a "hole" in the result set. After the dynamic cursor scrolls from
a deleted row, it cannot return to that row.

%SQL_CA2_SENSITIVITY_UPDATES

Updates to rows are visible to a dynamic cursor. If a dynamic cursor
scrolls from and returns to an updated row, the data returned by the
cursor is the updated data, not the original data.

%SQL_CA2_MAX_ROWS_SELECT

The SQL Tools function SQL_StmtMode »p716

(%STMT_ATTR_MAX_RESULT_ROWS) affects SELECT statements
when the cursor is a dynamic cursor.

%SQL_CA2_MAX_ROWS_INSERT

The SQL Tools function SQL_StmtMode »p716

(%STMT_ATTR_MAX_RESULT_ROWS) affects INSERT statements
when the cursor is a dynamic cursor.

 355

%SQL_CA2_MAX_ROWS_DELETE

The SQL Tools function SQL_StmtMode »p716

(%STMT_ATTR_MAX_RESULT_ROWS)affects DELETE statements
when the cursor is a dynamic cursor.

%SQL_CA2_MAX_ROWS_UPDATE

The SQL Tools function SQL_StmtMode »p716

(%STMT_ATTR_MAX_RESULT_ROWS) affects UPDATE statements
when the cursor is a dynamic cursor.

%SQL_CA2_MAX_ROWS_CATALOG

The SQL Tools function SQL_StmtMode »p716

(%STMT_ATTR_MAX_RESULT_ROWS)affects Info ("catalog")
functions when the cursor is a dynamic cursor.

%SQL_CA2_MAX_ROWS_AFFECTS_ALL

The SQL Tools function SQL_StmtMode »p716

(%STMT_ATTR_MAX_RESULT_ROWS) affects SELECT, INSERT,
DELETE, and UPDATE statements, and Info functions, when the
cursor is a dynamic cursor.

%SQL_CA2_SIMULATE_NON_UNIQUE

The ODBC driver does not guarantee that simulated positioned
update or delete statements will affect only one row when the cursor
is a dynamic cursor. It is your program's responsibility to guarantee
this. If a statement affects more than one row, SQL_Stmt »p716

(%EXECUTE) or SQL_Stmt(%IMMEDIATE) will return SQL State

»p897 01001 (Cursor operation conflict).

%SQL_CA2_SIMULATE_TRY_UNIQUE

The ODBC driver attempts to guarantee that simulated positioned
update or delete statements will affect only one row when the cursor
is a dynamic cursor. The driver always executes such statements,
even if they might affect more than one row, such as when there is
no unique key. If a statement affects more than one row, SQL_Stmt

»p716(%EXECUTE) or SQL_Stmt(%IMMEDIATE) will return SQL
State »p897 01001 (Cursor operation conflict).

%SQL_CA2_SIMULATE_UNIQUE

The ODBC driver guarantees that simulated positioned update or
delete statements will affect only one row when the cursor is a
dynamic cursor. If the driver cannot guarantee this for a given
statement, SQL_Stmt »p716(%EXECUTE) or SQL_Stmt(%PREPARE)
returns SQL State »p897 01001 (Cursor operation conflict).

 356

%DB_FETCH_DIRECTION

This is a "deprecated" function in ODBC 3.x and should not be used.

%DB_FILE_USAGE

A numeric value that indicates how a single-tier driver directly treats files in a
Datasource:

%SQL_FILE_NOT_SUPPORTED

The driver is not a single-tier driver. For example, the Oracle ODBC
driver is a two-tier driver.

%SQL_FILE_TABLE

A single-tier driver treats files in a Datasource as tables. For
example, an Xbase driver treats each Xbase file as a table.

%SQL_FILE_CATALOG

A single-tier driver treats files in a Datasource as a catalog. For
example, a Microsoft Access driver treats each Microsoft Access file
as a complete database.

Your program can use the %DB_FILE_USAGE value to determine how users
will select data. For example, Xbase users usually think of data as being
stored in files, while Oracle and Access users generally think of data as being
stored in tables. When a user selects an Xbase datasource, your program
could display the Windows File-Open common dialog box. When the user
selects an Oracle or Access datasource, your program could display a
custom "Select Table" dialog box.

%DB_FORWARD_ONLY_CURSOR_ATTRIBUTES1 and
%DB_FORWARD_ONLY_CURSOR_ATTRIBUTES2

ODBC 3.x+ ONLY : These functions are virtually identical to the
%DB_DYNAMIC_CURSOR_ATTRIBUTES1 »p351 and 2 functions that are
described above. For complete information, read the descriptions of
%DB_DYNAMIC_CURSOR_ATTRIBUTES1 and 2 above and substitute
"forward-only" wherever it says dynamic.

%DB_GETDATA_EXTENSIONS

A bitmasked »p916 value that describes restrictions on the SQL_ResColMemo

»p602 and SQL_ResColBLOB »p579 functions. The following bitmask identifiers
are used

%SQL_GD_ANY_COLUMN

SQL_ResColMemo »p602 and SQL_ResColBLOB »p579 can be used
with any unbound column, including those before the last bound
column. Note that the columns must be accessed in order of
ascending column number unless %SQL_GD_ANY_ORDER is also
returned.

 357

%SQL_GD_ANY_ORDER

SQL_ResColMemo »p602 and SQL_ResColBLOB »p579 can be used
with unbound columns in any order. Note that SQL_ResColMemo
and SQL_ResColBLOB can only be used for columns after the last
bound column unless %SQL_GD_ANY_COLUMN is also returned.)

%SQL_GD_BLOCK

SQL_ResColMemo »p602 and SQL_ResColBLOB »p579 can be used
for an unbound column in any row in a block (where the rowset size
is greater than 1) of data after positioning to that row with
SQL_SetPos »p696.

%SQL_GD_BOUND

SQL_ResColMemo »p602 and SQL_ResColBLOB »p579 can be used for
bound columns as well as unbound columns. A driver cannot return
this value unless it also returns %SQL_GD_ANY_COLUMN.
SQL_ResColMemo and SQL_ResColBLOB are only required to
return data from unbound columns that 1) occur after the last bound
column, 2) are called in order of increasing column number, and 3)
are not in a row in a MultiRow cursor »p210.

If a driver supports bookmarks »p154 (either fixed- or variable-length), it must
support using SQL_ResColBLOB »p579 for Column Zero »p156. This support is
required regardless of what the driver returns for
SQL_DBInfo(%DB_GETDATA_EXTENSIONS).

%DB_GROUP_BY

A numeric value that describes the relationship between the columns in a
GROUP BY clause and the non-aggregated columns in the select list:

%SQL_GB_COLLATE

A COLLATE clause can be specified at the end of each grouping
column.

%SQL_GB_NOT_SUPPORTED

GROUP BY clauses are not supported.

%SQL_GB_GROUP_BY_EQUALS_SELECT

The GROUP BY clause must contain all of the non-aggregated
columns in the select list. It cannot contain any other columns. For
example, SELECT DEPT, MAX(SALARY) FROM
EMPLOYEE GROUP BY DEPT.

%SQL_GB_GROUP_BY_CONTAINS_SELECT

The GROUP BY clause must contain all of the non-aggregated
columns in the select list. It can contain columns that are not in the

 358

select list. For example, SELECT DEPT, MAX(SALARY)
FROM EMPLOYEE GROUP BY DEPT, AGE.

%SQL_GB_NO_RELATION

The columns in the GROUP BY clause and the columns in the
select list are not related. The meaning of non-grouped, non-
aggregated columns in the select list is Datasource-dependent. For
example, SELECT DEPT, SALARY FROM EMPLOYEE
GROUP BY DEPT, AGE.

%DB_IDENTIFIER_CASE

A numeric value that describes how identifiers (table names, column names,
etc.) are used:

%SQL_IC_UPPER

Identifiers are not case-sensitive and are stored in upper case in the
system catalog.

%SQL_IC_LOWER

Identifiers are not case-sensitive and are stored in lower case in the
system catalog.

%SQL_IC_SENSITIVE

Identifiers are case-sensitive and are stored in mixed case in the
system catalog.

%SQL_IC_MIXED

Identifiers are not case-sensitive and are stored in mixed case in the
system catalog.

%DB_INDEX_KEYWORDS

ODBC 3.x+ ONLY : A numeric value that describes keywords in a CREATE
INDEX statement that are supported by the driver:

%SQL_IK_NONE

None of the keywords are supported.

%SQL_IK_ASC

ASC keyword (Ascending) is supported.

%SQL_IK_DESC

DESC keyword (Descending) is supported.

%SQL_IK_ALL

All keywords are supported.

 359

%DB_INFO_DRIVER_START

This is a "deprecated" function in ODBC 3.x and should not be used.

%DB_INFO_SCHEMA_VIEWS

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the views in the
Information Schema (as defined by SQL92) that are supported by the ODBC
driver. The following bitmask identifiers are used:

%SQL_ISV_ASSERTIONS

Identifies the catalog's assertions that are owned by a given user.

%SQL_ISV_CHARACTER_SETS

Identifies the catalog's character sets that are accessible to a given
user.

%SQL_ISV_CHECK_CONSTRAINTS

Identifies the CHECK constraints that are owned by a given user.

%SQL_ISV_COLLATIONS

Identifies the character collations for the catalog that are accessible
to a given user.

%SQL_ISV_COLUMN_DOMAIN_USAGE

Identifies columns for the catalog that are dependent on domains
defined in the catalog and are owned by a given user.

%SQL_ISV_COLUMN_PRIVILEGES

Identifies the privileges on columns of persistent tables that are
available to or granted by a given user.

%SQL_ISV_COLUMNS

Identifies the columns of persistent tables that are accessible to a
given user.

%SQL_ISV_CONSTRAINT_COLUMN_USAGE

Similar to %SQL_ISV_CONSTRAINT_TABLE_USAGE view, columns
are identified for the various constraints that are owned by a given
user.

%SQL_ISV_CONSTRAINT_TABLE_USAGE

Identifies the tables that are used by constraints (referential, unique,
and assertions), and are owned by a given user.

 360

%SQL_ISV_DOMAIN_CONSTRAINTS

Identifies the domain constraints (of the domains in the catalog) that
are accessible to a given user.

%SQL_ISV_DOMAINS

Identifies the domains defined in a catalog that are accessible to the
user.

%SQL_ISV_KEY_COLUMN_USAGE

Identifies columns defined in the catalog that are constrained as keys
by a given user.

%SQL_ISV_REFERENTIAL_CONSTRAINTS

Identifies the referential constraints that are owned by a given user.

%SQL_ISV_SCHEMATA

Identifies the schemas that are owned by a given user.

%SQL_ISV_SQL_LANGUAGES

Identifies the SQL conformance levels, options, and dialects
supported by the SQL implementation.

%SQL_ISV_TABLE_CONSTRAINTS

Identifies the table constraints that are owned by a given user.

%SQL_ISV_TABLE_PRIVILEGES

Identifies the privileges on persistent tables that are available to or
granted by a given user.

%SQL_ISV_TABLES

Identifies the persistent tables defined in a catalog that are
accessible to a given user.

%SQL_ISV_TRANSLATIONS

Identifies character translations for the catalog that are accessible to
a given user.

%SQL_ISV_USAGE_PRIVILEGES

Identifies the USAGE privileges on catalog objects that are available
to or owned by a given user.

%SQL_ISV_VIEW_COLUMN_USAGE

Identifies the columns on which the catalog's views that are owned
by a given user are dependent.

 361

%SQL_ISV_VIEW_TABLE_USAGE

Identifies the tables on which the catalog's views that are owned by a
given user are dependent.

%SQL_ISV_VIEWS

Identifies the viewed tables defined in this catalog that are accessible
to a given user.

%DB_INSERT_STATEMENT

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes support for
INSERT statements:

%SQL_IS_INSERT_LITERALS
%SQL_IS_INSERT_SEARCHED
%SQL_IS_SELECT_INTO

%DB_KEYSET_CURSOR_ATTRIBUTES1 and
%DB_KEYSET_CURSOR_ATTRIBUTES2

ODBC 3.x+ ONLY : These functions are virtually identical to the
%DB_DYNAMIC_CURSOR_ATTRIBUTES1 »p351 and 2 functions that are
described above. For complete information, read the descriptions of
%DB_DYNAMIC_CURSOR_ATTRIBUTES1 and 2 above and substitute
"keyset-driven" wherever it says dynamic.

%DB_LOCK_TYPES

This is a "deprecated" function in ODBC 3.x and should not be used.

%DB_MAX_ASYNC_CONCURRENT_STATEMENTS

ODBC-based Asynchronous Execution »p37 is not supported by SQL Tools,
so this value is not useful. (SQL Tools does support thread-based
asynchronous execution of SQL statements »p125, but this value does not
apply to that technique.

%DB_MAX_BINARY_LITERAL_LEN

A numeric value that specifies the maximum length (in bytes, excluding the
literal prefix and suffix) of a binary literal value in a SQL statement. For
example, assuming that the standard binary prefix "0x " (zero-ex) is used, the
binary literal value 0xABCD has a length of 4. If there is no maximum length
or the length is unknown, this function returns zero.

%DB_MAX_CATALOG_NAME_LEN

ODBC 3.x+ ONLY : A numeric value that specifies the maximum length of a
catalog name. If there is no maximum length or the length is unknown, this
function returns zero. (The ODBC 2.0 name for this function was
%DB_MAX_QUALIFIER_NAME_LEN.)

 362

%DB_MAX_CHAR_LITERAL_LEN

A numeric value that specifies the maximum length (in bytes, excluding the
literal prefix and suffix) of a character (string) literal in a SQL statement. If
there is no maximum length or the length is unknown, this function returns
zero.

%DB_MAX_COLUMN_NAME_LEN

A numeric value that specifies the maximum length of a column name. If
there is no maximum length or the length is unknown, this function returns
zero.

%DB_MAX_COLUMNS_IN_GROUP_BY

A numeric value that specifies the maximum number of columns that are
allowed in a GROUP BY clause. If there is no specified limit or the limit is
unknown, this function returns zero.

%DB_MAX_COLUMNS_IN_INDEX

A numeric value that specifies the maximum number of columns that are
allowed in an index »p201. If there is no specified limit or the limit is unknown,
this function returns zero.

%DB_MAX_COLUMNS_IN_ORDER_BY

A numeric value that specifies the maximum number of columns that are
allowed in an ORDER BY clause. If there is no specified limit or the limit is
unknown, this function returns zero.

%DB_MAX_COLUMNS_IN_SELECT

A numeric value that specifies the maximum number of columns that are
allowed in a SELECT list. If there is no specified limit or the limit is
unknown, this function returns zero.

%DB_MAX_COLUMNS_IN_TABLE

A numeric value that specifies the maximum number of columns that a table
can contain. If there is no specified limit or the limit is unknown, this function
will return zero.

%DB_MAX_CONCURRENT_ACTIVITIES

A numeric value that specifies the maximum number of active ("concurrent")
statements that the driver can support for a database connection. A
statement is defined as active if it has results pending, with "results" defined
as 1) rows from a SELECT operation, 2) rows affected by an INSERT,
UPDATE, or DELETE operation (such as a row count), or 3) if the
statement is in a %SQL_NEED_DATA state. This value can reflect a limitation
imposed by either the driver or the Datasource. If there is no specified limit
or the limit is unknown, this function will return zero. (The ODBC 2.0 name
for this function was %DB_ACTIVE_STATEMENTS.)

 363

%DB_MAX_CURSOR_NAME_LEN

A numeric value that specifies the maximum length of a cursor name »p212. If
there is no maximum length or the length is unknown, this function returns
zero. IMPORTANT NOTE: Many ODBC drivers limit this value to 18, and
interoperable applications should always use names that are less than 19
characters long. For this reason, SQL Tools limits all cursor names to 18
characters.

%DB_MAX_DRIVER_CONNECTIONS

A numeric value that specifies the maximum number of open databases that
the driver can support in one program. This value can reflect a limitation
imposed by either the driver or the Datasource. If there is no specified limit
or the limit is unknown, this function returns zero. (The ODBC 2.0 name for
this function was %DB_ACTIVE_CONNECTIONS.)

%DB_MAX_IDENTIFIER_LEN

A numeric value that specifies the maximum number of characters that can
be used for user-defined names, like table names and column names.

%DB_MAX_INDEX_SIZE

A numeric value that specifies the maximum number of bytes that are
allowed in the combined fields of an index »p201. If there is no specified limit
or the limit is unknown, this function returns zero.

%DB_MAX_PROCEDURE_NAME_LEN

A numeric value that specifies the maximum length of a stored procedure

»p208 name. If there is no maximum length or the length is unknown, this
function returns zero.

%DB_MAX_ROW_SIZE

A numeric value that specifies the maximum length of a single row in a table.
If there is no specified limit or the limit is unknown, this function returns zero.

%DB_MAX_SCHEMA_NAME_LEN

A numeric value that specifies the maximum length of a schema name. If
there is no maximum length or the length is unknown, this function returns
zero. (The ODBC 2.0 name for this function was
%DB_MAX_OWNER_NAME_LEN)

%DB_MAX_STATEMENT_LEN

A numeric value that specifies the maximum length (number of characters,
including all spaces) of a SQL statement »p123. If there is no maximum length
or the length is unknown, this function returns zero.

%DB_MAX_TABLE_NAME_LEN

A numeric value that specifies the maximum length of a table name. If there
is no maximum length or the length is unknown, this function returns zero.

 364

%DB_MAX_TABLES_IN_SELECT

A numeric value that specifies the maximum number of tables that are
allowed in a FROM clause of a SELECT statement. If there is no specified
limit or the limit is unknown, this function returns zero.

%DB_MAX_USER_NAME_LEN

A numeric value that specifies the maximum length of a user name. If there
is no maximum length or the length is unknown, this function returns zero.

%DB_NON_NULLABLE_COLUMNS

A numeric value that specified whether or not the Datasource supports NOT
NULL in column definitions:

%SQL_NNC_NON_NULL

Columns cannot be nullable. The Datasource supports the NOT
NULL column constraint in CREATE TABLE statements.

%SQL_NNC_NULL

All columns must be nullable.

%DB_NULL_COLLATION

A numeric value that specifies where Null values »p171 are sorted in a result
set:

%SQL_NC_END

Null values are sorted at the end of the result set, regardless of the
ASC or DESC keywords.

%SQL_NC_HIGH

Null values are sorted at the high end of the result set, depending on
the ASC or DESC keywords .

%SQL_NC_LOW

Null values are sorted at the low end of the result set, depending on
the ASC or DESC keywords.

%SQL_NC_START

Null values are sorted at the start of the result set, regardless of the
ASC or DESC keywords.

%DB_NUMERIC_FUNCTIONS

A bitmasked »p916 value that describes the scalar numeric functions »p884 that
are supported by the driver and associated Datasource. The following
bitmask identifiers are used:

 365

%SQL_FN_NUM_ABS
%SQL_FN_NUM_ACOS
%SQL_FN_NUM_ASIN
%SQL_FN_NUM_ATAN
%SQL_FN_NUM_ATAN2
%SQL_FN_NUM_CEILING
%SQL_FN_NUM_COS
%SQL_FN_NUM_COT
%SQL_FN_NUM_DEGREES
%SQL_FN_NUM_EXP
%SQL_FN_NUM_FLOOR
%SQL_FN_NUM_LOG
%SQL_FN_NUM_LOG10
%SQL_FN_NUM_MOD
%SQL_FN_NUM_PI
%SQL_FN_NUM_POWER
%SQL_FN_NUM_RADIANS
%SQL_FN_NUM_RAND
%SQL_FN_NUM_ROUND
%SQL_FN_NUM_SIGN
%SQL_FN_NUM_SIN
%SQL_FN_NUM_SQRT
%SQL_FN_NUM_TAN
%SQL_FN_NUM_TRUNCATE

%DB_ODBC_API_CONFORMANCE

This is a "deprecated" function in ODBC 3.x and should not be used.

%DB_ODBC_INTERFACE_CONFORMANCE

ODBC 3.x+ ONLY : A numeric value that specifies the level »p53 of the ODBC
3.x interface to which the driver conforms.

%SQL_OIC_CORE

The minimum conformance level to which all ODBC drivers are
expected to conform. This level includes basic interface elements
such as connection functions; functions for preparing and executing a
SQL statement; basic result set metadata functions; basic catalog
functions; and so on.

%SQL_OIC_LEVEL1

A conformance level that includes the core functionality, plus
scrollable cursors, bookmarks, positioned updates and deletes, and
so on.

%SQL_OIC_LEVEL2

A conformance level that includes all level 1 functionality, plus
advanced features such as sensitive cursors; update, delete, and
refresh by bookmarks; stored procedure support; catalog functions
for primary and foreign keys; multi-catalog support; and so on.

 366

%DB_ODBC_SQL_CONFORMANCE

This is a "deprecated" function in ODBC 3.x and should not be used.

%DB_STANDARD_CLI_CONFORMANCE

This function is listed by, but not documented in, the Microsoft ODBC
Software Developer Kit »p915.

%DB_OJ_CAPABILITIES

A bitmasked »p916 value that describes the types of outer joins that are
supported by the driver and the Datasource. The following bitmask identifiers
are used:

%SQL_OJ_LEFT

Left outer joins are supported.

%SQL_OJ_RIGHT

Right outer joins are supported.

%SQL_OJ_FULL

Full outer joins are supported.

%SQL_OJ_NESTED

Nested outer joins are supported.

%SQL_OJ_NOT_ORDERED

The column names in an ON clause of an outer join do not have to
be in the same order as their respective table names in the OUTER
JOIN clause.

%SQL_OJ_INNER

The inner table -- i.e. the right table in a left outer join or the left table
in a right outer join -- can also be used in an inner join. This value
does not apply to full outer joins, which do not have an inner table.

%SQL_OJ_ALL_COMPARISON_OPS

The comparison operator in an ON clause can be any of the ODBC
comparison operators. If this bit is not set, only the equal sign (=)
operator can be used in outer joins.

If none of these options are supported, no outer join clause is supported.

%DB_PARAM_ARRAY_ROW_COUNTS

ODBC 3.x+ ONLY : A numeric value that specifies the driver's properties
regarding the availability of row counts in a parameterized execution. This
function always returns one of the following values:

 367

%SQL_PARC_BATCH

Individual row counts are available for each set of parameters. This is
conceptually equivalent to the ODBC driver generating a batch of
SQL statements, one for each parameter set in the array.

%SQL_PARC_NO_BATCH

There is only one row count available, which is the cumulative row
count resulting from the execution of the statement for the entire
array of parameters. This is conceptually equivalent to treating the
statement along with the entire parameter array as one unit. Errors
are handled as if one statement were executed.

%DB_PARAM_ARRAY_SELECTS

ODBC 3.x+ ONLY : A numeric value that specifies the driver's properties
regarding the availability of result sets in a parameterized execution. This
function always returns one of the following three values:

%SQL_PAS_BATCH

There is one result set available per set of parameters. This is
conceptually equivalent to the ODBC driver generating a batch of
SQL statements, one for each parameter set in the array.

%SQL_PAS_NO_BATCH

There is only one result set available, which represents the
cumulative result set resulting from the execution of the statement for
the entire array of parameters. This is conceptually equivalent to
treating the statement along with the entire parameter array as one
unit.

%SQL_PAS_NO_SELECT

The driver does not allow a statement which generates a result set to
be executed with an array of parameters.

%DB_POSITIONED_STATEMENTS

This is a "deprecated" function in ODBC 3.x and should not be used.

%DB_POS_OPERATIONS

This is a "deprecated" function in ODBC 3.x and should not be used.

%DB_QUOTED_IDENTIFIER_CASE

A numeric value that specifies how quoted identifiers are handled:

%SQL_IC_UPPER

Quoted identifiers are not case-sensitive and are stored in uppercase
in the system catalog.

 368

%SQL_IC_LOWER

Quoted identifiers are not case-sensitive and are stored in lowercase
in the system catalog.

%SQL_IC_SENSITIVE

Quoted identifiers are case-sensitive and are stored in mixed case in
the system catalog. Note that in a SQL92-compliant database,
quoted identifiers are always case-sensitive.

%SQL_IC_MIXED

Quoted identifiers are not case-sensitive and are stored in mixed
case in the system catalog.

%DB_SCHEMA_USAGE

A bitmasked »p916 value that describes the statements in which schemas can
be used:

%SQL_SU_DML_STATEMENTS

Schemas are supported in SELECT, INSERT, UPDATE,
DELETE, and, if they are supported, SELECT FOR UPDATE
and positioned update and delete statements.

%SQL_SU_PROCEDURE_INVOCATION

Schemas are supported in the ODBC procedure invocation
statement call .

%SQL_SU_TABLE_DEFINITION

Schemas are supported in CREATE TABLE, CREATE VIEW,
ALTER TABLE, DROP TABLE, and DROP VIEW statements.

%SQL_SU_INDEX_DEFINITION

Schemas are supported in CREATE INDEX and DROP INDEX
statements.

%SQL_SU_PRIVILEGE_DEFINITION

Schemas are supported in GRANT and REVOKE statements. (The
ODBC 2.0 name for this function was %DB_OWNER_USAGE.)

%DB_SCROLL_CONCURRENCY

This is a "deprecated" function in ODBC 3.x and should not be used.

%DB_SCROLL_OPTIONS

A bitmasked »p916 value that describes the scroll options that are supported
for scrollable cursors »p149. The following bitmask identifiers are used:

 369

%SQL_SO_FORWARD_ONLY

The cursor can only scroll forward.

%SQL_SO_STATIC

The data in the result set is static.

%SQL_SO_KEYSET_DRIVEN

The driver saves and uses the keys for every row in the result set.

%SQL_SO_DYNAMIC

The driver keeps the keys for every row in the rowset. The keyset
size is the same as the rowset size.

%SQL_SO_MIXED

The driver keeps the keys for every row in the keyset, and the keyset
size is greater than the rowset size. The cursor is keyset-driven
inside the keyset and dynamic outside the keyset.

%DB_SQL_CONFORMANCE

A numeric value that indicates the level of SQL92 that is supported by the
driver:

%SQL_SC_SQL92_ENTRY

Entry level SQL92 compliant

%SQL_SC_FIPS127_2_TRANSITIONAL

FIPS 127-2 transitional level compliant

%SQL_SC_SQL92_FULL

Full level SQL92 compliant

%SQL_SC_SQL92_INTERMEDIATE

Intermediate level SQL92 compliant

%DB_SQL92_DATETIME_FUNCTIONS

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the datetime
scalar functions »p886 that are supported by the driver and the Datasource.
The following bitmask identifiers are used:

%SQL_SDF_CURRENT_DATE
%SQL_SDF_CURRENT_TIME
%SQL_SDF_CURRENT_TIMESTAMP

%DB_SQL92_FOREIGN_KEY_DELETE_RULE

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the rules that are
supported for a foreign key in a DELETE statement. The following bitmask

 370

identifiers are used:

%SQL_SFKD_CASCADE
%SQL_SFKD_NO_ACTION
%SQL_SFKD_SET_DEFAULT
%SQL_SFKD_SET_NULL

%DB_SQL92_FOREIGN_KEY_UPDATE_RULE

ODBC 3.x+ ONLY : A bitmasked »p916 value that described the rules that are
supported for a foreign key in an UPDATE statement. The following bitmask
identifiers are used:

%SQL_SFKU_CASCADE
%SQL_SFKU_NO_ACTION
%SQL_SFKU_SET_DEFAULT
%SQL_SFKU_SET_NULL

%DB_SQL92_GRANT

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses that
are supported in the GRANT statement. The following bitmask identifiers are
used:

%SQL_SG_DELETE_TABLE
%SQL_SG_INSERT_COLUMN
%SQL_SG_INSERT_TABLE
%SQL_SG_REFERENCES_TABLE
%SQL_SG_REFERENCES_COLUMN
%SQL_SG_SELECT_TABLE
%SQL_SG_UPDATE_COLUMN
%SQL_SG_UPDATE_TABLE
%SQL_SG_USAGE_ON_DOMAIN
%SQL_SG_USAGE_ON_CHARACTER_SET
%SQL_SG_USAGE_ON_COLLATION
%SQL_SG_USAGE_ON_TRANSLATION
%SQL_SG_WITH_GRANT_OPTION

%DB_SQL92_NUMERIC_VALUE_FUNCTIONS

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the numeric scalar
functions »p884 that are supported by the driver and the Datasource. The
following bitmask identifiers are used

%SQL_SNVF_BIT_LENGTH
%SQL_SNVF_CHAR_LENGTH
%SQL_SNVF_CHARACTER_LENGTH
%SQL_SNVF_EXTRACT
%SQL_SNVF_OCTET_LENGTH
%SQL_SNVF_POSITION

%DB_SQL92_PREDICATES

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the predicates that
are supported in a SELECT statement. The following bitmask identifiers are
used:

 371

%SQL_SP_BETWEEN
%SQL_SP_COMPARISON
%SQL_SP_EXISTS
%SQL_SP_IN
%SQL_SP_ISNOTNULL
%SQL_SP_ISNULL
%SQL_SP_LIKE
%SQL_SP_MATCH_FULL
%SQL_SP_MATCH_PARTIAL
%SQL_SP_MATCH_UNIQUE_FULL
%SQL_SP_MATCH_UNIQUE_PARTIAL
%SQL_SP_OVERLAPS
%SQL_SP_QUANTIFIED_COMPARISON
%SQL_SP_UNIQUE

%DB_SQL92_RELATIONAL_JOIN_OPERATORS

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the relational join
operators that are supported in a SELECT statement. The following bitmask
identifiers are used:

%SQL_SRJO_CORRESPONDING_CLAUSE
%SQL_SRJO_CROSS_JOIN
%SQL_SRJO_EXCEPT_JOIN
%SQL_SRJO_FULL_OUTER_JOIN
%SQL_SRJO_INTERSECT_JOIN
%SQL_SRJO_LEFT_OUTER_JOIN
%SQL_SRJO_NATURAL_JOIN
%SQL_SRJO_RIGHT_OUTER_JOIN
%SQL_SRJO_UNION_JOIN
%SQL_SRJO_INNER_JOIN (indicates support for the INNER JOIN
syntax, not for the inner join capability)

%DB_SQL92_REVOKE

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the clauses that
are supported in a REVOKE statement. The following bitmask identifiers are
used:

%SQL_SR_CASCADE
%SQL_SR_DELETE_TABLE
%SQL_SR_GRANT_OPTION_FOR
%SQL_SR_INSERT_COLUMN
%SQL_SR_INSERT_TABLE
%SQL_SR_REFERENCES_COLUMN
%SQL_SR_REFERENCES_TABLE
%SQL_SR_RESTRICT
%SQL_SR_SELECT_TABLE
%SQL_SR_UPDATE_COLUMN
%SQL_SR_UPDATE_TABLE
%SQL_SR_USAGE_ON_DOMAIN
%SQL_SR_USAGE_ON_CHARACTER_SET
%SQL_SR_USAGE_ON_COLLATION
%SQL_SR_USAGE_ON_TRANSLATION

%DB_SQL92_ROW_VALUE_CONSTRUCTOR

 372

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the row value
constructor expressions that are supported in a SELECT statement. The
following bitmask identifiers are used:

%SQL_SRVC_VALUE_EXPRESSION
%SQL_SRVC_NULL
%SQL_SRVC_DEFAULT
%SQL_SRVC_ROW_SUBQUERY

%DB_SQL92_STRING_FUNCTIONS

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the string scalar
functions »p881 that are supported by the driver and the Datasource. The
following bitmask identifiers are used

%SQL_SSF_CONVERT
%SQL_SSF_LOWER
%SQL_SSF_UPPER
%SQL_SSF_SUBSTRING
%SQL_SSF_TRANSLATE
%SQL_SSF_TRIM_BOTH
%SQL_SSF_TRIM_LEADING
%SQL_SSF_TRIM_TRAILING

%DB_SQL92_VALUE_EXPRESSIONS

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the value
expressions that are supported. The following bitmask identifiers are used

%SQL_SVE_CASE
%SQL_SVE_CAST
%SQL_SVE_COALESCE
%SQL_SVE_NULLIF

%DB_STANDARD_CLI_CONFORMANCE

ODBC 3.x+ ONLY : A bitmasked »p916 value that describes the CLI
standard(s) to which the driver conforms. The following bitmask identifiers
are used:

%SQL_SCC_XOPEN_CLI_VERSION1
%SQL_SCC_ISO92_CLI

%DB_STATIC_CURSOR_ATTRIBUTES1 and
%DB_STATIC_CURSOR_ATTRIBUTES2

ODBC 3.x+ ONLY : These functions are virtually identical to the
%DB_DYNAMIC_CURSOR_ATTRIBUTES1 »p351 and 2 functions that are
described above. For complete information, read the descriptions of
%DB_DYNAMIC_CURSOR_ATTRIBUTES1 and 2 above and substitute "static"
wherever it says dynamic.

%DB_STATIC_SENSITIVITY

This is a "deprecated" function in ODBC 3.x and should not be used.

 373

%DB_STRING_FUNCTIONS

A bitmasked »p916 value that describes the scalar string functions »p881 that
are supported by the driver and associated Datasource. The following
bitmask identifiers are used:

%SQL_FN_STR_ASCII
%SQL_FN_STR_BIT_LENGTH
%SQL_FN_STR_CHAR
%SQL_FN_STR_CHAR_LENGTH
%SQL_FN_STR_CHARACTER_LENGTH
%SQL_FN_STR_CONCAT
%SQL_FN_STR_DIFFERENCE
%SQL_FN_STR_INSERT
%SQL_FN_STR_LCASE
%SQL_FN_STR_LEFT
%SQL_FN_STR_LENGTH
%SQL_FN_STR_LOCATE (see below)
%SQL_FN_STR_LOCATE_2 (see below)
%SQL_FN_STR_LTRIM
%SQL_FN_STR_OCTET_LENGTH
%SQL_FN_STR_POSITION
%SQL_FN_STR_REPEAT
%SQL_FN_STR_REPLACE
%SQL_FN_STR_RIGHT
%SQL_FN_STR_RTRIM
%SQL_FN_STR_SOUNDEX
%SQL_FN_STR_SPACE
%SQL_FN_STR_SUBSTRING
%SQL_FN_STR_UCASE

Note: If an application can call the LOCATE function with the string_exp1,
string_exp2, and start arguments, the driver returns the
%SQL_FN_STR_LOCATE bit. If an application can call the LOCATE function
with only the string_exp1 and string_exp2 arguments, the driver returns the
%SQL_FN_STR_LOCATE_2 bit. Drivers that fully support the LOCATE
function return both bits.

%DB_SUBQUERIES

A bitmasked »p916 value that describes the predicates that support
subqueries:

%SQL_SQ_CORRELATED_SUBQUERIES
%SQL_SQ_COMPARISON
%SQL_SQ_EXISTS
%SQL_SQ_IN
%SQL_SQ_QUANTIFIED

The %SQL_SQ_CORRELATED_SUBQUERIES bit indicates that all of the
predicates that support subqueries support correlated subqueries.

%DB_SYSTEM_FUNCTIONS

A bitmasked »p916 value that describes the scalar system functions »p889 that
are supported by the driver and Datasource. The following bitmask identifiers

 374

are used

%SQL_FN_SYS_DBNAME
%SQL_FN_SYS_IFNULL
%SQL_FN_SYS_USERNAME

%DB_TABLE_COUNT

The number of tables that a database contains. Also see SQL_TblCount

»p790.

%DB_TIMEDATE_ADD_INTERVALS

A bitmasked »p916 value that describes the timestamp intervals that are
supported by the driver and Datasource for the TIMESTAMPADD scalar
function. The following bitmask identifiers are used:

%SQL_FN_TSI_FRAC_SECOND
%SQL_FN_TSI_SECOND
%SQL_FN_TSI_MINUTE
%SQL_FN_TSI_HOUR
%SQL_FN_TSI_DAY
%SQL_FN_TSI_WEEK
%SQL_FN_TSI_MONTH
%SQL_FN_TSI_QUARTER
%SQL_FN_TSI_YEAR

%DB_TIMEDATE_DIFF_INTERVALS

A bitmasked »p916 value that described the timestamp intervals that are
supported by the driver and Datasource for the TIMESTAMPDIFF scalar
function. The following bitmask identifiers are used:

%SQL_FN_TSI_FRAC_SECOND
%SQL_FN_TSI_SECOND
%SQL_FN_TSI_MINUTE
%SQL_FN_TSI_HOUR
%SQL_FN_TSI_DAY
%SQL_FN_TSI_WEEK
%SQL_FN_TSI_MONTH
%SQL_FN_TSI_QUARTER
%SQL_FN_TSI_YEAR

%DB_TIMEDATE_FUNCTIONS

A bitmasked »p916 value that describes the scalar date and time functions »p886
that are supported by the driver and Datasource. The following bitmask
identifiers are used:

%SQL_FN_TD_CURRENT_DATE
%SQL_FN_TD_CURRENT_TIME
%SQL_FN_TD_CURRENT_TIMESTAMP
%SQL_FN_TD_CURDATE
%SQL_FN_TD_CURTIME
%SQL_FN_TD_DAYNAME
%SQL_FN_TD_DAYOFMONTH

 375

%SQL_FN_TD_DAYOFWEEK
%SQL_FN_TD_DAYOFYEAR
%SQL_FN_TD_EXTRACT
%SQL_FN_TD_HOUR
%SQL_FN_TD_MINUTE
%SQL_FN_TD_MONTH
%SQL_FN_TD_MONTHNAME
%SQL_FN_TD_NOW
%SQL_FN_TD_QUARTER
%SQL_FN_TD_SECOND
%SQL_FN_TD_TIMESTAMPADD
%SQL_FN_TD_TIMESTAMPDIFF
%SQL_FN_TD_WEEK
%SQL_FN_TD_YEAR

%DB_TXN_CAPABLE

A numeric value that describes the transaction »p207 support that is provided
by the driver or the Datasource:

%SQL_TC_NONE

Transactions are not supported.

%SQL_TC_DML

Transactions can only contain SELECT, INSERT, UPDATE, and
DELETE. If other syntax is encountered in a transaction, an error
message will be generated.

%SQL_TC_DDL_COMMIT

Transactions can only contain SELECT, INSERT, UPDATE, and
DELETE. If other syntax is encountered in a transaction, the
transaction will be committed.

%SQL_TC_DDL_IGNORE

Transactions can only contain SELECT, INSERT, UPDATE, and
DELETE. If other syntax is encountered in a transaction, it will be
ignored.

%SQL_TC_ALL

Transactions can contain any statements in any order.

%DB_TXN_ISOLATION_OPTION

A bitmasked »p916 value that describes the transaction isolation levels that are
available from the driver or the Datasource. The following bitmask identifiers
are used:

%SQL_TXN_READ_UNCOMMITTED
%SQL_TXN_READ_COMMITTED
%SQL_TXN_REPEATABLE_READ

 376

%SQL_TXN_SERIALIZABLE

For descriptions of these isolation levels, see the descriptions under
%DB_DEFAULT_TXN_ISOLATION (above).

%DB_UNIDENTIFIED_115

This function is not described by the Microsoft ODBC Software Developer Kit
»p915. It appears to return a numeric value.

%DB_UNION

A bitmasked »p916 value that describes the support for the UNION clause:

%SQL_U_UNION

The Datasource supports the UNION clause.

%SQL_U_UNION_ALL

The Datasource supports the ALL keyword in the UNION clause.
Diagnostics

This function does not return Error Codes »p180 because values like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with legitimate return
values, but it can generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

PRINT SQL_DBInfo(%DB_TXN_CAPABLE)

Driver Issues

This function is fully supported by most but not all ODBC Drivers. The
SQL_FuncAvail »p446 function can be used to determine a driver's capabilities.

Speed Issues

SQL Tools does not cache »p200 the values that are returned by this function. If your
program needs one or more of these values repeatedly, you may be able to improve
the speed of your program by obtaining a SQL_DBInfoStr or SQL_DBInfo value
and storing it in a variable, instead of repeatedly using this function.

See Also

Database Information and Attributes »p190

 377

SQL_DBInfoStr

Summary

Provides information about a database »p190, in string form. (Generally speaking,
"Information" values cannot be changed. "Attributes" are settings that can be
changed by your program.)

Twin

SQL_DatabaseInfoStr »p299

Family

Database Info/Attrib Family »p235

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_DBInfoStr(lInfoType&)

Parameters

lInfoType&
A constant that indicates the type of information that is being requested. See
Remarks below for valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If a valid lInfoType& is used, the return value of this function will be a string that
represents the information that is being requested.

If an invalid value is used for lInfoType&, an empty string will be returned.

Remarks

Only certain types of database information are useful in string form. For a list of
lInfoType& values that are useful in numeric form, see SQL_DBInfo »p338.

Please note that nearly 200 different types of information can be obtained with the
SQL_DBInfoStr and SQL_DBInfo functions, and many of the numeric values are
bitmasked values »p916 that are capable of returning as many as many as 32 different
sub-values.

The following lInfoType& values can be used to obtain information about a database,
in string form.

%DB_ACCESSIBLE_PROCEDURES

Returns "Y" if your program can execute all of the Stored Procedures »p208 in
the database, or "N" if it cannot.

 378

%DB_ACCESSIBLE_TABLES

Returns "Y" if your program is guaranteed access to all tables in the
database, or "N" if there are some tables that may be inaccessible.

%DB_CATALOG_NAME

Returns "Y" if the server supports catalog names, or "N" if it does not.

%DB_CATALOG_NAME_SEPARATOR

The character that the Datasource defines as the separator between a
catalog name and the qualified name element that follows or precedes it. An
empty string is returned if catalogs are not supported by the Datasource.
(The ODBC 2.0 terminology for this value was
%DB_QUALIFIER_NAME_SEPARATOR)

%DB_CATALOG_TERM

A string containing the Datasource vendor's name for a catalog, like
"DATABASE" or "DIRECTORY". This string can be in upper, lower, or mixed
case. An empty string is returned if catalogs are not supported by the
Datasource. (The ODBC 2.0 name for this value was
%DB_QUALIFIER_TERM.)

%DB_COLLATION_SEQ

ODBC 3.x+ ONLY: A string that contains the name of the default collation
method for the default character set, like ISO 8859-1 or EBCDIC. If this
value is unknown, an empty string will be returned

%DB_COLUMN_ALIAS

Returns "Y" if the Datasource supports column aliases. Otherwise, this
function returns "N".

%DB_CONNECTION_STRING

The connection string »p910 that was used to open a database.

%DB_DATA_SOURCE_NAME

A string containing the Datasource name used during connection. If the
connection string »p910 did not contain the DSN keyword (such as when it
contains the DRIVER keyword), this will be an empty string.

%DB_DATA_SOURCE_READ_ONLY

Returns "Y" if the Datasource is set to the Read Only mode, or "N" if it is not.

%DB_DATABASE_NAME

A string that contains the name of the current database in use (if the
Datasource defines an object called a "database".)

 379

%DB_DBMS_NAME

A string that contains the name of the DBMS product that is being accessed
by the ODBC driver »p76.

%DB_DBMS_VER

A string that contains the version of the DBMS product that is being accessed
by the ODBC driver »p76.

The version is presented in the form ##.##.#### , where the first two digits
are the major version, the next two digits are the minor version, and the last
four digits are the release version. The driver can optionally append DBMS
product-specific version information. Example, "02.01.0003 Abc 4.1 ".

%DB_DESCRIBE_PARAMETER

Returns "Y" if parameters »p128 can be described, or "N", if they cannot.

%DB_DM_VER

ODBC 3.x+ ONLY : A string containing the version of the ODBC Driver
Manager »p76.

The version is presented in the form ##.##.####.#### , where the first set
of (two) digits represent the major ODBC version, the second set of (two)
digits is the minor ODBC version, the third set of (four) digits is the Driver
Manager major build number, and the last set of (four) digits is the Driver
Manager minor build number.

%DB_DRIVER_NAME

A string that contains the file name of the ODBC driver »p76 that is being used
to access the Datasource.

%DB_DRIVER_ODBC_VER

A string that contains the version of ODBC that the ODBC driver »p76
supports. The version is presented in the form ##.## , where the first two
digits are the major version number and the next two digits are the minor
version number.

%DB_DRIVER_VER

A string that contains the version of the ODBC driver »p77 and, optionally, a
description of the driver. At a minimum, the version is presented in the form
##.##.#### , where the first two digits are the major version, the next two
digits are the minor version, and the last four digits are the release version.

%DB_DSN_FILENAME

The name of the DSN File »p81 (if any) that was used to open the database.

%DB_EXPRESSIONS_IN_ORDERBY

 380

Returns "Y" if the Datasource supports expressions in an ORDER BY list.
Otherwise, this function returns "N".

%DB_IDENTIFIER_QUOTE_CHAR

The character that is used as the starting and ending delimiter of a quoted
(delimited) identifier in SQL statements »p123. If the Datasource does not
support quoted identifiers, an empty string is returned.

%DB_INTEGRITY

Returns "Y" if the Datasource supports the Integrity Enhancement Facility.
Otherwise, this function returns "N". (The ODBC 2.0 name for this function
was %DB_ODBC_SQL_OPT_IEF.)

%DB_KEYWORDS

A string that contains a comma-delimited list of all datasource-specific
keywords. This list does not contain keywords that are specific to ODBC, or
keywords that are used by both the Datasource and ODBC. Applications
should not use these words in object names (table names, column names,
etc.).

Microsoft Access 2007: The %DB_KEYWORDS field is limited to 255
characters so the driver does not return the entire keyword list. This appears
to be a limitation of the Access 2007 ODBC driver.

%DB_LIKE_ESCAPE_CLAUSE

Returns "Y" if the Datasource supports an escape character for the percent
character (%) and underscore character (_) in a LIKE predicate, and if the
driver supports the ODBC syntax for defining a LIKE predicate escape
character. Otherwise, this function returns "N".

%DB_MAX_ROW_SIZE_INCLUDES_LONG

Returns "Y" if the maximum row size returned for the %DB_MAX_ROW_SIZE
information type includes the length of all %SQL_LONGVARCHAR,
%SQL_wLONGVARCHAR, and %SQL_LONGVARBINARY columns in the row.
Otherwise, this function returns "N".

%DB_MULT_RESULT_SETS

Returns "Y" if the Datasource supports multiple result sets, or "N" if it does
not.

%DB_MULTIPLE_ACTIVE_TXN

Returns "Y" if the driver supports more than one active transaction »p207 at the
same time, or "N" if only one transaction can be active at any given time.

%DB_NEED_LONG_DATA_LEN

Returns "Y" if the Datasource requires the length of a long data value (such

 381

as %SQL_LONGVARCHAR or %SQL_LONGVARBINARY) before that value can
be sent to the Datasource, or "N" if it does not require the length.

%DB_ODBC_VER

A string that contains the version of ODBC to which the ODBC Driver
Manager »p76 conforms. The version is presented in the form ##.##.0000 ,
where the first two digits are the major version and the next two digits are the
minor version.

%DB_ORDER_BY_COLUMNS_IN_SELECT

Returns "Y" if the columns in an ORDER BY clause must be in the select
list. Otherwise, this function returns "N".

%DB_OUTER_JOINS

This function is listed by, but not documented in, the Microsoft ODBC
Software Developer Kit »p915. It appears to return "Y" if the database supports
outer joins, and "N" if it does not.

%DB_PROCEDURE_TERM

A string that contains the Datasource vendor's name for a procedure, like
example, "DATABASE PROCEDURE", "STORED PROCEDURE", "PROCEDURE",
"PACKAGE", or "STORED QUERY".

%DB_PROCEDURES

Returns "Y" if the Datasource supports Stored Procedures »p208 and the driver
supports the ODBC procedure invocation syntax (call). Otherwise, this
function returns "N".

%DB_ROW_UPDATES

Returns "Y" if a keyset-driven or mixed cursor »p149 maintains row versions or
values for all fetched rows and can therefore detect any updates made to a
row by any user since the row was last fetched. (This applies only to
updates, not to deletions or insertions.) The driver can return the
%DB_ROW_UPDATES flag to the row status array when the SQL_Fetch »p435
or SQL_FetchRel »p441 function is used. Otherwise, this function returns "N".

%DB_SCHEMA_TERM

A string that contains the Datasource vendor's name for a schema. For
example, "OWNER", "Authorization ID ", or "Schema". The string can be
returned in upper, lower, or mixed case. (The ODBC 2.0 name for this
function was %DB_OWNER_TERM.)

%DB_SEARCH_PATTERN_ESCAPE

A string that contains the character that the driver supports as an escape
character, to permit the use of the underscore (_) and percent sign (%) as
valid characters in search patterns. The escape character applies only for

 382

those Info ("catalog") function arguments that support search strings. If this
string is empty, the driver does not support a search-pattern escape
character.

%DB_SERVER_NAME

A string that contains the actual datasource-specific server name.

%DB_SPECIAL_CHARACTERS

A string that contains all of the special characters (i.e. all characters except
"a" through "z", "A" through "Z", "0" through "9", and the underscore
character) that can be used in an identifier name, such as a table name or
column name. If an identifier contains one or more of these characters, the
identifier must be delimited.

%DB_TABLE_TERM

A string that contains the Datasource vendor's name for a table; for example,
"TABLE" or "FILE ". This string can be in upper, lower, or mixed case.

%DB_USER_NAME

A string that contains the name that is used in a particular database. This
can be different from the login name.

%DB_XOPEN_CLI_YEAR

A string that contains the year of publication of the X/Open specification with
which the version of the ODBC Driver Manager »p76 fully complies.

Diagnostics

This function does not return Error Codes »p180, but it can generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

PRINT SQL_DBInfoStr(%DB_USER_NAME)

Driver Issues

This function is fully supported by most but not all ODBC Drivers. The
SQL_FuncAvail »p446 function can be used to determine a driver's capabilities.

Speed Issues

SQL Tools does not cache »p200 the values that are returned by this function. If your
program needs one or more of these values repeatedly, you may be able to improve
the speed of your program by obtaining a SQL_DBInfoStr or SQL_DBInfo value
and storing it in a variable, instead of repeatedly using this function.

See Also

Database Information and Attributes »p190

 383

SQL_DBIsOpen

Summary

Indicates whether or not a database is open.

Twin

SQL_DatabaseIsOpen »p300

Family

Database Open/Close Family »p234

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_DBIsOpen

Parameters

None.

Return Values

Logical True »p912 (-1) if the current database (as specified with the SQL_UseDB »p859
function) is open, or False (zero) if it is not open.

Remarks

This function can be used to determine whether or not a database is open. For
information about opening databases, see Opening A Database »p78.

Diagnostics

This function does not return Error Codes »p891, but it can generate SQL Tools Error
Messages »p179.

Example

IF SQL_DBIsOpen THEN BEEP

Driver Issues

None.

Speed Issues

None.

See Also

SQL_StmtIsOpen »p724

 384

SQL_DBMS NEW

Summary

Returns a numeric value that corresponds to the type of database to which your
program is connected.

Twin

None

Family

Database Info/Attrib Family »p235

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_DBMS(OPTIONAL lDatabaseNumber&)

Parameters

OPTIONAL lDatabaseNumber&
If you omit this parameter, the current Database Number »p197 will be used. If
you specify a number, that Database Number will be used.

Return Values

This function returns a numeric value that corresponds to one of the %DBMS_ equates
in the SQLT3.INC »p66 file. For example for Microsoft Access databases it will return
%DBMS_MS_ACCESS.

If this function returns %DBMS_UNKNOWN it means that SQL Tools does not recognize
the database driver. Your program may work with the database, but SQL Tools does
not recognize its name as provided by the ODBC driver.

Remarks

SQL Tools Version 3 currently recognizes 36 types and sub-types of databases. If
SQL Tools does not recognize a database, your program may well work with the
database, but SQL Tools does not recognize its name as provided by the ODBC
driver.

Here is a complete list of the currently recognized databases:

%DBMS_ADAPTIVE
%DBMS_COMPUTEREASE
%DBMS_DD2
%DBMS_EASYSOFT
%DBMS_FILEMAKER_PRO
%DBMS_FIREBIRD
%DBMS_IBMCLIENT_ACCESS
%DBMS_IBM_DB2
%DBMS_IBM_ISERIES
%DBMS_IBM_LOTUS_NOTES

 385

%DBMS_IBM_UNIVERSE
%DBMS_INFORMIX
%DBMS_INGRES
%DBMS_INTERBASE
%DBMS_MS_ACCESS
%DBMS_MS_DBASE
%DBMS_MS_EXCEL
%DBMS_MS_FOXPRO
%DBMS_MS_ODBC_FOR_ORACLE
%DBMS_MS_PARADOX
%DBMS_MS_SQL_NATIVE_CLIENT
%DBMS_MS_SQL_SERVER_NATIVE
%DBMS_MS_TEXT
%DBMS_MS_UNKNOWN
%DBMS_MYSQL
%DBMS_ORACLE
%DBMS_PERVASIVE
%DBMS_POSTGRESQL
%DBMS_QUICKBASE
%DBMS_SQLBASE
%DBMS_SQLITE
%DBMS_SQLITE3
%DBMS_SYBASE
%DBMS_SYBASE_ASE
%DBMS_SYBASE_SYSTEM11
%DBMS_UNKNOWN
%DBMS_VALENTINA

Please report unrecognized database types to Support@PerfectSync.com and we
may add them to future versions of SQL Tools.

Diagnostics

None

Example

IF SQL_DBMS = %DBMS_MYSQL THEN
 'the program is connected to a MySQL database
END IF

Driver Issues

SQL Tools obtains the database type from the Connection String that is used to
connect.

Speed Issues

None.

See Also

SQL_DBMSName »p386

 386

SQL_DBMSName NEW

Summary

Returns a string that describes the type of database to which your program is
connected.

Twin

None

Family

Database Info/Attrib Family »p235

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_DBMSName(OPTIONAL lDatabaseNumber&)

Parameters

OPTIONAL lDatabaseNumber&
If you omit this parameter, the current Database Number »p197 will be used. If
you specify a number, that Database Number will be used.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

This function returns a string value such as "Microsoft Access (MS Corp.) " or
"MySQL (Oracle) ". If this function returns "Unknown DBMS (?) " it means that
SQL Tools does not recognize the database driver.

Remarks

SQL Tools Version 3 currently recognizes 36 types and sub-types of databases. See
the SQLT3.INC »p66 file for a complete list. If SQL Tools does not recognize a
database, your program may well work with the database, but SQL Tools does not
recognize its name as provided by the ODBC driver.

Please report unrecognized database types to Support@PerfectSync.com and we
may add them to future versions of SQL Tools.

Diagnostics

None

Example

sResult$ = SQL_DBMSName

Driver Issues

SQL Tools obtains the database type from the Connection String that is used to
connect.

 387

Speed Issues

None.

See Also

SQL_DBMS »p384

 388

SQL_Diagnostic

Summary

Provides additional diagnostic information about the most-recently-used SQL Tools
function, if it returned an Error Message »p181.

Twin

None. You must use this function, with an appropriate lDatabaseNumber& and
lStatementNumber& value, in order to obtain diagnostic information.

Family

Error/Trace Family »p248

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_Diagnostic(lDatabaseNumber&, _
 lStatementNumber&, _
 lInfoType&)

Parameters
lDatabaseNumber

The database number of the database that experienced the error. If the error
is related to all databases (as would be the case when your program
attempts to set an environment attribute with the SQL_SetEnvironAttrib

»p679 function, for example), use %ALL_DBs.
lStatementNumber&

The statement number of the statement that experienced the error. If the
error is related to all statements (as would be the case when your program
attempts to set a database attribute with SQL_SetDBAttrib »p672, for
example), use %ALL_STMTs.

lInfoType&
One of the %DIAG_ constants described in Remarks , below.

Return Values

An empty string (if no diagnostic information is available), or a string that contains one
or more diagnostic values. If more than one diagnostic value is returned, the values
will usually be comma-delimited.

Remarks

When SQL Tools executes a function that returns an Error Message »p181 (i.e. a result
other than %SQL_SUCCESS) it may be possible to retrieve additional information about
the error by using the SQL_Diagnostic function. The term "error", in this context,
also includes %SQL_SUCCESS_WITH_INFO.

IMPORTANT NOTE: This function can only return information about the most-
recently-used SQL Tools function. If you use a SQL Tools function that returns an
error and then use another SQL Tools function, it is very likely that you will then be
unable to use SQL_Diagnostic to obtain information about the original error,

 389

regardless of whether or not the second function returned an error.

IMPORTANT NOTE: Multiple values can be returned by this function, so all values
are returned as comma-delimited strings, even if they are basically numeric values. It
is possible to change the string that is used to delimit multiple return values by using
the SQL_SetOptionStr »p682(%OPT_COL_DELIMITER) function. If you change this
option, please insert the name of the delimiter that you specified wherever this
document says "comma-delimited".

The lInfoType& parameter must be one of the following values:

The first group of lInfoType& values represent "global" diagnostic information.
Only one diagnostic value will be returned for each of these lInfoType& values:

%DIAG_DYNAMIC_FUNCTION and
%DIAG_DYNAMIC_FUNCTION_CODE

These functions can only be used to obtain diagnostic information about
errors that are reported by SQL_Stmt »p716(%EXECUTE),
SQL_Stmt(%IMMEDIATE) , or SQL_MoreRes »p511. They return strings that
describe the SQL statement that the underlying function executed.

Each unique string value that is returned by %DIAG_DYNAMIC_FUNCTION
(such as DELETE WHERE or DROP TABLE) corresponds to a unique
numeric value that is returned by %DIAG_DYNAMIC_FUNCTION_CODE, so
most programs use one or the other.

You must specify a database number and a statement number when using
these functions. You may not specify %ALL_DBs or %ALL_STMTs.

%DIAG_NUMBER

The number of diagnostic records that are available for the specified
database or statement, i.e. the number of diagnostic values that non-global
lInfoType& values (see below) will return.

%DIAG_RETURNCODE

The Error Code that was returned by the function. This information can also
be obtained by using the various SQL_Error functions »p248.

%DIAG_ROW_COUNT

The number of rows that were affected by an INSERT, DELETE or
UPDATE performed with SQL_Stmt »p716(%EXECUTE),
SQL_Stmt(%IMMEDIATE) , SQL_BulkOp »p276, or SQL_SetPos »p696. This
value can also be obtained with the SQL_ResRowCount »p622 function.

You must specify a database number and a statement number when using
this function. You may not specify %ALL_DBs or %ALL_STMTs.

The second group of lInfoType& values represent non-global diagnostic
information. Multiple diagnostic values (see %DIAG_NUMBER above) can be
returned for each of these lInfoType& values:

 390

%DIAG_CLASS_ORIGIN

A string that contains the ODBC specification document which defines the
"class" portion of the SQL State »p897 value for this error.

The return value of this function will be "ISO 9075 " for all SQL States
defined by the X/Open and ISO call-level interface.

The return value of this function will be "ODBC 3.0 " for ODBC-specific SQL
States (all those that have a SQL State class of "IM").

%DIAG_CONNECTION_NAME

A string that contains the name of the connection that the error relates to.
This value is driver-defined.

You must specify a database number when using this function, and you must
use a statement number of %ALL_STMTs.

%DIAG_MESSAGE_TEXT

This string will contain an informational message on the error or warning.
This information can also be obtained from the SQL_ErrorText »p430
function.

%DIAG_NATIVE

A driver-specific or datasource-specific native error code. If there is no native
error code, this value will be zero (0).

This information can also be obtains from the SQL_ErrorNativeCode »p420
function.

%DIAG_SERVER_NAME

A string that contains the server name to which the error relates.

%DIAG_SQLSTATE

A five-character SQL State »p897 diagnostic code. This value can also be
obtained with the SQL_State »p707 function.

%DIAG_SUBCLASS_ORIGIN

A string with the same format and valid values as %DIAG_CLASS_ORIGIN
(see above) which identifies the defining portion of the subclass portion of the
SQL State »p897 code.

The ODBC-specific SQL States for which "ODBC 3.0 " is returned include:
01S00, 01S01, 01S02, 01S06, 01S07, 07S01, 08S01, 21 S01,
21S02, 25S01, 25S02, 25S03, 42S01, 42S02, 42S11, 42 S12,
42S21, 42S22, HY095, HY097, HY098, HY099, HY100, HY 101,
HY105, HY107, HY109, HY110, HY111, HYT00, HYT01, IM 001,
IM002, IM003, IM004, IM005, IM006, IM007, IM008, IM 010,
IM011, IM012.

 391

Diagnostics

This function does not generate Error Messages because it is used to obtain
information about Error Messages.

Example

PRINT SQL_Diagnostic(1,1,%DIAG_SQL_STATE)

Driver Issues

None.

Speed Issues

None.

See Also

The Error/Trace Family »p248

 392

SQL_DirectBindCol

Summary

Binds »p145 one column of a result set to a memory buffer that your program provides,
while allowing SQL Tools to bind the Indicator »p170. (Most programs do not use this
function, because SQL Tools can AutoBind »p159 all of the columns in a result set.
Also compare SQL_ManualBindCol »p508.)

Twin

SQL_DirectBindColumn »p394

Family

Result Column Binding Family »p245

Availability

SQL Tools Pro only (see »p29)

Warning

If your program uses this function to bind a result column to a memory buffer but then
fails to maintain that buffer, an Application Error will result. See Remarks below for
more information.

Syntax

lResult& = SQL_DirectBindCol(lColumnNumber&, _
 lDataType&, _
 lPointerToBuffer&, _
 lBufferLength&)

Parameters
lColumnNumber&

The number of the column that is to be bound, from one (1) to the number of
columns in the result set. If a bookmark »p154 column is being bound (not
recommended) this value can be zero »p156 (0).

lDataType&
The SQL Data Type »p87 of the column's data. See the SQL Tools
Declaration Files for a list of legal values. Technical note for experienced
ODBC users: Do not attempt to use %SQL_C_ data types for this parameter.

lPointerToBuffer&
A 32-bit pointer to the memory location where the memory buffer begins.

lBufferLength&
The length of the memory buffer, in bytes.

Return Values

This function will return %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
binding operation is successful, or an Error Code »p180 if it is not.

Remarks

SQL Tools can perform three types of Result Column Binding. 1) AutoBinding, where
the data buffer and Indicator buffer are managed by SQL Tools, 2) Manual Binding,
where the data buffer and Indicator buffer are managed by your program, and 3)
Direct Binding (which uses this function) where the data buffer is managed by your
program and the Indicator buffer is managed by SQL Tools. See Result Column
Binding »p158 for more information.

 393

In order for a program to access a value in a column of a result set, the column must
be bound to a memory buffer that is large enough to hold the value. The
SQL_DirectBindCol function can be used to perform this operation.

NOTE: Most SQL Tools programs use AutoBinding »p159, so the
SQL_DirectBindCol function is rarely used. You should only attempt to use this
function if 1) you need to squeeze every drop of speed from your application, or 2) if
the SQL Tools AutoBind function does not bind a column in the way that you need it
to be bound.

Once you have bound a column of a result set to a memory buffer with
SQL_DirectBindCol , your program is responsible for maintaining that buffer. Most
importantly, you must make sure that the buffer does not move or, if it does move,
you must re-bind the buffer before the SQL_Fetch »p435 or SQL_FetchRel »p441
function is used again. Failure to do this will almost certainly result in an Application
Error. If you use a BASIC ASCIIZ string, fixed-length string, or numeric variable (or
an array) for a buffer it will be fixed in memory and it will not move, so this is not a
concern. If you use a BASIC dynamic string, however, the string will move whenever
you assign a value to it, so you must take great care to avoid assigning a value to a
string variable that is used for a buffer.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

None. The use of this function is too complex for a brief example to be meaningful.
The User's Guide section of this document contains extensive explanations and
examples.

Driver Issues

None.

Speed Issues

None.

See Also

Result Column Binding (Basic) »p145, Result Column Binding (Advanced) »p158

 394

SQL_DirectBindColumn

Syntax

lResult& = SQL_DirectBindColumn(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&, _
 lDataType&, _
 lPointerToBuffer&, _
 lBufferLength&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_DirectBindColumn is identical to SQL_DirectBindCol »p392. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 395

SQL_DriverCount

Summary

Returns the number of ODBC Drivers »p76 that are available to your program.

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

See Remarks regarding "cached" information, below.

Syntax

lResult& = SQL_DriverCount

Parameters

None.

Return Values

This function will return zero or a positive number, to indicate the number of ODBC
drivers »p76 that are available to your program.

Remarks

To improve program performance, the very first time that the SQL_DriverCount ,
SQL_DriverInfoStr »p397 or SQL_DriverNumber »p399 function is used, SQL
Tools reads all of the available ODBC driver information and caches it (i.e. stores it
internally), so that future uses of these functions will be significantly faster.

Under normal circumstances this technique works well, but if your program uses one
of these functions and then an ODBC driver is added to your system while your
program is still running, it will not be detected. If you have reason to believe that the
ODBC driver information may have changed since the last time your program used
one of these driver functions, you can use the SQL_GetDrivers »p453 function to re-
read all of the available ODBC driver information. Keep in mind that this process can
take several seconds.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with the answer "there is
one ODBC driver available." This function can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

'Display all currently installed Drivers:
FOR lDriver& = 1 TO SQL_DriverCount
 PRINT SQL_DriverInfo(lDriver&, %DRIVER_NAME)
NEXT

 396

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See notes regarding "cached" information, in Remarks above.

See Also

ODBC Drivers »p76

 397

SQL_DriverInfoStr

Summary

Returns information about an ODBC Driver »p76, in string form. (All driver information
is string-based, so there is no numeric function for obtaining driver information.)

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

See Remarks below, regarding "cached" information.

Syntax

sResult$ = SQL_DriverInfoStr(lDriverNumber&, _
 lInfoType&)

Parameters

lDriverNumber&
A number between one (1) and the number of ODBC Drivers that are
available, as returned by the SQL_DriverCount »p395 function.

lInfoType&
%DRIVER_NAME, %DRIVER_DESCRIPTION or a numeric value greater than
200 . See Remarks below for more information.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

This function will return a string that contains the requested information, or an empty
string if an invalid parameter is used.

Remarks

If you use an lInfoType& value of %DRIVER_NAME, a string like "Microsoft Access
Driver (*.mdb)" or "SQL Server " will be returned.

If you use an lInfoType& value of %DRIVER_DESCRIPTION, a string that contains a
complete ODBC Driver description will be returned. A driver description string
contains one or more pieces of information about the ODBC driver, delimited with
Carriage Return characters (CHR$(13)) . Here is a typical driver description for
Microsoft Access 97, with the CHR$(13) delimiters represented by <CR>.

UsageCount=19<CR>APILevel=1<CR>ConnectFunctions=YYN <CR>Dr
iverODBCVer=02.50<CR>FileUsage=2<CR>FileExtns=*.mdb <CR>SQ
LLevel=0<CR>s=YYN<CR>

The %DRIVER_NAME constant has a numeric value of one (1), and the
%DRIVER_DESCRIPTION constant has a numeric value of two (2). The individual

 398

elements of the %DRIVER_DESCRIPTION string can be accessed individually by
using an lInfoType& value of 200 (meaning "element of lInfoType& 2") plus an
element number. For example, if the example string above was returned for
%DRIVER_DESCRIPTION, using an lInfoType& value of 202 would return
"APILevel=1 " because that is the second element of the string.

To improve program performance, the very first time that the SQL_DriverInfoStr ,
SQL_DriverCount »p395, or SQL_DriverNumber »p399 function is used, SQL Tools
reads all of the available ODBC driver information and caches it (i.e. stores it
internally), so that future uses of these functions will be significantly faster.

Under normal circumstances this technique works well, but if your program uses one
of these functions and then an ODBC driver is added to your system while your
program is still running, it will not be detected. If you have reason to believe that the
ODBC driver information may have changed since the last time your program used
one of these driver functions, you can use the SQL_GetDrivers »p453 function to re-
read all of the available ODBC driver information. Keep in mind that this process can
take several seconds.

Diagnostics

This function does not return Error Codes »p180 because it returns only string values.
It can, however, generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

PRINT SQL_DriverInfoStr(1,%DRIVER_NAME)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See notes regarding "cached" information, in Remarks above.

See Also

ODBC Drivers »p76

 399

SQL_DriverNumber

Summary

Returns the ODBC Driver number (if any) that is associated with an ODBC Driver
name.

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

See Remarks below, regarding "cached" information.

Syntax

lResult& = SQL_DriverNumber(sDriverName$)

Parameters

sDriverName$
A string that contains the exact name of an ODBC Driver »p76, such as "SQL
Server " or "Microsoft Access Driver (*.mdb)".

Return Values

If an ODBC Driver with the specified name is found, the corresponding driver number
will be returned. If no match is found, negative one (-1) will be returned.

Remarks

This function is not case-sensitive. If an ODBC Driver named "SQL Server " exists,
using an sDriverName$ value of "SQL Server ", "SQL SERVER", "sql Server ",
(etc.) would produce the same results.

To improve program performance, the very first time that the SQL_DriverNumber ,
SQL_DriverInfoStr »p397, or SQL_DriverCount »p395 function is used, SQL Tools
reads all of the available ODBC driver information and caches it (i.e. stores it
internally), so that future uses of these functions will be significantly faster.

Under normal circumstances this technique works well, but if your program uses one
of these functions and then an ODBC driver is added to your system while your
program is still running, it will not be detected. If you have reason to believe that the
ODBC driver information may have changed since the last time your program used
one of these driver functions, you can use the SQL_GetDrivers »p453 function to re-
read all of the available ODBC driver information. Keep in mind that this process can
take several seconds.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with the result "the
specified string matches ODBC Driver number 1". This function can, however,
generate ODBC Error Messages »p181 and SQL Tools Error Messages.

 400

Example

PRINT SQL_DriverNumber("SQL SERVER")

Driver Issues

None.

Speed Issues

See notes regarding "cached" information, in Remarks above.

See Also

ODBC Drivers »p76

 401

SQL_EndOfData

Syntax

lResult& = SQL_EndOfData(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_EndOfData is identical to SQL_EOD »p409. To avoid errors when this document
is updated, and to reduce the size of the Help Files, information that is common to
both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 402

SQL_EndTrans

Summary

Instructs a database to end a transaction »p207 by either "committing it" or "rolling it
back". (Most programs use the AutoCommit »p207 mode, so this function is not
commonly used.)

Twin

SQL_EndTransaction »p404

Family

Database Info/Attrib Family »p235

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_EndTrans(lOperation&)

Parameters

lOperation&
Either %TRANS_COMMIT or %TRANS_ROLLBACK.

Return Values

This function will return %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
transaction is ended according to lOperation&, or an Error Code »p180 if it is not.

Remarks

If the AutoCommit mode (which is the default mode for SQL Tools) is used, this
function has no effect on a transaction.

If the AutoCommit mode is turned off (by using the SQL_DBAutoCommit »p327
function), then your program is responsible for telling the database to either 1)
"commit" a transaction (i.e. make it final by changing the database) or 2) "roll back" a
transaction (i.e. cancel it, and undo all of the changes that may have been made in
the database).

See Transactions »p207 for more information about using this function.

Diagnostics

This function can return Error Codes »p180, and can also return ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

lResult& = SQL_EndTrans(%TRANS_COMMIT)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

 403

Speed Issues

None.

See Also

Committing Transactions Manually »p207

 404

SQL_EndTransaction

Syntax

lResult& = SQL_EndTransaction(lDatabaseNumber&, _
 lOperation&)

Except for the lDatabaseNumber& parameter, SQL_EndTransaction is identical to
SQL_EndTrans »p402. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 405

SQL_EnvironAttrib

Summary

Returns information about the ODBC environment (which affects all databases and
statements) in numeric form.

Twin

None.

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_EnvironAttrib(lAttribute&)

Parameters

lAttribute&
One of the following constants: %ENV_ATTR_ODBC_VERSION,
%ENV_ATTR_CONNECTION_POOLING, %ENV_ATTR_CP_MATCH, or
%ENV_ATTR_OUTPUT_NTS. See Remarks below for details.

Return Values

If a valid value is specified for lAttribute&, this function will return the corresponding
ODBC environment attribute. If an invalid value is used, zero (0) will be returned.

Remarks

If lAttribute& is...

%ENV_ATTR_CONNECTION_POOLING

This function will return one of the following numeric values:

%SQL_CP_OFF (Connection pooling is turned off. This is the default.)

%SQL_CP_ONE_PER_DRIVER (A single connection pool is supported for
each driver. Every database connection in a pool is associated with one
driver.)

%SQL_CP_ONE_PER_HENV (A single connection pool is supported for each
environment. Every database connection in a pool is associated with one
environment, i.e. one program.)

See SQL_Initialize »p495 for more information.

%ENV_ATTR_CP_MATCH

This function will return one of the following numeric values:

 406

%SQL_CP_STRICT_MATCH (Only connections that exactly match the
connection options in the call and the connection attributes set by the
program are reused. If connection pooling is turned on, this is the default.)

%SQL_CP_RELAXED_MATCH (Connections with matching connection string
keywords can be used. Keywords must match, but not all connection
attributes must match.)

See SQL_Initialize »p495 for more information.

%ENV_ATTR_ODBC_VERSION

This function will return a value of either two (2) or three (3), to indicate the
ODBC Version that is being provided by the environment. If an ODBC
function (and therefore a SQL Tools function) behaves differently if ODBC 2
or 3 is used, this function tells you which behavior is being emulated.

By default, SQL Tools sets this attribute to 3 because all databases can
support at least some ODBC 3.x behavior. See SQL_Initialize »p495 for
more information.

%ENV_ATTR_OUTPUT_NTS

In a Windows environment, this function ("Output Null Terminated Strings")
will always return a value of one (1), indicating that Null Terminated Strings
(also known as ASCIIZ strings) are used internally by the ODBC driver.
SQL Tools removes the null terminators from dynamic strings before
returning them to your program.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value. This function can (but does not usually) return ODBC Error Messages »p181 or
SQL Tools Error Messages.

Example

PRINT SQL_EnvironAttrib(%ENV_ATTR_ODBC_VERSION)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

SQL_EnvironAttribStr »p407
Environment Attributes »p192

 407

SQL_EnvironAttribStr NEW

Summary

Returns a string that corresponds to the numeric value returned by the
SQL_EnvironAttrib »p405 function. More usefully, it can also return Info/Attribute
Labels »p193.

Twin

None

Family

Environment Family »p232

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_EnvironAttribStr(lAttribute&)

...or ...

sResult$ = SQL_EnvironAttribStr(%ATTRIB_LABEL, lAtt ribute&)

Parameters

lAttributes&
An equate that is recognized by SQL_EnvironAttrib »p405.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

See Remarks.

Remarks

All ODBC Environment Attributes are numeric values, so most of the time you will use
SQL_EnvironAttrib »p405 instead of this function.

If you use SQL_EnvironAttribStr(%ENV_ATTR_ODBC_VERSION) (for example)
the return value will be the string "2" or "3", just as SQL_EnvironAttrib returns the
numeric value 2 or 3.

This function can also return Info/Attribute Labels »p193. For instance, if you use
SQL_EnvironAttribStr(%ATTRIB_LABEL,%ENV_ATTR_ODBC_V ERSION) this
function will return the string "ENV_ATTR_ODBC_VERSION".

If you use %INFO_DATA for the first parameter, this function will return the Attribute
value as a string, as if you had used the first form of the syntax.

Diagnostics

See SQL_EnvironAttrib »p405.

 408

Example

See Info/Attribute Labels »p193.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

SQL_EnvironAttrib »p405.

 409

SQL_EOD

Summary

This function returns a Logical True »p912 value (-1) if the most recent SQL_Fetch

»p435, SQL_FetchRel »p441, SQL_FetchResult »p445, or SQL_FetchRelative

»p444 operation failed because 1) there were no rows in the result set »p144, 2) you
attempted to fetch a row beyond the last row of the result set, or 3) you attempted to
fetch a row before the first row of the result set. Otherwise it returns a False (zero)
value. (Note that it does not return True if the fetch operation failed because of an
error.)

Twin

SQL_EndOfData »p401

Family

Statement Family »p240

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_EOD

Parameters

None.

Return Values

Logical True »p912 (-1) or False (0).

Remarks

This function is conceptually similar to the BASIC EOF (End Of File) function that is
used to detect whether or not a file-input operation has reached the end of the
available data. An important distinction, however, is that SQL_EOD only returns a
True value after a SQL_Fetch »p435 or SQL_FetchRel »p441 operation has failed as
the result of reaching then end (or beginning) of the available data.

For a complete discussion of this function, see Detecting The End Of Data »p175.

Example

DO
 SQL_Fetch %NEXT_ROW
 IF SQL_EOD THEN EXIT LOOP
 'process a row of data
LOOP

Driver Issues None.
Speed Issues None.
See Also Detecting "No Data At All" »p178

 410

SQL_ErrorClearAll

Summary

Removes all error messages »p181 from the SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

Once error messages have been cleared, they cannot be recovered. Make sure that
your program has examined and handled all errors before using this function.

Syntax

lResult& = SQL_ErrorClearAll

Parameters

None.

Return Values

This function returns the number of errors that were in the SQL Tools Error Stack
before this function was used, i.e. the number of errors that were cleared.

Remarks

See Error Handling »p179 for a complete discussion of this function.

Diagnostics

None.

Example

SQL_ErrorClearAll

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 411

SQL_ErrorClearOne

Summary

Removes one error message »p181 from the SQL Tools Error Stack.

Twin

None

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

Once an error message has been cleared, it cannot be recovered. Make sure that
your program has examined and handled an error before using this function.

Syntax

lResult& = SQL_ErrorClearOne

Parameters

None.

Return Values
This function returns a value of one (1) if an error is cleared, or zero (0) if there were
no errors in the SQL Tools Error Stack when this function was called. In other words,
it is like the SQL_ErrorClearAll »p410 function. It returns the number of errors that
were cleared.

Remarks

See Error Handling »p179 for a complete discussion of this function.

Diagnostics

None.

Example

SQL_ErrorClearOne

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 412

SQL_ErrorColumnNumber

Summary

Returns the Column Number that is associated with the oldest Error Message »p181 in
the SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorColumnNumber

Parameters

None.

Return Values

This function returns negative one (-1) if no column number was associated with the
oldest Error Message »p181 in the SQL Tools Error Stack, or a number between one
(1) and the number of columns in the result set to which the error relates. If there are
no Error Messages in the SQL Tools Error Stack, this function will return zero (0). If
the error is associated with a bookmark »p154 column the return value of this function
can also be zero.

Remarks

See Error Handling In SQL Tools Programs »p179 for a complete discussion of this
function.

Diagnostics

None.

Example

PRINT SQL_ErrorColumnNumber

Driver Issues

None.

Speed Issues

None.

See Also

Error Messages »p181

 413

SQL_ErrorCount

Summary

Returns the number of Error Messages »p181 that are currently in the SQL Tools Error
Stack.

Twin

None

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorCount

Parameters

None.

Return Values

This function will return zero (0) if there are no Error Messages »p181 in the SQL Tools
Error Stack, or a positive number if the stack contains one or more error messages.

Remarks

See Error Handling in SQL Tools Programs »p179 for a complete discussion of this
function..

Diagnostics

None.

Example

IF SQL_ErrorCount > 0 THEN
 'handle error messages
END IF

Driver Issues

None.

Speed Issues

None.

See Also

Error Messages »p181

 414

SQL_ErrorDatabaseNumber

Summary

Returns the database number that is associated with the oldest Error Message »p181
in the SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorDatabaseNumber

Parameters

None.

Return Values

This function will return negative one (-1) if the oldest Error Message »p181 in the SQL
Tools Error Stack is not associated with a database number (as would be the case
with a failed attempt to change the ODBC environment), or a number between one
(1) and the maximum database number specified in the SQL_Initialize »p495
function. If there are no Error Messages in the SQL Tools Error Stack, this function
will return zero (0).

Remarks

See Error Handling in SQL Tools Programs »p179 for a complete discussion of this
function..

Diagnostics

None.

Example

PRINT SQL_ErrorDatabaseNumber

Driver Issues

None.

Speed Issues

None.

See Also

Error Messages »p181

 415

SQL_ErrorFuncName
Summary

Returns the name of the function that is associated with the oldest Error Message

»p181 in the SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

See IMPORTANT NOTES in Remarks below.

Syntax

sResult$ = SQL_ErrorFuncName

Parameters

None.

Return Values

This function will return the name of the function that is associated with the oldest
Error Message »p181 in the SQL Tools Error Stack. This will usually be the name of a
SQL Tools function, but it can also be the name of a sub or function in your program if
you have used the SQL_ErrorSimulate »p426 function. If there are no Error
Messages in the SQL Tools Error Stack, this function will return an empty string.

Remarks

IMPORTANT NOTE: This function always returns the name of a "verbose »p55" SQL
Tools function, even if your program used an "abbreviated »p55" function. For
example, if your program made an error when using the SQL_OpenDB function, the
SQL_ErrorFuncName return value would be SQL_OpenDatabase not SQL_OpenDB

IMPORTANT NOTE: It is entirely possible that the SQL_ErrorFuncName return
value will be the name of a function that your program did not use directly. For
example, if your program uses the SQL_Stmt function and SQL Tools automatically
(internally) uses the SQL_AutoBindCol function to bind the columns in the
statement's result set, an error may be reported for SQL_AutoBindColumn even
though your program did not use that function directly. In order to make
troubleshooting easier, you can use the SQL_Trace »p845 function to determine the
exact source of any error.

See Error Handling in SQL Tools Programs »p179 for a complete discussion of this
function.

Diagnostics

None.

Example

PRINT SQL_ErrorFuncName

 416

Driver Issues

None.

Speed Issues

None.

See Also

Error Messages »p181

 417

SQL_ErrorFunction V1

Summary

This SQL Tools Version 1 function has been replaced by the SQL_ErrorFuncName

»p415 function.

SQL_ErrorFunction should no longer be used.

 418

SQL_ErrorIgnore

Summary

Tells SQL Tools to ignore Error Messages »p181, under certain conditions.

Twin

None

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorIgnore(lDatabaseNumber&, _
 lStatementNumber&, _
 sSQLStates$)

Parameters

lDatabaseNumber
The Database Number of the database where the error(s) should be ignored,
between one (1) and the lMaxDatabaseNumber& value that you specified
with the SQL_Initialize »p495 function. (The default value of
lMaxDatabaseNumber& is two (2) if you use the SQL_Init »p494 function
instead of SQL_Initialize .) Note that you may not use %ALL for this
parameter.

lStatementNumber&
Either 1) The Statement Number of the statement where the error(s) should
be ignored, between zero (0) and the lMaxStatementNumber& value that you
specified with the SQL_Initialize »p495 function. (The default value of
lMaxStatementNumber& is two (2) if you use the SQL_Init »p494 function
instead of SQL_Initialize .) or 2) You may se the value %ALL for this
parameter, to specify that errors should be ignored for Database Number
lDatabaseNumber&, regardless of the Statement Number. See Ignoring
Predictable Errors »p183 for an example.

sSQLStates$
One or more five-character SQL State »p897 strings. If two or more SQL
States are specified, they must be delimited with commas.

Return Values

This function returns %SQL_SUCCESS unless an error like an invalid Database or
Statement number (%ERROR_BAD_PARAM_VALUE) is detected.

Remarks

This function is used to tell SQL Tools not to report Error Messages »p181 with certain
SQL State »p897 values. See Ignoring Predictable Errors »p183 for background
information and an alternate technique.

You must use commas to separate two or more SQL State strings, or this function will

 419

appear to malfunction. For example, if you used the string "1234598765 " instead of
"12345,98765 ", SQL Tools would ignore all Error Messages with SQL States that
were found anywhere in the string "1234598765 ". It would ignore SQL States
12345 , 23459 , 34598 , and so on.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate SQL Tools Error Messages »p181.

Example

See Ignoring Predictable Errors »p183 for several examples.

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 420

SQL_ErrorNativeCode

Summary

Returns the Native Error Code that is associated with the oldest Error Message »p181
in the SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorNativeCode

Parameters

None.

Return Values

This function will return the Native Error Code (see Remarks below) that is
associated with the oldest Error Message »p181 in the SQL Tools Error Stack. If there
are no errors in the stack, this function will return zero (0).

Remarks

A "Native Error Code" is a numeric value that corresponds to an error condition, as
assigned by the program, subprogram, or driver that detected the error. Native
Codes are not standardized in any way, and no lists of Native Codes are provided in
this document.

Native Error Codes can vary greatly. The same SQL State »p897 value may be
associated with different Native Codes from different ODBC Drivers.

If a certain SQL State value can indicate more than one specific error condition, it
may be possible to use the Native Code to determine the cause of the error more
precisely.

If you need to know the exact meaning of a Native Code, it will be necessary for you
to contact the company that originated the database format that you are using.

Diagnostics None.

Example

PRINT SQL_ErrorNativeCode

Driver Issues None.
Speed Issues None.
See Also Error Handling in SQL Tools Programs »p179

 421

SQL_ErrorNumber

Summary

The Error Codes »p180 that is associated with the oldest Error Message »p181 in the
SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorNumber

Parameters

None.

Return Values

This function returns the numeric Error Codes »p180 value that is associated with the
oldest Error Message »p181 in the SQL Tools Error Stack. See Remarks below for
more information.

Remarks

For ODBC Error Messages, the Error Codes »p180 will represent a condition like
%SQL_SUCCESS_WITH_INFO (value 1) or %SQL_ERROR (value -1).

For SQL Tools Error Messages, the Error Code will represent a condition like
%ERROR_BAD_PARAM_VALUE (value 999000030) or %ERROR_STMT_NOT_OPEN
(value 999000034).

See ODBC Error Codes »p895 and SQL Tools Error Codes »p891 for more information,
including a complete list of the possible return values.

Diagnostics

None.

Example

PRINT SQL_ErrorNumber

Driver Issues

None.

Speed Issues: None.

See Also: Error Handling in SQL Tools Programs »p179

 422

SQL_ErrorPending

Summary

Indicates, by returning a Logical True »p912 (-1) or False (zero) value, whether or not
there are any errors in the SQL Tools Error Stack »p181.

Twin

None

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorPending

Parameters

None.

Return Values

This function returns Logical True »p912 (-1) if there are one or more errors in the SQL
Tools Error Stack, or False (zero) if there are no errors in the stack.

Remarks

This function can be used to quickly test whether or not your program needs to
examine the SQL Tools Error Stack for error messages »p181.

Diagnostics
None.

Example

IF SQL_ErrorPending THEN
 'process and clear error message(s)
END IF

Driver Issues

None.

Speed Issues

This is the fastest way to check whether or not any errors have been detected since
your program began running, or since the last time the Error Stack was cleared.

See Also

Error Handling »p179

 423

SQL_ErrorQuickAll

Summary

Returns a string that contains all of the Error Messages »p181 in the SQL Tools Error
Stack, and clears the stack.

Twin

None

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

Once an error message has been cleared, it cannot be recovered. Make sure that
your program examines the return value of this function and handles all of the errors.

Syntax

sResult$ = SQL_ErrorQuickAll

Parameters

None.

Return Values

This function returns a string that contains all of the Error Messages »p181 in the SQL
Tools Error Stack. The individual errors are usually delimited by the "pipe" symbol
("| ").

Remarks

If the string that is returned by this function contains more than one Error Message

»p181, the individual Error Messages will be delimited with the pipe symbol ("| ") unless
the SQL_SetOptionStr »p682(%OPT_ROW_DELIMITER) function has been used to
specify a different "row" delimiter.

Each individual Error Message will be formatted in the manner described for the
SQL_ErrorQuickOne »p424 function.

Diagnostics

None.

Example

SQL_MsgBox SQL_ErrorQuickAll, %MSGBOX_OK

Driver Issues

None.

Speed Issues

None.

See Also Error Handling in SQL Tools Programs »p179

 424

SQL_ErrorQuickOne

Summary

Returns a string that contains the oldest Error Message »p181 in the SQL Tools Error
Stack, and automatically removes that Error Message from the stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

Once an error message has been cleared, it cannot be recovered. Make sure that
your program examines the return value of this function and handles the error.

Syntax

sResult$ = SQL_ErrorQuickOne

Parameters

None.

Return Values

If there are no Error Messages »p181 in the SQL Tools Error Stack, this function
returns an empty string.

If there are one or more Error Messages in the stack, the oldest error will be returned
by this function in string form. See Remarks below for the string's format.

Remarks

Error Messages that are returned by this function will always have the following
format:

Chars 01-12: SQL_ErrorTime in [square brackets]
Chars 14-37: SQL_ErrorFuncName (see note just below)
Chars 39-41: SQL_ErrorDatabaseNumber
Chars 43-45: SQL_ErrorStatementNumber
Chars 47-49: SQL_ErrorColumnNumber
Chars 51-59: SQL_ErrorNumber
Chars 62-66: SQL_State
Chars 68-77: SQL_ErrorNativeCode
Chars 78-80: reserved; currently always "--"
Chars 82+ : SQL_ErrorText (length varies)

This function returns only the first 24 characters of the function name, so the following
function names will be truncated where you see the pipe (|) symbol.

SQL_DatabaseDataTypeCoun|t
SQL_DatabaseDataTypeInfo|Str
SQL_DatabaseDataTypeNumb|er

 425

SQL_GetTableColumnPrivil|eges
SQL_GetTableUniqueColumn|s
SQL_ProcedureColumnInfoS|tr
SQL_ResultColumnBufferPt|r
SQL_ResultColumnIndicato|r
SQL_ResultColumnIndicato|rPtr
SQL_StatementNativeSynta|x
SQL_StatementParameterCo|unt
SQL_TableAutoColumnInfoS|tr
SQL_TableColumnPrivilege|Count
SQL_TableColumnPrivilege|InfoStr
SQL_TableForeignKeyInfoS|tr
SQL_TablePrimaryKeyInfoS|tr
SQL_TablePrivilegeInfoSt|r
SQL_TableStatisticInfoSt|r
SQL_TableUniqueColumnCou|nt
SQL_TableUniqueColumnInf|o
SQL_TableUniqueColumnInf|oStr

In most cases this will not interfere with your ability to determine which function
produced an error. If you need the function's full name, use the
SQL_ErrorFuncName »p415 function, which always returns the entire name.

Diagnostics

None.

Example

SQL_MsgBox SQL_ErrorQuickOne, %MSGBOX_OK

Typical results...

[123456.789] SQL_OpenDatabase 1 -1 -1 9 99000030
#0030 999000030 -- [Perfect Sync][SQL Tools]Bad Pa rameter
Value

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 426

SQL_ErrorSimulate

Summary

Allows your program to add Error Messages »p181 to the SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorSimulate(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&, _
 sFunctionName$, _
 lErrorNumber&, _
 sSQLState$, _
 lNativeError&, _
 sErrorMessage$)

Parameters

All Parameters
You should refer to the corresponding SQL Tools Error function description
for the values that are legal for each parameter. For example, to find out the
legal values for the sFunctionName$ parameter, see SQL_ErrorFuncName

»p415.

Return Values

This function returns the new value of SQL_ErrorCount »p413, after your error has
been added to the stack.

Remarks

You can use this function to simulate errors, and add Error Messages »p181 to the
SQL Tools Error Stack as if they had been detected by SQL Tools.

Diagnostics

None.

Example

None.

Driver Issues

None.

Speed Issues None.
See Also Error Handling in SQL Tools Programs »p179

 427

SQL_ErrorStatementNumber

Summary

Returns the statement number that is associated with the oldest Error Message »p181
in the SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ErrorStatementNumber

Parameters

None.

Return Values

This function will return negative one (-1) if the oldest Error Message »p181 in the SQL
Tools Error Stack is not associated with a statement number (as would be the case
with a failed attempt to open a database), or a number between one (1) and the
maximum statement number specified in the SQL_Initialize »p495 function. If
there are no Error Messages in the SQL Tools Error Stack, this function will return
zero (0)

Remarks

See Error Handling in SQL Tools Programs »p179 a complete discussion of this
function.

Diagnostics

None.

Example

PRINT SQL_ErrorStatementNumber

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 428

SQL_ErrorStr

Summary

Returns Error Message »p181 values from the SQL Tools Error Stack in a "random
access" manner.

Twin

None

Family

Error/Trace Family »p248

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_ErrorStr(lRecordNumber&, _
 lInfoType&)

Parameters

lRecordNumber&
This parameter must be a number between one (1) and the number of Error
Messages that are currently in the SQL Tools Error Stack. (A better name for
this parameter might have been lErrorMessageNumber& but that could be
confused with other error-related values.)

lInfoType&
See Remarks below for valid values.

Return Values

This function returns a string that corresponds to the requested property of the
requested Error Message »p181. If an invalid value if specified for either parameter, an
empty string is returned.

Remarks

Most SQL Tools error-related functions work with either 1) the oldest Error Message

»p181 in the SQL Tools Error Stack, or 2) the entire Error Stack. Unlike other
functions, the SQL_ErrorStr function can be used to access any property of any
Error Message that is currently in the stack. You can think of the Error Stack as a
database table that is normally accessed row-by-row. The SQL_ErrorStr function
gives your program "random access" to error information.

The lInfoType& parameter must have one of the following values:

%ERROR_COL

The SQL_ErrorColumnNumber »p412 value.

%ERROR_DB

The SQL_ErrorDatabaseNumber »p414 value.

 429

%ERROR_FUNCTION

The SQL_ErrorFuncName »p415 value.

%ERROR_NATIVE_CODE

The SQL_ErrorNativeCode »p420 value.

%ERROR_NUMBER

The SQL_ErrorNumber »p421 value.

%ERROR_STMT

The SQL_ErrorStatementNumber »p427 value.

%ERROR_SQL_STATE

The SQL_State »p707 value.

%ERROR_TEXT

The SQL_ErrorText »p430 value.

%ERROR_TIME

The SQL_ErrorTime »p432 value.

Diagnostics

None.

Example

PRINT SQL_ErrorStr(3,%ERROR_FUNCTION)

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 430

SQL_ErrorText IMPROVED

Summary

Returns either 1) the text message that is associated with the oldest Error Message

»p181 in the SQL Tools Error Stack or 2) the text message that is associated with a
specific Error Code.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_ErrorText

...or ...

sResult$ = SQL_ErrorText(%INFO_LABEL, _
 lErrorCode&)

Parameters

%INFO_LABEL and lErrorCode&
If these parameters are omitted, the text message that is associated with the
oldest Error Message »p181 in the SQL Tools Error Stack will be returned. If
you use %INFO_LABEL and a valid number for lErrorCode&, the
corresponding Info/Attribute Labels »p193 will be returned.

For more information about using %INFO_LABEL and %INFO_FORMAT see
Info/Attribute Labels »p193.

Return Values

This function is usually used to obtain the text message that is associated with the
oldest Error Message »p181 in the SQL Tools Error Stack. If the text came from an
error that your program simulated (see SQL_ErrorSimulate »p426), the text was
formatted by your program.

If the text came from an ODBC Driver, the ODBC Driver Manager, or SQL Tools, it
will usually have the following format:

[Company][Program] Message

For example, here is a typical message:

[Microsoft][ODBC Driver Manager] Information type o ut of
range

 431

And here is a typical message from SQL Tools:

[Perfect Sync][SQL Tools] Bad Parameter Value

 If you specify an Error Code as in these examples. ..

sResult$ = SQL_ErrorText(%INFO_LABEL,%SQL_SUCCESS_W ITH_INFO)
sResult$ = SQL_ErrorText(%INFO_LABEL,%ERROR_INVALID _FILENAME)
sResult$ = SQL_ErrorText(%INFO_LABEL,%ERROR_BAD_PAR AM_VALUE)

...the return value will be a string like "SQL_SUCCESS_WITH_INFO",
"ERROR_INVALID_FILENAME", or "ERROR_BAD_PARAM_VALUE". See Info/Attribute
Labels »p193 for more information.

Remarks

See Error Handling in SQL Tools Programs »p179 for a complete discussion of this
function.

Diagnostics

None.

Example

SQL_MsgBox SQL_ErrorText, %MSGBOX_OK

Typical results...

[Perfect Sync][SQL Tools] DB Not Open

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 432

SQL_ErrorTime

Summary

Returns the time that the oldest Error Message »p181 in the SQL Tools Error Stack
was added to the stack, in seconds and fractional seconds past midnight, in string
form.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_ErrorTime

Parameters

None.

Return Values

This function returns a string in the format "######.### " which represents the
number of seconds and fractional seconds past midnight that the oldest Error
Message »p181 in the SQL Tools Error Stack was originally added to the stack.

Remarks

See Error Handling in SQL Tools Programs »p179 for a complete discussion of this
function.

Diagnostics

None.

Example

PRINT SQL_ErrorTime

Typical results...

123456.789

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 433

SQL_Fail NEW

Summary

Recognizes %SQL_SUCCESS and %SQL_SUCCESS_WITH_INFO as being "okay"
conditions, and all other Error Codes »p180 as being "fail" conditions.

Twin

None

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_Fail(lErrorCode&)

Parameters

lErrorCode&
A numeric value that represents an Error Code »p180.

Return Values

This function returns False (zero) if the value of lErrorCode& is %SQL_SUCCESS or
%SQL_SUCCESS_WITH_INFO, or Logical True »p912 (-1) if lErrorCode& is any other
value.

Remarks

This is a programming-convenience function similar to SQL_Okay »p529.

Diagnostics

None

Example

lResult& = SQL_Stmt(%IMMEDIATE, "SELECT * FROM Addr essBook")
IF SQL_Fail(lResult&) THEN
 'the statement failed for some reason
END IF

This code would do exactly the same thing...

IF SQL_Fail(SQL_Stmt(%IMMEDIATE, "SELECT * FROM Add ressBook"))
THEN
 'the statement failed for some reason
END IF

...as would this code...

 434

IF NOT SQL_Okay »p529(SQL_Stmt(%IMMEDIATE, "SELECT * FROM
AddressBook")) THEN
 'the statement failed for some reason
END IF

Driver Issues

None.

Speed Issues

None.

See Also

SQL_Okay »p529

 435

SQL_Fetch IMPROVED

Summary

Retrieves one row of data (or one rowset if a MultiRow cursor »p210 is being used)
from the result set »p144 that was generated by a SQL statement »p123.

Twin

SQL_FetchResult »p445

Family

Statement Family »p240

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_Fetch(OPTIONAL lWhichRow&, _
 OPTIONAL sIgnoreErrors$)

Parameters

OPTIONAL lWhichRow&
If you omit this parameter or use a value of zero (0), %NEXT_ROW is assumed.
Otherwise, use 1) a number that specifies a specific row number such 13 for
as row 13 , or a 2) constant that specifies a "named" row: %FIRST_ROW,
%NEXT_ROW, %PREV_ROW, or %LAST_ROW.

OPTIONAL sIgnoreErrors$

A string containing one or more SQL States »p897 that tells this function to
ignore a certain error or errors when the operation is performed. See
Ignoring Predictable Errors »p183 for more information.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if a row of
data (or a rowset) is successfully retrieved from the result set.

If there is no data to retrieve (for example, if the result set is empty or if the final row
of data has already been retrieved), this function returns %SQL_NO_DATA (value
100).

If an error is detected, this function can return other Error Codes »p180.

Remarks

The most common (and most widely-supported) use of this function is...

SQL_Fetch %NEXT_ROW

...which operates in a manner that is similar to the BASIC Line Input function. If
no rows have yet been read from the result set, the first row is automatically retrieved.
If one or more rows have already been retrieved from the result set, the next row is
retrieved from the current cursor position.

 436

Because the lWhichRow& parameter is optional and %NEXT_ROW is assumed, this
code would do exactly the same thing:

SQL_Fetch

If the ODBC driver »p76 that you are using supports them, you can also use the
following options:

SQL_Fetch %PREV_ROW (retrieves the previous row)
SQL_Fetch %FIRST_ROW (retrieves row number one)
SQL_Fetch %LAST_ROW (retrieves the final row)
SQL_Fetch RowNumber (retrieves row RowNumber)

You can, of course, experimentally determine whether or not the various SQL_Fetch
options are supported by your ODBC driver.

Or you can use the SQL_StmtAttrib »p719

(%DB_STATIC_CURSOR_ATTRIBUTES2) function to programmatically determine
whether or not an option is available. (If you have used the SQL_StmtMode »p725

(%STMT_ATTR_CURSOR_TYPE) function to select a non-static cursor, you should
use the appropriate %DB_type_CURSOR_ATTRIBUTES2 option.)

For more information about the SQL_Fetch function, see Fetching Rows From
Result Sets »p146.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

DO
 SQL_Fetch %NEXT_ROW
 IF SQL_EOD Then EXIT LOOP
LOOP

Driver Issues

Some drivers do no support options other than %NEXT_ROW.

Speed Issues

SQL_Fetch %NEXT_ROW can be significantly faster than any of the other options. If
you can limit your program to using %NEXT_ROW you will probably obtain the
maximum speed that is available from your ODBC driver. In fact, if you limit your
program to %NEXT_ROW you can use the SQL_StmtMode »p725 function to actually
disable other types of fetching, and your program will (usually) run faster.

See Also

Fetching Rows From Result Sets (Basic) »p146, Fetching Rows From Result Sets
(Advanced) »p152, Relative Fetches »p157

 437

SQL_FetchPos

Summary

Returns the current row number (the "position") of a Result Set »p144 that was created
with a SELECT statement, i.e. the row number of the most recent fetch »p146
operation.

Twin

SQL_FetchPosition »p440

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

Certain types of fetch operations can cause the SQL_FetchPos function to lose
track of the current row number, and your program may need to use the
SQL_SyncFetchPos »p737 function to re-synchronize the row-counting system. See
Remarks below for complete information.

This function should be used only with Static Cursors. See Remarks below for
complete information.

Syntax

lResult& = SQL_FetchPos

Parameters

None.

Return Values

This will function return one of the following values:

1) A number greater than zero, indicating the row number of the most recent
fetch »p146 operation.

2) Zero (0) if no fetch operation has yet been performed on the statement, or
if the most recent fetch operation placed the statement at the Beginning Of
Data point (the point before row 1). Zero will also be returned if the current
statement is not a SELECT statement.

3) Negative one (-1) if the last fetch operation failed because the statement
reached the End Of Data »p175 point. This indicates that "there is no current
row because the last fetch failed".

4) Negative two (-2) if the current row is not known. See Remarks below.

Remarks

The SQL_FetchPos and SQL_FetchPosition function automatically track your
program's use of the SQL_Fetch »p435, SQL_FetchResult »p445, SQL_FetchRel

»p441, and SQL_FetchRelative »p444 functions, in order to keep track of each

 438

SELECT statement's current row number. Whenever your program uses one of
those functions, SQL Tools will attempt to determine the fetch operation's effect on
the result set, and which row number was fetched.

IMPORTANT NOTE: We say "attempt" because certain types of fetch operations will
cause SQL Tools to lose track of the current row number. For example, if you use
SQL_Fetch %LAST_ROW the very last row of the result set »p144 will be fetched, but
there is no way for SQL Tools to find out the row number of that row. (ODBC drivers

»p76 do not provide a function that reliably returns the number of rows in a result set.
For more information see Why You Can't Use SQL_ResRowCount for SELECT
Statements »p174.)

These are the four operations that can cause SQL Tools to lose track of the current
row number:

SQL_Fetch %LAST_ROW (see above)

SQL_Fetch row number using a row number that does not exist, i.e. that
is larger than the highest-numbered row in the result set. This effectively
moves the statement to the End Of Data position.

SQL_FetchRel using a positive offset value that causes the fetch to fail.
For example, using an offset of +10 when the result set only has two items.
This too moves the statement to the End Of Data position.

SQL_FetchRel using a bookmark. This moves the cursor to some point in
the middle of the result set, but it does not allow SQL Tools to determine the
row number.

If any of those functions (or their verbose »p55 equivalents) are used, SQL Tools will
lose track of the current row number and the SQL_FetchPos function will begin
returning negative two (-2). So before performing those operations, you may want to
determine the row number yourself. For example, if your program has counted the
rows in the result set, it already knows the row number that be fetched by a
%LAST_ROW operation. If that is the case, you can use SQL_Fetch %LAST_ROW
and then use the SQL_SyncFetchPos »p736 function to tell SQL Tools what the row
number is after the fetch. Doing that will re-synchronize SQL Tools with the
SELECT statement, and allow you to continue using the SQL_FetchPos function
normally.

Another method of re-synchronizing the row count is to perform a fetch to a known
row number. For example, if SQL Tools loses track of the row number but your
program then performs a SQL_Fetch %FIRST_ROW operation, SQL Tools will
automatically re-synchronize to row 1. The same is true for "absolute" fetches that
return a specific row number, such as SQL_Fetch 2 , as long as the fetch is
successful.

Tip: If your program uses bookmarks, each time you use the SQL_Bkmk »p273
function you should also use the SQL_FetchPos function to get the row number
that goes with the bookmark string. Then your program should store both the
bookmark and the row number. That way, when you use SQL_FetchRel to return
to that bookmark you can immediately use SQL_SyncFetchPos to re-synchronize
the row number.

 439

IMPORTANT NOTE: SQL Tools uses Static Cursors by default, so unless you have
purposely created a Dynamic Cursor you don't need to be concerned about this next
potential problem. (For information about Static and Dynamic Cursors, see the
section of this document that is titled Problems with Scrollable Cursors »p150.) If you
use the SQL_FetchPos function with a Dynamic Cursor, it is very likely to provide
incorrect row numbers. For example, let's say that you have a Dynamic result set
that returned two rows of data. You fetch the first row, and the SQL_FetchPos
function returns 1 to indicate that the first row was fetched. But imagine that in the
meantime, another program has added a row to the database that matches your
SELECT statement. Because the cursor is Dynamic, the new row might be added
to your result set before the first row, before the second row, or after the second row.
So "row 1" isn't necessarily the first row any more, and the return value of the
SQL_FetchPos function is no longer valid. Row Numbers are not meaningful with
Dynamic Cursors, because unlike Static Cursors, the Row Numbers can change!

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "row 1". It can, however, generate ODBC Error Messages »p181 and SQL
Tools Error Messages.

Example

DO
 SQL_Fetch %NEXT_ROW
 IF SQL_EOD THEN EXIT LOOP
 sRowContents$ = SQL_ResColString(%ALL_COLs)
 lRowNumber& = SQL_FetchPos
LOOP

Driver Issues

None.

Speed Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

See Also

Result Sets »p144

 440

SQL_FetchPosition

Syntax

lResult& = SQL_FetchPosition(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_FetchPosition is identical to SQL_FetchPos »p437. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 441

SQL_FetchRel

Summary

Performs a relative fetch »p157 operation on a result set »p144, according to the number
of rows specified by the lOffset& parameter. This function is also used for bookmark

»p154 fetches, which can have an optional lOffset& value.

Twin

SQL_FetchRelative »p444

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_FetchRel(sBookmark$, _
 lOffset&)

Parameters

sBookmark$
An empty string, or a bookmark string from the SQL_Bkmk »p273 function.

lOffset&
The row where the fetch »p146 operation should take place, in terms of the
number of rows 1) before or after the current row, or 2) before or after the row
specified by the sBookmark$ parameter.

Return Values

This function returns Error Codes »p180 that are identical to those returned by the
SQL_Fetch »p435 function. To avoid errors when this document is updated,
information that is common to both functions is not duplicated here.

Remarks

For background information, see SQL_Fetch »p435 and Relative Fetch Operations

»p157.

A "relative" fetch operation is a fetch which is based on an "offset" value, which can
be zero (0) or a positive or negative number of rows.

There are two basic ways to use this function:

If the sBookmark$ parameter is an empty string , this function fetches the row that
is lOffset& rows from the current cursor position. For example, if the cursor was
located on row 100 of a result set and a "+10 " relative fetch was performed, row 110
would be fetched. If a "-3 " fetch was then performed, row 107 would be retrieved.
Relative fetches that do not use bookmarks are always performed relative to the
cursor location at the time of the operation, not relative to the original cursor location.

If you attempt to perform a relative fetch that refers to a row that is before the

 442

beginning or after the end of the result set, the SQL_FetchRel function will return
%SQL_NO_DATA and the SQL_EOD »p409 function will return Logical True »p912 until a
valid row is fetched. Also, the SQL_FetchPos »p437 function will return negative two
(-2).

Not all ODBC drivers support relative fetches. You can determine the types of
fetches that your driver supports 1) experimentally, or 2) by examining the result of
the SQL_DBInfo »p338(%DB_type_CURSOR_ATTRIBUTES1) function, where type
is the type of cursor being used (STATIC , DYNAMIC, etc).

If the sBookmark$ string is not an empty string , it must contain a string that was
produced by the SQL_Bkmk »p273 or SQL_Bookmark »p275 function. If an invalid string
is used, Application Errors are possible. If a valid bookmark string is used, this
function will fetch the row that is lOffset& rows from the bookmarked row. For
example, if an lOffset& value of zero (0) was used, the originally-bookmarked row
would be retrieved. If a value of +1 was used for lOffset&, the row immediately after
the bookmarked row would be retrieved. If a value of -6 was used, the row that was
six rows before the bookmark would be retrieved. Relative fetches that use
bookmarks are always performed relative to the bookmark's location, not the current
cursor location.

Please note that the use of bookmark-based fetches affects the SQL_FetchPos

»p437 function's ability to determine the current row number.

If you attempt to perform a relative-bookmark fetch that refers to a row that is before
the beginning or after the end of the result set, the SQL_FetchRel function will
return %SQL_NO_DATA and the SQL_EOD »p409 function will return Logical True until a
valid row is fetched.

Not all ODBC drivers support bookmark-based fetches, and others may support
bookmark fetches but require that the lOffset& value be zero (0). You can determine
the types of fetches that your driver supports 1) experimentally, or 2) by examining
the result of the SQL_DBInfo »p338(%DB_type_CURSOR_ATTRIBUTES1) function,
where type is the type of cursor being used (STATIC, DYNAMIC, etc).

For more information, see Bookmarks »p154.

C, C++, AND DELPHI PROGRAMMERS PLEASE NOTE: Because they can contain
ASCII character zero (CHR$(0)), bookmarks must be passed to this function as OLE
strings, not ASCIIZ strings. BASIC programmers do not need to worry about this
distinction.

Diagnostics

This function returns diagnostic information that is identical to that returned by the
SQL_Fetch »p435 function. To avoid errors when this document is updated,
information that is common to both functions is not duplicated here.

Example

'Get the row that is 100 rows
'after the current cursor location.
SQL_FetchRel "", 100

'(For an example of using SQL_FetchRel
'with bookmarks, see SQL_Bkmk.)

 443

Driver Issues

The Microsoft Access 97 ODBC Driver does not support bookmarks if ODBC 2.0
behavior is used, i.e. when an lODBCVersion& value of 2 is used for the
SQL_Initialize »p495 function.

This function is supported by most other ODBC Drivers, but not all.

Speed Issues

See Bookmarks »p154 for a discussion of speed issues related to bookmarks.

See Also

Relative Fetches »p157, Bookmarks »p154

 444

SQL_FetchRelative

Syntax

lResult& = SQL_FetchRelative(lDatabaseNumber&, _
 lStatementNumber&, _
 sBookmark$, _
 lOffset&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_FetchRelative is identical to SQL_FetchRel »p441. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 445

SQL_FetchResult IMPROVED

Syntax

lResult& = SQL_FetchResult(lDatabaseNumber&, _
 lStatementNumber&, _
 OPTIONAL lWhichRow&, _
 OPTIONAL sIgnoreErrors$)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_FetchResult is identical to SQL_Fetch »p435. To avoid errors when this
document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 446

SQL_FuncAvail

Summary

Reports whether or not your ODBC driver »p76 supports a given function.

Twin

SQL_FunctionAvailable »p449

Family

Database Info/Attrib Family »p235

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_FuncAvail(lFunctionID&)

Parameters

lFunctionID&
One of the 81 different %SQL_SQL constants. See Remarks below for
details.

Return Values

This function returns Logical True »p912 (-1) if the specified function is supported by
your ODBC driver, or False (0) if it is not.

Remarks

With very few exceptions, if an ODBC driver supports a function, SQL Tools allows
you to use that function. It is sometimes necessary, therefore, to determine whether
or not and ODBC driver supports a certain function.

For example, you can use SQL_FuncAvail(%SQL_SQLTABLEPRIVILEGES) to
determine whether or not your ODBC driver supports "table privileges". If it does not
(i.e. if the function returns False) then the SQL Tools functions that are related to
table privileges (SQL_TblPrivCount , etc.) are effectively disabled by the driver.

Another example: whenever SQL Tools opens a database, it automatically uses the
SQL_FuncAvail(%SQL_SQLFETCHSCROLL) function to determine whether or not to
allow your programs to attempt "fetch scrolling", i.e. the use of SQL_Fetch without
%NEXT_ROW.

Generally speaking, it is safe to assume that virtually all ODBC drivers support the list
of %SQL_SQL constants that are listed under "ODBC CORE COMPLIANCE" below. If
your program uses more advanced features (Level 1 or 2) and is likely to be used
with more than one ODBC driver, you can use the SQL_FuncAvail function to
programmatically determine whether or not certain features are supported.

We suggest that you consult the Microsoft ODBC Software Developer Kit »p915 for
precise information about the API-level functions that are affected by each of these
values:

 447

ODBC CORE COMPLIANCE...

%SQL_SQLALLOCCONNECT
%SQL_SQLALLOCENV
%SQL_SQLALLOCSTMT
%SQL_SQLBINDCOL
%SQL_SQLBULKOPERATIONS
%SQL_SQLCANCEL
%SQL_SQLCOLATTRIBUTE
%SQL_SQLCONNECT
%SQL_SQLDESCRIBECOL
%SQL_SQLDISCONNECT
%SQL_SQLERROR
%SQL_SQLEXECDIRECT
%SQL_SQLEXECUTE
%SQL_SQLFETCH
%SQL_SQLFREECONNECT
%SQL_SQLFREEENV
%SQL_SQLFREESTMT
%SQL_SQLGETCURSORNAME
%SQL_SQLNUMRESULTCOLS
%SQL_SQLPREPARE
%SQL_SQLROWCOUNT
%SQL_SQLSETCURSORNAME
%SQL_SQLSETPARAM
%SQL_SQLTRANSACT

COMPLIANCE LEVEL 1 AND ABOVE...

%SQL_SQLCOLUMNS
%SQL_SQLDRIVERCONNECT
%SQL_SQLGETCONNECTOPTION
%SQL_SQLGETDATA
%SQL_SQLGETFUNCTIONS
%SQL_SQLGETINFO
%SQL_SQLGETSTMTOPTION
%SQL_SQLGETTYPEINFO
%SQL_SQLPARAMDATA
%SQL_SQLPUTDATA
%SQL_SQLSETCONNECTOPTION
%SQL_SQLSETSTMTOPTION
%SQL_SQLSPECIALCOLUMNS
%SQL_SQLSTATISTICS
%SQL_SQLTABLES

COMPLIANCE LEVEL 2 AND ABOVE...

%SQL_SQLLOADBYORDINAL (NOT SUPPORTED BY ODBC 3.x+)
%SQL_SQLALLOCHANDLE
%SQL_SQLALLOCHANDLESTD
%SQL_SQLBINDPARAM
%SQL_SQLBINDPARAMETER
%SQL_SQLBROWSECONNECT
%SQL_SQLCLOSECURSOR
%SQL_SQLCOPYDESC
%SQL_SQLDATASOURCES

 448

%SQL_SQLDESCRIBEPARAM
%SQL_SQLDRIVERS
%SQL_SQLENDTRAN
%SQL_SQLEXTENDEDFETCH
%SQL_SQLFETCHSCROLL
%SQL_SQLFREEHANDLE
%SQL_SQLGETCONNECTATTR
%SQL_SQLGETDESCFIELD
%SQL_SQLGETDESCREC
%SQL_SQLGETDIAGFIELD
%SQL_SQLGETDIAGREC
%SQL_SQLGETENVATTR
%SQL_SQLGETSTMTATTR
%SQL_SQLMORERESULTS
%SQL_SQLNATIVESQL
%SQL_SQLNUMPARAMS
%SQL_SQLPARAMOPTIONS
%SQL_SQLPROCEDURECOLUMNS
%SQL_SQLPROCEDURES
%SQL_SQLSETCONNECTATTR
%SQL_SQLSETDESCFIELD
%SQL_SQLSETDESCREC
%SQL_SQLSETENVATTR
%SQL_SQLSETPOS
%SQL_SQLSETSCROLLOPTIONS
%SQL_SQLSETSTMTATTR
%SQL_SQLTABLEPRIVILEGES

SQL Tools Extensions...

%SQL_SQLTOOLSTRACE

Diagnostics

This function does not return Error Codes »p180, but it can generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

IF SQL_FuncAvail(%SQL_SQLPROCEDURES) = 0 THEN
 'ODBC driver does not support
 'stored procedures.
END IF

Driver Issues

None. All ODBC drivers are required to support this function.

Speed Issues

None.

See Also

Database Info/Attrib Family »p235

 449

SQL_FunctionAvailable

Syntax

lResult& = SQL_FunctionAvailable(lDatabaseNumber&, _
 lFunctionID&)

Except for the lDatabaseNumber& parameter, SQL_FunctionAvailable is
identical to SQL_FuncAvail »p446. To avoid errors when this document is updated,
and to reduce the size of the Help Files, information that is common to both functions
is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 450

SQL_GetDatabaseDataTypes

Syntax

lResult& = SQL_GetDatabaseDataTypes(OPTIONAL lDatabaseNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetDatabaseDataTypes is
identical to SQL_GetDBDataTypes »p452. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 451

SQL_GetDataSources

Summary

Refreshes cached Datasource »p305 information. (See Cached Information »p200.)

Twin

None.

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetDataSources

Parameters

None.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
Datasource information is successfully refreshed, or an Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

SQL_GetDataSources

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also

SQL_DatasourceInfoStr »p306, SQL_DatasourceCount »p305

 452

SQL_GetDBDataTypes

Summary

Refreshes cached Datasource-dependent Data Type »p108 information. (See Cached
Information »p200.)

Twin

SQL_GetDatabaseDataTypes »p450

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetDBDataTypes

Parameters

None.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
Datasource-dependent Data Type »p108 information is successfully refreshed, or an
Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

SQL_GetDBDataTypes

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also

Datasource-dependent Data Types »p108

 453

SQL_GetDrivers

Summary

Refreshes cached ODBC Driver »p76 information. (See Cached Information »p200.)

Twin

None

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetDrivers

Parameters

None.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the ODBC
Driver »p76 information is successfully refreshed, or an Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

SQL_GetDrivers

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also

ODBC Drivers »p76

 454

SQL_GetProcCols

Summary

Refreshes cached information about the columns that a Stored Procedure »p208 uses.
(See Cached Information »p200.)

Twin

SQL_GetProcedureColumns »p455

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetProcCols(lProcedureNumber&)

Parameters

lProcedureNumber&
A number between one (1) and the number of Stored Procedures »p208 that a
database contains, as returned by the SQL_ProcCount »p567 function. (Keep
in mind that if you are refreshing this value you also may need to use
SQL_GetProcs »p457 to refresh the SQL_ProcCount »p567 value.)

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the Stored
Procedure »p208 Column information is successfully refreshed, or an Error Code »p180 if
it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'Refresh the column information for stored procedur e #3.
SQL_GetProcCols 3

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also Stored Procedures »p208

 455

SQL_GetProcedureColumns

Syntax

lResult& = SQL_GetProcedureColumns(lDatabaseNumber& , _
 lProcedureNumber &)

Except for the lDatabaseNumber& parameter, SQL_GetProcedureColumns is
identical to SQL_GetProcCols »p454. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 456

SQL_GetProcedures

Syntax

lResult& = SQL_GetProcedures(lDatabaseNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetProcedures is identical to
SQL_GetProcs »p457. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 457

SQL_GetProcs

Summary

Refreshes cached information about the Stored Procedures »p208 that a database
contains. (See Cached Information »p200.)

Twin
SQL_GetProcedures »p456

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetProcs

Parameters

None.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the Stored
Procedure »p208 information is successfully refreshed, or an Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

SQL_GetProcs

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also

Stored Procedure »p208

 458

SQL_GetTableAutoColumns

Syntax

lResult& = SQL_GetTableAutoColumns(lDatabaseNumber& , _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTableAutoColumns is
identical to SQL_GetTblACols »p468. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 459

SQL_GetTableColumnPrivileges

Syntax

lResult& = SQL_GetTableColumnPrivileges(lDatabaseNu mber&, _
 lTableNumbe r&, _
 lColumnNumb er&)

Except for the lDatabaseNumber& parameter, SQL_GetTableColumnPrivileges
is identical to SQL_GetTblColPrivs »p469. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 460

SQL_GetTableColumns

Syntax

lResult& = SQL_GetTableColumns(lDatabaseNumber&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTableColumns is identical
to SQL_GetTblCols »p471. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 461

SQL_GetTableForeignKeys

Syntax

lResult& = SQL_GetTableForeignKeys(lDatabaseNumber& , _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTableForeignKeys is
identical to SQL_GetTblFKeys »p472. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 462

SQL_GetTableIndexes

Syntax

lResult& = SQL_GetTableIndexes(lDatabaseNumber&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTableIndexes is identical
to SQL_GetTblIndexes »p473. To avoid errors when this document is updated, and
to reduce the size of the Help Files, information that is common to both functions is
not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 463

SQL_GetTableInfo

Syntax

lResult& = SQL_GetTableInfo(OPTIONAL lDatabaseNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTableInfo is identical to
SQL_GetTblInfo »p475. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 464

SQL_GetTablePrimaryKeys

Syntax

lResult& = SQL_GetTablePrimaryKeys(lDatabaseNumber& , _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTablePrimaryKeys is
identical to SQL_GetTblPKeys »p478. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 465

SQL_GetTablePrivileges

Syntax

lResult& = SQL_GetTablePrivileges(lDatabaseNumber&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTablePrivileges is
identical to SQL_GetTblPrivs »p479. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 466

SQL_GetTableStatistics NEW

Syntax

lResult& = SQL_GetTableStatistics(lDatabaseNumber&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTableStatistics is
identical to SQL_GetTblStats »p480. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 467

SQL_GetTableUniqueColumns

Syntax

lResult& = SQL_GetTableUniqueColumns(lDatabaseNumbe r&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_GetTableUniqueColumns is
identical to SQL_GetTblUCols »p481. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 468

SQL_GetTblACols

Summary

Refreshes cached information »p200 about a table's AutoColumns »p202.

Twin

SQL_GetTableAutoColumns »p458

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetTblACols(lTableNumber&)

Parameters

lTableNumber&
The table number of the table that should have its AutoColumn »p202
information refreshed, between one (1) and the number that is returned by
the SQL_TblCount »p790 function.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
AutoColumn information is successfully refreshed, or an Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'refresh the AutoColumn
'info for table #7.
SQL_GetTblACols 7

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also

AutoColumns »p202

 469

SQL_GetTblColPrivs

Summary

Refreshes cached Column Privilege »p206 information. (See Cached Information »p200

.)

Twin

SQL_GetTableColumnPrivileges »p459

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetTblColPrivs(lTableNumber&, _
 lColumnNumber&)

Parameters

lTableNumber&
The table number that contains the column that should have its column
privilege information refreshed, between one (1) and the number that is
returned by the SQL_TblCount »p790 function.

lColumnNumber&
The column number of the column that should have its column privilege
information refreshed, between one (1) and the number that is returned by
the SQL_TblColCount »p774 function.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the column-
privilege »p206 information is successfully refreshed, or an Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'refresh the privilege information
'for table 17, column 88.
SQL_GetTblColPrivs 17, 88

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

 470

Speed Issues
For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also

Column Privileges »p206

 471

SQL_GetTblCols

Summary

Refreshes cached information about a table's columns. (See Cached Information

»p200.)

Twin

SQL_GetTableColumns »p460

Family

Get Info Family »p250

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_GetTblCols(lTableNumber&)

Parameters

lTableNumber&
The number of the table that should have its column information refreshed,
between one (1) and the number that is returned by the SQL_TblCount »p790
function.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the table's
column information is successfully refreshed, or an Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'Refresh the column information
'for table #12.
SQL_GetTblCols 12

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also Tables, Rows, and Columns »p85

 472

SQL_GetTblFKeys

Summary

Refreshes cached information about a table's Foreign Keys »p205. (See Cached
Information »p200.)

Twin

SQL_GetTableForeignKeys »p461

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetTblFKeys(lTableNumber&)

Parameters

lTableNumber&
The number of the table that should have its Foreign Key information
refreshed, between one (1) and the number returned by the SQL_TblCount

»p790 function.

Return Values

This function returns %SQL_SUCCESS if the table's Foreign Key information is
successfully refreshed, or an Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'Refresh the foreign key
'info for table #928.
SQL_GetTblFKeys 928

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also Foreign Keys »p205

 473

SQL_GetTblIndexes

Summary

Refreshes cached information about a table's Indexes »p201. (See Cached
Information »p200.)

Twin

SQL_GetTblIndexes »p473

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetTblIndexes(lTableNumber&)

Parameters

lTableNumber&
The number of the table that should have its Index »p201 information
refreshed, between one (1) and the number that is returned by the
SQL_TblCount »p790 function.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the table's
Index information is successfully refreshed, or an Error Code »p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

Please note that the phrase "refreshing a table's indexes" is not meant to imply that
this function changes the database in any way. Indexes themselves never need to be
"refreshed" unless a database is damaged, and this function cannot be used to repair
a damaged database. This function simply refreshes the information about indexes
that SQL Tools has cached internally.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'Refresh the index
'info for table #2.
SQL_GetTblIndexes 2

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

 474

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also

Indexes »p201

 475

SQL_GetTblInfo

Summary

Loads information (or refreshes cached information »p200) about a database's tables.

Twin

SQL_GetTableInfo »p463

Family

Get Info Family »p250

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_GetTblInfo

Parameters

None.

Return Values
This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
database's table information is successfully loaded or refreshed, or an Error Code

»p180 if it is not.

Remarks

For a general discussion, see Cached Information »p200.

If your database contains a very large number of tables, or if you are accessing the
database through a slow network connection, or if you are using a relatively slow
computer or hard drive, or if your computer does not have enough RAM to allow SQL
Tools to store Table Info in memory, this function can take a very long time to
execute. And that can cause other SQL Tools Info functions (many of which use
SQL_GetTblInfo internally) to take a very long time to execute.

For example, one SQL Tools user reported that the SQL_TblInfoStr »p808 function
was "hanging" when in fact it was simply taking a very long time to finish its work.
Their database contained well over 20,000 tables, and it took SQL Tools nearly an
hour to retrieve, analyze, and cache the requested data.

Fortunately, there are several different ways to speed up the SQL_GetTblInfo
function.

By default, the SQL_GetTblInfo function automatically retrieves information about
all types of tables. It is possible to tell SQL Tools to only retrieve Info about certain
types of tables by using this code:

SQL_SetOptionStr %OPT_TABLE_TYPES, types

...where types is a string that contains one or more table types. For example, using

 476

this code:

SQL_SetOption %OPT_TABLE_TYPES, "TABLE"

...would tell SQL Tools to ignore System Tables, Views, Aliases, and so on. Only
information for tables with the type "TABLE" would be retrieved.

You must specify table types in UPPER CASE, and if more than one type is specified
you must separate them with commas. Do not add leading or trailing spaces.

IMPORTANT NOTE: You must change the value of the %OPT_TABLE_TYPES option
very early in your program, before your program uses any Info function of any type.
Failure to do so will result in the new option setting being ignored. We suggest that
you set this option's value before you open a database, to ensure that the requested
value will be used whenever information about the database is requested.

It is also possible to use these options...

SQL_SetOptionStr %OPT_TABLE_SCHEMA, schema
SQL_SetOptionStr %OPT_TABLE_CATALOG, catalog

...to tell the SQL_GetTblInfo function to retrieve Info for only one table, one
schema, one catalog, or any combination of those values. (Another name for a
schema is an "owner", and another name for a catalog is a "qualifier". Consult your
database documentation for more information.) Unlike the %OPT_TABLE_TYPES
option, these three options cannot accept comma-delimited lists of values. It is not
usually necessary to use these options, but they are provided for special
circumstances.

For example, if you have used the SQL_OpenDB »p536 function to open a Sybase
database, you may find that the various SQL Tools Info functions will return
information about several other "related" Sybase databases. In that case, you may
need to use the %OPT_TABLE_SCHEMA option to tell SQL Tools to only retrieve the
desired information, and ignore all of the other databases.

IMPORTANT NOTE: You must change the values of these %OPT_TABLE_ options
very early in your program, before your program uses any Info function of any type.
Failure to do so will result in the new option settings being ignored. We suggest that
you set these values before you open a database, to ensure that the requested
values will be used whenever information about the database is requested.

The SQL_TblInfoStr »p808 function can be used to obtain a table's type, name,
schema name and catalog name. During development and testing you may need to
use empty strings for all of the %OPT_TABLE_ options so that you can obtain the
necessary values. Then, when the appropriate type, schema and/or catalog names
have been obtained, you can add them to your program as necessary. (In other
words, it may be necessary for you to tolerate a two-hour test run during
development, in order to obtain the information necessary to make the Info function
execute faster.)

For another technique that can be used to speed up the Table Info functions, see
SQL_InfoImport »p492.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

 477

»p181 and SQL Tools Error Messages.

Example

SQL_GetTblInfo

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Remarks above.

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also

Table Metadata »p86

 478

SQL_GetTblPKeys

Summary

Refreshes cached information about a table's Primary Keys »p203. (See Cached
Information »p200.)

Twin

SQL_GetTablePrimaryKeys »p464

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetTblPKeys(lTableNumber&)

Parameters

lTableNumber&
The number of the table that should have its Primary Key »p203 information
refreshed, between one (1) and the number that is returned by the
SQL_TblCount »p790 function.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the table's
Primary Key »p203 information is successfully refreshed, or an Error Code »p180 if it is
not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'Refresh the primary key
'info for table #17.
SQL_GetTblPKeys 17

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also Primary Keys »p203

 479

SQL_GetTblPrivs

Summary

Refreshes cached information about a table's Table Privileges »p206. (See Cached
Information »p200.)

Twin

SQL_GetTablePrivileges »p465

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetTblPrivs(lTableNumber&)

Parameters

lTableNumber&
The number of the table that should have its Table Privilege information
refreshed, between one (1) and the number that is returned by the
SQL_TblCount »p790 function.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the table's
Table Privilege »p206 information is successfully refreshed, or an Error Code »p180 if it
is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics
This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'Refresh the privilege info
'for table #23.
SQL_GetTblPrivs 23

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also Table Privileges »p206

 480

SQL_GetTblStats

Summary

Refreshes the Table Statistics for a table.

Twin

SQL_GetTableStatistics »p466

Family

Table Info Family »p236

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetTblStats(lTableNumber&)

Parameters

lTableNumber&
The number of the table that should have its Statistics refreshed, between
one (1) and the number that is returned by the SQL_TblCount »p790 function.

Return Values

This function returns %SQL_SUCCESS if the Statistics are retrieved, or an Error Code

»p180 if they are not.

Remarks

Unlike the other SQL_Get functions, this function is relatively fast and can be called
at any time without a speed penalty.

Diagnostics

This function returns Error Codes »p180 and can generate ODBC Error Messages »p181
and SQL Tools Error Messages.

Example

'Get the stats for Table #1
SQL_GetTblStats 1

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

SQL_TblStatInfo »p824, SQL_TblStatInfoStr »p826

 481

SQL_GetTblUCols

Summary

Refreshes cached information about a table's Unique Columns »p203. (See Cached
Information »p200.)

Twin

SQL_GetTableUniqueColumns »p467

Family

Get Info Family »p250

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_GetTblUCols(lTableNumber&)

Parameters

lTableNumber&
The number of the table that should have its Unique Column »p203 information
refreshed, between one (1) and the number that is returned by the
SQL_TblCount »p790 function.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the table's
Unique Column »p203 information is successfully refreshed, or an Error Code »p180 if it
is not.

Remarks

For a general discussion, see Cached Information »p200.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'Refresh the unique-column
'info for table #17.
SQL_GetTblUCols 17

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

For a general discussion of speed issues related to Info functions, see Cached
Information »p200.

See Also Unique Columns »p203

 482

SQL_hDatabase

Syntax

lResult& = SQL_hDatabase(lDatabaseNumber&)

Except for the lDatabaseNumber& parameter, SQL_hDatabase is identical to
SQL_hDB »p483. To avoid errors when this document is updated, and to reduce the
size of the Help Files, information that is common to both functions is not duplicated
here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 483

SQL_hDB

Summary

Provides the ODBC handle of the current database.

Twin

SQL_hDatabase »p482

Family

Handle Family »p251

Availability

SQL Tools Pro only (see »p29)

Warning

The incorrect use of ODBC handles can cause Application Errors.

Syntax

lResult& = SQL_hDB

Parameters

None.

Return Values
This function returns a handle value that can be used for ODBC functions that SQL
Tools does not support »p37. (Of which there are very few.)

Remarks

In order to use ODBC functions directly, without going through SQL Tools, you will
need the handles of 1) the ODBC Environment, 2) the various databases that SQL
Tools has opened, and 3) the various statements that SQL Tools has opened. The
various SQL_h functions can be used to obtain those handles if you wish to
implement ODBC features that SQL Tools does not support.

WARNING: SQL Tools supports virtually 100% of the functions that ODBC provides.
If an ODBC feature is not supported »p37 by SQL Tools, there is probably a very good
reason for it, and you should consider whether or not you really need to use the
feature.

For example, while SQL Tools does support thread-based asynchronous execution

»p125 of SQL statements, it does not support ODBC-based asynchronous execution.
According to the Microsoft ODBC Software Developer Kit »p915, "In general,
applications should execute functions asynchronously only on single-threaded
operating systems. On multithread operating systems," [such as Windows]
"applications should execute functions on separate threads, rather than executing
them asynchronously on the same thread. No functionality is lost if drivers that
operate only on multithread operating systems do not support asynchronous
execution." If you attempt to add support for this feature to SQL Tools, you will
probably find that several of the Info function will fail to work properly, and you will
have to manually add support for those functions as well.

After all of that, you're probably asking yourself "so why are the SQL_h functions even
provided by SQL Tools?" The primary reason is something called "descriptors".

 484

Here is what the ODBC SDK has to say about them: "An application calling ODBC
functions need not concern itself with descriptors. No database operation requires
that the application gain direct access to descriptors. However, for some
applications, gaining direct access to descriptors streamlines many operations. For
example, direct access to descriptors provides a way to rebind column data that may
be more efficient than calling SQLBindCol again."

Diagnostics

None.

Example

None.

Driver Issues

None.

Speed Issues

None.

See Also

SQL Handles »p228

 485

SQL_hEnvironment

Summary

Provides the ODBC handle of the ODBC environment.

Twin

None

Family

Handle Family »p251

Availability

SQL Tools Pro only (see »p29)

Warning

Please see SQL_hDB »p483 for several important warnings.

Syntax

lResult& = SQL_hEnvironment

Parameters

None.

Return Values

This function returns the handle of the ODBC Environment.

Remarks

Please see SQL_hDB »p483 for several important warnings regarding the use o f
ODBC Handles.

Diagnostics

None.

Example

None.

Driver Issues

None.

Speed Issues

None.

See Also

SQL Handles »p228

 486

SQL_hParentWindow

Summary

Returns the handle of the window that SQL Tools is currently using for the parent
window of various dialog boxes.

Twin

None.

Family

Handle Family »p251

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_hParentWindow

Parameters

None.

Return Values

This function returns the handle of the window that SQL Tools is currently using for
the parent window of various dialog boxes, such as those displayed by SQL_MsgBox

»p514, SQL_SelectFile »p664, and SQL_OpenDB »p536.

Remarks

Your program can specify the window that should be used as the parent window of
various SQL Tools dialog boxes by using the SQL_SetOption »p681

(%OPT_h_PARENT_WINDOW) function. If you do not set this value, SQL Tools
automatically uses the handle of the Windows Desktop.

If you specify a value that is not a window, SQL Tools will not use it.

If you specify the handle of a valid window and SQL Tools accepts the value, but then
the window is destroyed, SQL Tools will revert to using the handle of the Windows
Desktop.

Effectively, this function returns the handle that SQL Tools will use for the parent
window of various dialog boxes if the handle is still valid when the dialog box is
displayed.

Your program can use the SQL_hParentWindow function as a convenience, to allow
your program's dialog boxes to have an automatic parent-window-selection feature.

Diagnostics

None.

Example

None. Your program's use of the SQL_hParentWindow function will depend entirely

 487

on your program's design.

Driver Issues

None.

Speed Issues

None.

See Also

Handle Family »p251

 488

SQL_hStatement

Syntax

lResult& = SQL_hStatement(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_hStatement is identical to SQL_hStmt »p489. To avoid errors when this
document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 489

SQL_hStmt

Summary

Provides the ODBC handle of the current statement.

Twin
SQL_hStatement »p488

Family

Handle Family »p251

Availability

SQL Tools Pro only (see »p29)

Warning

Please see SQL_hDB »p483 for several important warnings.

Syntax

lResult& = SQL_hStmt

Parameters

None.

Return Values

This function returns the ODBC handle of a SQL statement that was opened by SQL
Tools.

Remarks

Please see SQL_hDB »p483 for several important warnings regarding the use o f
ODBC Handles.

Diagnostics

None.

Example

None.

Driver Issues

None.

Speed Issues

None.

See Also

SQL Handles »p228

 490

SQL_InfoExport IMPROVED

Summary

Creates a disk file that contains all of the Info values (Table Info, Column Info, etc.)
that SQL Tools has collected about a database.

Twin

None. (See Remarks below.)

Family

Configuration Family »p231

Availability
SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_InfoExport(OPTIONAL lDatabaseNumber&, _
 OPTIONAL sFilename$)

Parameters

lDatabaseNumber&
If this parameter is missing (or zero), the current database number
(SQL_CurrentDB »p285) is used. See Using Database Numbers and
Statement Numbers »p197. If it is not missing, you must specify the number of
a valid database.

sFilename$
A string that contains the name (with optional drive/path) of the disk file that
should be created. If you do not specify a file name, the default name
Database.Info will be used. If you do not specify a drive/path, the file will
be created in the same folder as your program.

Return Values

This function returns %SQL_SUCCESS if the requested file was created, or an Error
Code »p180 if it was not.

If this function returns %ERROR_CANNOT_BE_DONE, it means that no Info is available
to be saved.

If this function returns a value between %ERROR_FIRST_RT_ERROR and
%ERROR_LAST_RT_ERROR, it means that a runtime error (such as disk full, etc.) was
encountered. You can obtain a BASIC-compatible ERR value by subtracting
%ERROR_FIRST_RT_ERROR from the numeric return value, to help you determine the
cause of the error.

Remarks

Obtaining information (Info) about a large database can be a slow process. (For a list
of some of the things that can cause a slowdown, see SQL_GetTblInfo »p475.)

Once Info has been retrieved from a database, the SQL_InfoExport function can
be used to create a disk file that contains all of the Info values. Then, the next time a

 491

program is run, it can use the SQL_InfoImport »p492 function to re-load the Info
instead of re-retrieving it from the database. This can greatly speed up the
initialization of a program.

IMPORTANT NOTE: If your database's structure is dynamic -- if tables, columns,
privileges, etc. are frequently added or deleted -- it may not be a good idea for you to
use the Info Export and Import functions. If the database structure is modified and
the Info values are not refreshed properly, your program will get "out of sync" with the
database and the results will be unpredictable. Tip: You may wish to have your
program check the date stamp on the Info Export file when your program starts, and
automatically refresh the Info (by using the SQL_GetTblInfo »p475 function) when it
reaches a certain age. Or you might want to create a utility program that runs
overnight (every night) and re-builds the Info Export files, for use by other programs
the following day.

IMPORTANT NOTE: It is extremely important that you make sure that you do not
Import the wrong Info file for a database. For example, if a file called MYDB.Info is
created for a database called MYDB, and you accidentally load the MYDB.Info file
when a program is using a different database, the results are unpredictable. That's
why there are no "twin" functions for SQL_InfoExport and SQL_InfoImport : you
must always specify a database number, so that the probability of errors is reduced.

Diagnostics

This function returns Error Codes »p180, and can generate SQL Tools Error Messages

»p181.

Example

SQL_InfoExport 1, "MYPROJECT.Info"

Driver Issues

None.

Speed Issues

See Remarks above.

See Also

SQL_GetTblInfo »p475, SQL_InfoImport »p492

 492

SQL_InfoImport IMPROVED

Summary

Loads database Info »p190 from a file that was created with the SQL_InfoExport

»p490 function, or from a string that was obtained from the SQL_TblInfoStr »p808

(0,0) function.

Twin

None.

Family

Configuration Family »p231

Availability
SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_InfoImport(OPTIONAL lDatabaseNumber&, _
 OPTIONAL sInfoSource$)

Parameters

lDatabaseNumber&
If this parameter is missing (or zero) the current database number
(SQL_CurrentDB »p285) will be used. See Using Database Numbers and
Statement Numbers »p197. If it is not missing or zero, you must specify a valid
database number.

sInfoSource$
A string that contains the name (with optional drive/path) of the disk file from
which the Info should be loaded. If you do not specify a file name, the default
name Database.Info will be used. If you do not specify a drive/path, the
file will be loaded from the same folder as your program.

Alternatively, the sInfoSource$ parameter can be a string variable that
contains actual Info, or an empty string. See Remarks below for details.

Return Values

This function returns %SQL_SUCCESS if the requested file was loaded, or an Error
Code »p180 if it was not.

If this function returns %ERROR_CANNOT_BE_DONE, it means that the specified file
does not exist.

If this function returns a value between %ERROR_FIRST_RT_ERROR and
%ERROR_LAST_RT_ERROR, it means that a runtime error (such as a disk-media error,
etc.) was encountered. You can obtain a BASIC-compatible ERR value by subtracting
%ERROR_FIRST_RT_ERROR from the numeric return value, to help you determine the
cause of the error.

Remarks

See SQL_InfoExport »p490 for a complete discussion of exporting and importing

 493

Info by using disk files, which is the most common technique.

It is also possible to save and restore Info by using memory instead of disk files. The
following function...

sInfo$ = SQL_TblInfoStr »p808(0,0)

...can be used to obtain a string that contains all of the Info that SQL Tools has
accumulated about a database. If you are using the verbose »p55 SQL Tools
functions, you would use...

sInfo$ = SQL_TableInfoStr »p755(lDatabaseNumber&,0,0)

Using 0,0 means "all tables, all info." A string that has been obtained in this way can
then be re-imported like this...

SQL_InfoImport lDatabaseNumber&, sInfo$

It is also possible to clear all of a database's cached info by doing this...

SQL_InfoImport lDatabaseNumber&, $NUL

Then, the next time that an Info function is used, SQL Tools will detect that the cache
is empty and will automatically use the SQL_GetTblInfo »p475 function to re-read
the requested Info. (You can also use SQL_GetTblInfo directly, to accomplish the
same thing.)

Diagnostics

This function returns Error Codes »p180, and can generate SQL Tools Error Messages

»p181.

Example

SQL_InfoImport 1, "MYPROJECT.Info"

Driver Issues

None.

Speed Issues

See SQL_InfoExport »p490 for a complete discussion.

See Also

SQL_GetTblInfo »p475, SQL_InfoExport »p490

 494

SQL_Init

Summary

Initializes SQL Tools, using initialization values that work well for most programs.

Twin

SQL_Initialize »p495

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

Every program that uses SQL Tools must use SQL_Authorize »p263 and then
either SQL_Init or SQL_Initialize »p495 before it uses any other SQL Tools
functions. See Four Critical Steps For Every SQL Tools Program »p61 for more
information.

Syntax

lResult& = SQL_Init

Parameters

None.

Return Values

See SQL_Initialize »p495 for complete information.

Remarks
Using SQL_Init is exactly the same as using...

SQL_Initialize 2, 2, 32, 3, 3, 0, 0, 0

For the meaning of each of the parameters, please see SQL_Initialize »p495.

Diagnostics

None.

Example

FUNCTION MyProgram AS LONG
 SQL_Authorize AuthCode ' see »p21
 SQL_Init
 MyProgram = MainProgram
 SQL_Shutdown
END FUNCTION

Driver Issues

See SQL_Initialize »p495 for complete information.

Speed Issues None.
See Also Four Critical Steps For Every SQL Tools Program »p61

 495

SQL_Initialize IMPROVED

Summary

Initializes SQL Tools, using values that you specify.

Twin

SQL_Init

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

Every program that uses SQL Tools must use SQL_Authorize »p263 and then
either SQL_Init »p494 or SQL_Initialize before it uses any other SQL Tools
functions. See Four Critical Steps For Every SQL Tools Program »p61 for more
information.

Syntax

lResult& = SQL_Initialize(OPTIONAL lMaxDatabaseNumber&, _
 OPTIONAL lMaxStatementNumber&, _
 OPTIONAL lMaxColumnNumber&, _
 OPTIONAL lMaxParameterNumber&, _
 OPTIONAL lODBCVersion&, _
 OPTIONAL lConnPooling&, _
 OPTIONAL lPoolMatching&, _
 OPTIONAL lNotUsed&)

Parameters

Note that all parameters are OPTIONAL. If you omit a parameter, the default
value will be used for that parameter and all that follow. See the PowerBASIC
documentation for more information.

lMaxDatabaseNumber&

The maximum Database Number »p197 that your program will use, between 1
and 256. The SQL_Init default value (and the maximum value that is
allowed by SQL Tools Standard »p29) is 2.

lMaxStatementNumber&
The maximum Statement Number »p197 that your program will use, between 0
and 256. The SQL_Init »p494 default value (and the maximum value this is
allowed by SQL Tools Standard »p29) is 2.

lMaxColumnNumber&
The maximum Column Number »p85 that your program will use, between 32
and 999. The SQL_Init default value is 32.

lMaxParameterNumber&
The maximum Bound Statement Parameter Number »p128 that your program
will use, between 1 and 256. The SQL_Init default value is 3.

lODBCVersion&
Either 2 or 3, depending on the ODBC Version that you want SQL Tools to

 496

emulate. The SQL_Init »p494 default value is 3. See Remarks below for
more information.

lConnPooling&
See Remarks below.

lPoolMatching&
See Remarks below.

lNotUsed&
This parameter is reserved for future use. Always omit this parameter or use
zero (0).

Return Values

If the initialization is successful, %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO is
returned.

If SQL_Init or SQL_Initialize is used before SQL_Authorize »p263,
%ERROR_LIBRARY_NOT_AUTHORIZED will be returned.

If an attempt is made to re-initialize SQL Tools after it has been successfully
initialized, %ERROR_CANNOT_BE_DONE will be returned.

If an error is detected during the initialization process, other Error Codes »p180 may be
returned. Depending on the error, it may or may not be possible to use
SQL_Initialize a second time (using different values) to initialize SQL Tools.

Remarks

IMPORTANT NOTE regarding lMaxDatabaseNumber&, lMaxStatementNumber&,
lMaxColumnNumber&, and lMaxParameterNumber&. Using lMax values that are
unnecessarily large will cause SQL Tools to use memory that it really doesn't need to.
While values as high as 256, 256, 999, and 256 can be used (respectively), the use
of those values would result in SQL Tools reserving an extremely large block of
memory for its own use. In most cases, you will need to increase one, two, or three
of these values, but not all four of them.

lMaxDatabaseNumber&: The SQL_Init value of two (2) allows the use of two
different databases by the same program at the same time. If your program uses
only one database at a time, you can save a small amount of memory by using
SQL_Initialize and a value of 1 (the minimum value) for this parameter. If your
program needs to open more than two databases at a time, you can use values up to
256 for this parameter.

lMaxStatementNumber&: The SQL_Init default value of two (2) allows the use of
two different SQL statements »p123 by the same program at the same time. If your
program uses only one statement at a time, you can save a small amount of memory
by using SQL_Initialize and a value of 1 for this parameter. Under normal
circumstances, the minimum value for this parameter should be one (1). For
information about using zero (0) for this value, see Statement Zero Operation »p199. If
your program needs to use more than two concurrent statements per databases, you
can use values up to 256 for this parameter.

lMaxColumnNumber&: This parameter cannot be set to a value below 32 because
SQL Tools uses up to 32 columns internally, for various Info functions. You must use
a minimum value of 32 even if your program does not require 32 columns per
statement. The maximum value for this parameter is 999.

lMaxParameterNumber&: This parameter is used to specify the largest number of

 497

Bound Statement Parameters »p128 that your program will use. The default value is
three (3), to allow up to 3 Bound Parameters to be used without changing from
SQL_Init to SQL_Initialize . If you program does not use any Bound
Parameters, you can save a small amount of memory by using SQL_Initialize
and a value of 1 (the minimum value) for this parameter. The maximum value for this
parameter is 256.

lODBCVersion&: The SQL_Init default value for this parameter is 3, because most
ODBC drivers can emulate at least some ODBC 3.x behavior. Using 3 often results
in %SQL_SUCCESS_WITH_INFO Error Messages such as...

[Microsoft][ODBC Driver Manager] The driver doesn't support the
version of ODBC behavior that the application reque sted.

...when a database is opened with SQL_OpenDB »p536. The message above was
generated when a test program used 3 for lODBCVersion& and then used
SQL_OpenDB to open a Microsoft Access 97 database. This is not a problem. See
SQL_OpenDB »p536 and Ignoring Predictable Errors »p183 for more information.

lConnPooling& must always be one of the following values: %SQL_CP_OFF (0),
%SQL_CP_ONE_PER_DRIVER (1), or %SQL_CP_ONE_PER_HENV (2). SQL Tools
Standard »p29 only accepts %SQL_CP_OFF. See the Microsoft ODBC Software
Developer Kit »p915 for more information about Connection Pooling. The default
SQL_Init value is zero (%SQL_CP_OFF).

lPoolMatching& must always be %SQL_CP_STRICT_MATCH (0) or
%SQL_CP_RELAXED_MATCH (1). See the Microsoft ODBC Software Developer Kit
»p915 for more information. The default SQL_Init value is zero
(%SQL_CP_STRICT_MATCH).

Diagnostics

None.

Example

SQL_Authorize %MY_SQLT_AUTHCODE ' see »p21
SQL_Initialize 2,2,32,3,3,0,0,0

Driver Issues

None.

Speed Issues

None.

See Also

Four Critical Steps for Every SQL Tools Program »p61

 498

SQL_IString

Summary

"Interprets" a string, converting certain text codes (called "shorthands") into certain
hard-to-type characters or strings.

Twin

None.

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_IString(sString$)

Parameters

sString$
A string that may or may not contain shorthand strings. IMPORTANT NOTE:
In its default mode, the SQL_IString function only recognizes lower-case
shorthand strings.

Return Values

This function returns a string that is a copy of sString$, except that any shorthand
strings will have been replaced with the specified characters or strings.

Remarks

When SQL Tools is first initialized, the following shorthand strings and their
interpretations are recognized:

\q Double Quotation Mark (ASCII 34: ")
\t Tab Character (ASCII 9)
\r Carriage Return (ASCII 13)
\n "NewLine", also known as Line Feed (ASCII 10)
\e "Enter" (ASCII 13,10,32)
\ascii Any ASCII character

For example, if you use a string like this in your source code...

sString$ = "The last word is \qQUOTED\q."
PRINT SQL_IString(sString$)

...the result will be...

The last word is "QUOTED".

The \ascii function is used by entering a three-character decimal number after the
shorthand, like this:

 499

The last character of this string is CHR$(0):\ascii 000

...or ...

The last character of this string is CHR$(255):\asc ii255

The backslash character (\) is called the Shorthand Prefix character. (In C
programming it is called the Escape Character, but this often causes confusion about
ASCII character 27, which is also called "escape".)

The Prefix Character can be used to specify that a shorthand string should not be
interpreted. For example, if a string contains the following characters...

The File Name is \newdir\newfile.txt

...and you wanted to use SQL_IString to add quotation marks around the file name,
like this...

The File Name is \q\newdir\newfile.txt\q

...you would not want the SQL_IString function to interpret the \n strings as
NewLine characters (ASCII 10) because they are actually part of a directory name.
You can tell the SQL_IString function to not interpret the string in two different
ways. 1) Convert the file name to upper case. SQL_IString only recognizes
lower-case shorthand strings. 2) Add a second prefix character to all of the \n prefix
characters in the string, like this

The File Name is \q\\newdir\\newfile.txt\q

The double backslash (\\) tells the SQL_IString function "this is a literal
backslash, not a shorthand prefix".

You can specify new values for the Shorthand Prefix and all of the Shorthands (q, t ,
r , etc.) by using the SQL_SetOptionStr »p682 function and the following values...

%OPT_ISTRING_PREFIX
%OPT_ISTRING_CR
%OPT_ISTRING_LF
%OPT_ISTRING_TAB
%OPT_ISTRING_QUOTE
%OPT_ISTRING_ENTER
%OPT_ISTRING_ASCII

For example, you could change the Shorthand Prefix to the tilde character like this:

SQL_SetOptionStr(%OPT_ISTRING_PREFIX) = "~"

From that point forward, the Shorthands would be ~q, ~t , ~r , and so on.

You can also specify an %OPT_ISTRING_SUFFIX string, so that (for example) all
Shorthands would start with [and end with] . The default value of the suffix is an
empty string.

Finally, you can specify one pair of user-defined search-and-replace strings. For

 500

example...

SQL_SetOptionStr(%OPT_ISTRING_SEARCH) = "@"
SQL_SetOptionStr(%OPT_ISTRING_REPLACE)= "atsign"

...could be used to define a \@ shortcut. Whenever it was found, it would be replaced
with the string "atsign ".

Diagnostics

None.

Example

See Remarks above for several examples.

Driver Issues

None.

Speed Issues

None,

See Also

Utility Family »p249

 501

SQL_LimitTextLength IMPROVED

Summary

Limits a string to a certain maximum length.

Twin

None.

Family

Utility Family »p249

Availability

Standard and Pro

Warning
None.

Syntax

sResult$ = SQL_LimitTextLength(sString$, _
 OPTIONAL lMaxLength&)

Parameters

sString$
Any string.

OPTIONAL lMaxLength&
If you omit this parameter, the default value of 64 characters will be used. If
you include this parameter, the numeric value that you specify will be used.

Return Values

The return value of this function will be a copy of sString$ which, if sString$ is longer
than a certain length, will be truncated. An ellipsis (...) will be added to the end of
the string to indicate that it was truncated.

Remarks

The default maximum string length for this function is 64 characters.

Diagnostics

None.

Example

FOR lLen& = 1 TO 9
 sString$ = STRING$(lLen&, "X")
 PRINT lLen&;
 PRINT SQL_LimitTextLength(sString$, 6)
NEXT

...would display...

 502

1 X
2 XX
3 XXX
4 XXXX
5 XXXXX
5 XXXXXX
7 XXX...
8 XXX...
9 XXX...

Driver Issues

None.

Speed Issues

None.

See Also

Utility Family »p249

 503

SQL_LongParam

Summary

Sends Long data to a bound statement input parameter »p128, or to a SQL_BulkOp

»p276 or SQL_SetPos »p696 operation.

Twin

SQL_LongParameter »p505

Family

Statement Binding Family »p242

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_LongParam(sValue$, _
 lIndicator&)

Parameters

sValue$
The Long data, or a portion of the Long data, that is to be sent.

lIndicator&
For string or binary data, the length of the sValue$ parameter. For
parameters with the Null value, %SQL_NULL_DATA. Under unusual
circumstances, for numeric data (in string form), the value
%SQL_NUMERIC_DATA. IMPORTANT NOTE: For technical reasons, this
must not be a REGISTER variable. We strongly recommend the use of
#REGISTER OFF at the very beginning of any SUB or FUNCTION which
creates (declares or DIMs) a variable that will be used for an Indicator.

Return Values

Returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the data is successfully
sent to the parameter, or an Error Code »p180 if it isn't.

Remarks

See Binding Statement Input Parameters »p128, Binding Long Parameter Values »p140,
and Using Long Values with Bulk and Positioned Operations »p220 for detailed
discussions of this function.

Diagnostics

This function can return Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

See Binding Statement Input Parameters »p128, Binding Long Parameter Values »p140,
and Using Long Values with Bulk and Positioned Operations »p220 for code examples.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

 504

»p446 function can be used to determine a driver's capabilities. See Binding
Statement Input Parameters »p128 and Using Long Values with Bulk and Positioned
Operations »p220.

Speed Issues

See Binding Statement Input Parameters »p128 and Using Long Values with Bulk and
Positioned Operations »p220.

See Also

SQL_BulkOp »p277, SQL_SetPos »p696

 505

SQL_LongParameter

Syntax

lResult& = SQL_LongParameter(lDatabaseNumber&, _
 lStatementNumber&, _
 sValue$, _
 lIndicator&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_LongParameter is identical to SQL_LongParam »p503. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 506

SQL_LongResCol V2

This SQL Tools Version 2 function has been replaced by the SQL_ResColChunk

»p583 function in Version 3.

 507

SQL_LongResultColumn V2

This SQL Tools Version 2 function has been replaced by the
SQL_ResultColumnChunk function in Version 3. See SQL_ResColChunk »p583 for
complete information.

 508

SQL_ManualBindCol

Summary

Binds »p158 one column of a result set »p144, and its Indicator »p170, to memory buffers
that your program provides. (Most programs do not need to perform this step
because SQL Tools can AutoBind »p159 all of the columns in a result set. Compare
SQL_DirectBindCol »p392.)

Twin

SQL_ManualBindColumn »p510

Family

Result Column Binding Family »p245

Availability

Standard and Pro

Warning

If your program uses this function to bind a result column and Indicator to memory
buffers but then fails to properly maintain those buffers, an Application Error will
result. See SQL_DirectBindCol »p392 for more information.

Also see the IMPORTANT NOTE below, about the lIndicator& parameter.

Syntax

lResult& = SQL_ManualBindCol(lColumnNumber&, _
 lDataType&, _
 lPointerToBuffer&, _
 lBufferLength&, _
 lIndicator&)

Parameters

lColumnNumber&, lDataType&, lPointerToBuffer&, and lBufferLength&
See SQL_DirectBindCol »p392 for information about these parameters.
This function uses exactly the same parameters in exactly the same ways.

lIndicator&
The variable that should be used for the column's Indicator. You must not
use a literal numeric value for this parameter. IMPORTANT NOTE: For
technical reasons, this must not be a REGISTER variable. We strongly
recommend the use of #REGISTER OFF at the very beginning of any SUB or
FUNCTION which creates (declares or DIMs) a variable that will be used for
an Indicator.

Return Values

See SQL_DirectBindCol »p392 for complete details.

Remarks

Except for the lIndicator& parameter, SQL_ManualBindCol is identical to
SQL_DirectBindCol »p392. Manual Binding »p164 is just like Direct Binding »p163
except that it also binds an Indicator »p170 to a variable that your program provides.
To avoid errors when this document is updated, information that is common to both
functions is not duplicated here. Only information that is unique to
SQL_ManualBindCol is shown below.

 509

Diagnostics

See SQL_DirectBindCol »p392 for complete details.

Example

See SQL_DirectBindCol »p392.

Driver Issues

None.

Speed Issues

None.

See Also

Result Column Binding (Basic) »p145, Result Column Binding (Advanced) »p158

 510

SQL_ManualBindColumn

Syntax

lResult& = SQL_ManualBindColumn(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&, _
 lDataType&, _
 lPointerToBuffer&, _
 lBufferLength&, _
 lIndicator&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ManualBindColumn is identical to SQL_ManualBindCol »p508. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 511

SQL_MoreRes

Summary

Indicates whether or not there are More Results available from a batched SQL
statement, i.e. whether or not an additional result set or row count is available to be
retrieved.

Twin

SQL_MoreResults »p513

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_MoreRes

Parameters

None.

Return Values
This function will return one of the following values:

%SQL_SUCCESS if another result set or row count is available.

%SQL_SUCCESS_WITH_INFO if another result set or row count is available and the
statement attributes (cursor type, concurrency, etc.) have changed. You can use the
various SQL_Error ... functions to determine what changed.

%SQL_NO_DATA if no additional result sets or row counts are available

%SQL_ERROR if an error is detected.

Remarks

SQL statements »p123 that use SELECT return result sets »p144, and most other SQL
statements return row counts »p173 that indicate how many rows were affected by the
statement.

If SQL Statements are batched, they can return multiple result sets and/or multiple
row counts.

When a batch is executed, the first result set or row count is immediately made
available to your program, just as if the first SQL statement was not part of a batch.
Your program should handle the first result set or row count, and then use the
SQL_MoreRes function to determine whether or not an additional result set or row
count is available. If more results are available, the SQL_MoreRes function will
return %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO and the next result set or
row count will be made available to your program.

 512

IMPORTANT NOTE: If SQL_MoreRes is used to make a new result set »p144
available, you must remember to bind »p145 the new result set's columns. This is
usually done by using the SQL_AutoBindCol(%ALL_COLs) »p265 function
immediately after SQL_MoreRes , but other binding techniques (direct binding »p158,
etc.) can also be used. (It is not necessary to perform this step if SQL_MoreRes is
being used to make a new row count available to your program.)

You should not use SQL_MoreRes until you are finished with the first result set or row
count, because once the function has been used the first results are discarded.

Diagnostics

This function does not return Error Codes »p180, but it can generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

Many ODBC drives do not support batched SQL statements.

Speed Issues

None.

See Also

Appendix A: SQL Statement Syntax »p862

 513

SQL_MoreResults

Syntax

lResult& = SQL_MoreResults(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_MoreResults is identical to SQL_MoreRes »p511. To avoid errors when this
document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 514

SQL_MsgBox IMPROVED

Summary

Displays a standard Windows Message Box.

Twin

None.

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_MsgBox(sMessage$, _
 OPTIONAL lStyle&, _
 OPTIONAL sTitle$)

Parameters

sMessage$
The text message that should be displayed in the message box.

OPTIONAL lStyle&
The type of message box that should be displayed, i.e. the number and types
of buttons that the message box should have. See Remarks below for a list
of valid values.

OPTIONAL sTitle$
If you pass a string for this parameter, the string will be used in the Message
Box title bar. If you omit this parameter, the string specified with
SQL_SetOptionStr »p682(%OPT_MY_PROGRAM) will be used. If that option
has not been set, "SQL Tools " will be used.

Return Values

This function returns a numeric value that indicates which button was selected by the
user: %OK_BUTTON, %CANCEL_BUTTON, %ABORT_BUTTON, %RETRY_BUTTON,
%IGNORE_BUTTON, %YES_BUTTON, or %NO_BUTTON.

Remarks

In addition to using the sMessage$ and lStyle& values, your program can change the
appearance of the message box in other ways. See the notes regarding the use of
the SQL_SetOption functions below.

The sMessage$ parameter may contain certain characters that are used to control
text formatting, such as the NewLine (Line Feed) character. The sMessage$ string
that is submitted to SQL_MsgBox is always processed by the SQL_IString »p498
function, to make it easy to include NewLine, Quote, and other characters.

The lStyle& parameter must be one of the following values. The names of the
constants indicate the message box buttons that are created by the values:
%MSGBOX_OK, %MSGBOX_OKCANCEL, %MSGBOX_ABORTRETRYIGNORE,

 515

%MSGBOX_YESNOCANCEL, %MSGBOX_YESNO, or %MSGBOX_RETRYCANCEL.

The default message box title is "SQL Tools ". If you use the SQL_SetOptionStr

»p682(%OPT_MY_PROGRAM) function to tell SQL Tools the name of your program, that
string will be used for message box titles.

The default message box icon is the standard Windows ASTERISK icon, also known
as INFORMATION. It varies in appearance, depending on the runtime version of
Windows. You can use the SQL_SetOption »p681(%OPT_ICON_ID) function to
specify a different icon. You may use any one of the following values, which
correspond to the standard names of the standard Windows icons:
%ICON_APPLICATION, %ICON_HAND, %ICON_ERROR, %ICON_QUESTION,
%ICON_EXCLAMATION, %ICON_WARNING, %ICON_ASTERISK,
%ICON_INFORMATION, or %ICON_WINLOGO. Using a value of 0 (zero) produces a
message box with no icon. You may also use the Resource ID Number of an icon
that is embedded in your EXE program if you also tell SQL Tools the instance handle
of your program. This is usually done by passing the appropriate hInstance value to
the SQL_Initialize »p495 function.

The default parent window for all SQL Tools message boxes is the Windows
Desktop. You can specify a different window by using the SQL_SetOption »p681

(%OPT_h_PARENT_WINDOW) function. See the SQL_hParentWindow »p486 function
for more details.

Note that the SQL_MsgBox function returns a numeric value that corresponds to the
button that is selected by the user, and that the SQL_MsgBoxButton »p516 function
can be used to obtain the same information. Both methods will return one of the
...BUTTON return values shown above. If the SQL_MsgBoxButton function is used
before the SQL_MsgBox function is used for the first time, it will return
%BUTTON_NOT_SELECTED.

Diagnostics

None.

Example

SQL_MsgBox "CLICK OK:", %MSGBOX_OK

Driver Issues

None.

Speed Issues

None.

See Also

Utility Family »p249

 516

SQL_MsgBoxButton

Summary

Returns the ID number of the button that was selected the last time that the
SQL_MsgBox »p514 or SQL_SelectFile »p664 function was used.

Twin

None.

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_MsgBoxButton

Parameters

None.

Return Values

If the SQL_MsgBox »p514 and SQL_SelectFile »p664 functions have not yet been
used, this function will return %BUTTON_NOT_SELECTED. If SQL_MsgBox or
SQL_SelectFile has been used at least once, this function will return one of the
following values, depending on which button was most recently selected by the user:
%OK_BUTTON, %CANCEL_BUTTON, %ABORT_BUTTON, %RETRY_BUTTON,
%IGNORE_BUTTON, %YES_BUTTON, or %NO_BUTTON.

Please note the important difference between %BUTTON_NOT_SELECTED and
%NO_BUTTON. %NO_BUTTON means that the button with the label "No" was
selected. %NO_BUTTON does not mean "No button has yet been selected".

Note also that if the ODBC Driver »p76 displays any dialogs (such as the ODBC
Connection Dialogs that can be displayed by the SQL_OpenDB »p536 function), those
dialogs will not affect the return value of this function. This function is affected by the
SQL_SelectFile and SQL_MsgBox functions only.

Remarks

In most cases, your program will detect which SQL_MsgBox or SQL_SelectFile
button was selected by examining the return values of those functions.

This function is provided primarily as a programming convenience.

Diagnostics

None.

Example

None.

 517

Driver Issues
None.

Speed Issues

None.

See Also

Utility Family »p249

 518

SQL_NameCur

Summary

Assigns a name to a cursor »p147.

Twin

SQL_NameCursor »p520

Family

Statement Info/Attrib Family »p241

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_NameCur(sName$)

Parameters

sName$
The name that is to be assigned to the cursor. The name must be less than
19 characters long, and no other cursor may have the same name. For
efficient processing, the cursor name should not include any leading or
trailing spaces, and if the name includes a delimited identifier, the delimiter
should be the first character of the name.

Return Values

If the name is assigned successfully, this function returns %SQL_SUCCESS or
%SQL_SUCCESS_WITH_INFO.

If an error is detected and the name is not assigned, this function returns an Error
Code »p180.

Remarks

Cursor names are used only in "positioned" update and delete statements, such as

UPDATE tablename... WHERE CURRENT OF cursorname

You must execute a SQL statement »p123, and thereby create a cursor »p147 before it
can be named.

See Named Cursors »p212 for more information.

Diagnostics
This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

SQL_NameCur "MyCursor"

Driver Issues

 519

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

Named Cursors »p212

 520

SQL_NameCursor

Syntax

lResult& = SQL_NameCursor(lDatabaseNumber&, _
 lStatementNumber&, _
 sName$)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_NameCursor is identical to SQL_NameCur »p518. To avoid errors when this
document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 521

SQL_NewDBNumber and SQL_NewDatabaseNumber

Summary

These functions return an available database number »p197, i.e. a database number
that is not currently open.

Twin

These twin functions are identical. Two different spellings are provided as a
convenience.

Family

Database Open/Close Family »p234

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_NewDBNumber

...or...

lResult& = SQL_NewDatabaseNumber

Parameters

None.

Return Values

These functions return the lowest unused database number, between one (1) and the
lMaxDatabaseNumber& value that was specified with SQL_Initialize »p495. If all
of the database numbers between 1 and lMaxDatabaseNumber& are currently open,
these functions return negative one (-1).

Remarks

These functions are conceptually similar to the BASIC FREEFILE function. Programs
that use multiple databases can use these functions to dynamically assign database
numbers instead of hard-coding them.

Keep in mind that SQL_NewDBNumber and SQL_NewDatabaseNumber will continue
to return the same value until the database number that is returned is actually
opened. For example, it would be a mistake to do this:

lDB1& = SQL_NewDBNumber
lDB2& = SQL_NewDBNumber
SQL_OpenDatabase lDB1&, "DSN1,DSN", %PROMPT_TYPE_NO PROMPT
SQL_OpenDatabase lDB2&, "DSN2,DSN", %PROMPT_TYPE_NO PROMPT

Assuming that database number 1 was not open when that code was run, the first
SQL_NewDBNumber return value would be 1 . And when the function was used the
second time, database number 1 would still not be open, so the function would
return 1 again. The correct way to structure that code would be:

 522

lDB1& = SQL_NewDBNumber
SQL_OpenDatabase lDB1&, "DSN1,DSN", %PROMPT_TYPE_NO PROMPT
lDB2& = SQL_NewDBNumber
SQL_OpenDatabase Ldb2&, "DSN2,DSN", %PROMPT_TYPE_NO PROMPT

Diagnostics

None.

Example

lDBNo& = SQL_NewDBNumber
SQL_OpenDatabase lDBNo&, "MY.DSN", %PROMPT_TYPE_NOP ROMPT

Driver Issues

None.

Speed Issues

None.

See Also

Opening a Database »p78

 523

SQL_NewStatementNumber

Syntax

lResult& = SQL_NewStatementNumber(OPTIONAL lDatabaseNumber&)

Parameters
lDatabaseNumber&

If the optional lDatabaseNumber& parameter is missing, this function will use
the current database number (as specified with the SQL_UseDB »p859
function).

If lDatabaseNumber& is specified, it must be either 1) the number of a
database between one (1) and the maximum database number that was
specified with the lMaxDatabaseNumber& parameter of the
SQL_Initialize »p495 function, or 2) the number zero, to indicate the
current database (as specified with SQL_UseDB).

Remarks

Except for the lDatabaseNumber& parameter, SQL_NewStatementNumber is
identical to SQL_NewStmtNumber »p524. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 524

SQL_NewStmtNumber

Summary

Returns a statement number »p197 that is available to be used (i.e. a statement
number that is not currently open) for the current database.

Twin

SQL_NewStatementNumber »p523

Family

Statement Open/Close Family »p239

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_NewStmtNumber

Parameters

None.

Return Values

This function returns the lowest unused statement number »p197, between one (1) and
the lMaxStatementNumber& value that was specified with SQL_Initialize »p495,
for the current database. If all of the database's statement numbers between 1 and
lMaxStatementNumber& are currently open, this function returns negative one (-1).
Negative one is also returned if the database is not open.

Remarks

This function is conceptually similar to the BASIC FREEFILE function. Programs
which use multiple concurrent statements can use this function to dynamically assign
statement numbers instead of hard-coding them.

Keep in mind that SQL_NewStmtNumber will continue to return the same value until
the statement number that is returned is actually opened. For an example of this, see
SQL_NewDBNumber »p521. For that reason, if you are writing a multi-threaded
program and using SQL_NewStmtNumber in a thread, you should create a Windows
Synchronization Object (such as a mutex or critical section) and use it to "protect" the
necessary code. This usually involves a protected block of code containing
SQL_NewStmtNumber and SQL_OpenStmt . In that way your program can be sure
that the statement number returned by SQL_NewStmtNumber will be used (opened)
immediately, and that another thread will not attempt to use the same statement
number.

IMPORTANT NOTE: Not all ODBC drivers support more than one concurrent
statement. This function simply returns a SQL Tools statement number than can be
used in an attempt to open a new statement. It does not perform a test to find out
whether or not the ODBC driver is actually capable of opening another statement.

Diagnostics None.

 525

Example

lStmt& = SQL_NewStmtNumber
SQL_OpenStatement 1, lStmt&

Driver Issues

None.

Speed Issues

None.

See Also

SQL Statements »p123

 526

SQL_NextParam

Summary

Tells SQL Tools that you are ready to begin (or are finished) sending Long data to a
bound statement input parameter »p128, or to a SQL_BulkOp »p276 or SQL_SetPos

»p696 operation. Also returns the next parameter number for which the ODBC driver
needs data, if any.

Twin

SQL_NextParameter »p528

Family

Statement Binding Family »p242

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_NextParam

Parameters

None.

Return Values

Returns either %SQL_SUCCESS (zero) if all of the required Long data »p140 values
have been sent, or the parameter number of the next parameter number that needs
Long data. Under certain circumstances, this function can also return Error Codes

»p180.

Remarks

For a complete discussion of this function, see Binding Statement Input Parameters

»p128 and/or Using Long Values with Bulk and Positioned Operations »p220.

Diagnostics

This function does not normally return Error Codes »p180, but it is possible for it to do
so. See Binding Statement Input Parameters »p128 and/or Using Long Values with
Bulk and Positioned Operations »p220 for complete information. This function can also
generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

See Binding Statement Input Parameters »p128 and/or Using Long Values with Bulk
and Positioned Operations »p220 for example code.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities. See Binding
Statement Input Parameters »p128 and/or Using Long Values with Bulk and Positioned
Operations »p220.

 527

Speed Issues
See Binding Statement Input Parameters »p128 and/or Using Long Values with Bulk
and Positioned Operations »p220.

See Also

Binding Long Parameter Values »p140

 528

SQL_NextParameter

Syntax

lResult& = SQL_NextParameter(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_NextParameter is identical to SQL_NextParam »p526. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 529

SQL_Okay

Summary

Recognizes %SQL_SUCCESS and %SQL_SUCCESS_WITH_INFO as being "okay"
conditions, and all other Error Codes »p180 as being "not okay".

Twin

None.

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_Okay(lErrorCode&)

Parameters

lErrorCode&
A numeric value that represents an Error Code »p180.

Return Values

This function returns Logical True »p912 (-1) if the value of lErrorCode& is
%SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO, or False (zero) if lErrorCode& is
any other value.

Remarks

This is a programming-convenience function. Instead of using this code throughout
your program...

IF lResult& = %SQL_SUCCESS OR _
 lResult& = %SQL_SUCCESS_WITH_INFO THEN
 'it worked
ELSE
 'handle an error message
END IF

...you can use this:

IF SQL_Okay(lResult&) THEN
 'it worked
ELSE
 'handle an error message
END IF

Since SQL_Okay returns a Logical True »p912 value, you can also use...

IF NOT SQL_Okay(lErrorCode&) THEN...

 530

This code will do exactly the same thing...

IF SQL_Fail »p433(lErrorCode&) THEN...

Diagnostics

None.

Example

See Remarks above.

Driver Issues

None.

Speed Issues

None.

See Also

SQL_Fail »p433, Utility Family »p249

 531

SQL_OnErrorCall

Summary

Provides SQL Tools with the memory location of an error-handling routine in your
program.

Twin

None.

Family

Error/Trace Family »p248

Availability

SQL Tools Pro only (see »p29)

Warning

Passing an invalid value to this function, or improperly designing your error-handling
routine, will result in Application Errors.

This function cannot be used by programming languages that do not support Code
Pointers.

Syntax

SQL_OnErrorCall dwCodePtr???

...or ...

SQL_OnErrorCall lCodePtr&

Parameters

dwCodePtr??? or lCodePtr&
A memory pointer from the PowerBASIC CODEPTR function. (Either a DWORD
or a LONG integer can be used, as long as it represents a valid pointer to a
function.)

Return Values

This function always returns %SQL_SUCCESS, so it is safe to ignore the return value
of this function.

Remarks

If you pass a CODEPTR value of a properly formatted error-handling routine to this
function (see Example below), SQL Tools will call your routine whenever an error is
detected.

Your error handling function must have the following structure:

FUNCTION MyErrorHandler(BYVAL lOneLongParam&) AS LO NG

You may use any function name, and of course you may use the syntax that is
required by your programming language, but the return value of the function must be
a %BAS_LONG »p121 integer (or equivalent) and the function must have exactly one
%BAS_LONG integer parameter (or equivalent), passed BYVAL.

 532

When an error is detected by SQL Tools, it will perform all of the normal error
processing that SQL Tools provides, and then it will call your function. The numeric
parameter that is passed to your function will be the current SQL_ErrorCount »p413
value. In other words, SQL Tools will call your error handling routine and pass to it
the number of errors that are currently in the Error Stack »p181.

Once your error handling routine has been called, all normal SQL Tools error
handling remains in effect except for your error handler, until your error handler exits.
So if an error is detected and your error handler is called, you are free to use SQL
Tools functions in your error handler without worrying that another error will be
detected and your error handler will be called again, resulting in a possibly-endless
loop.

The most common use of SQL_OnErrorCall is to display a custom Error Message.

After it has been enabled, you can disable your error handler by using a value of zero
(0) for dwCodePtr??? or lCodePtr&.

Your error handling function is known as a "callback" routine, because after your
program calls (uses) a SQL Tools function, the SQL Tools error handling routines can
"call back" to a function in your program.

Diagnostics

None.

Example

SQL_OnErrorCall CODEPTR(MyErrorHandler)

Driver Issues

None.

Speed Issues

None.

See Also

Error Handling »p179

 533

SQL_OpenDatabase IMPROVED

Syntax

lResult& = SQL_OpenDatabase(lDatabaseNumber&, _
 sConnectionString$, _
 lPrompt&, _
 OPTIONAL sIgnoreErrors$)

Except for the lDatabaseNumber& parameter, SQL_OpenDatabase is identical to
SQL_OpenDB »p536. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 534

SQL_OpenDatabase1 IMPROVED

Summary

Begins the process of opening a database by allocating a database handle that can
be used by the SQL_OpenDatabase2 »p535 function. (The SQL_OpenDatabase1
and SQL_OpenDatabase2 functions are rarely used by programs. Most program
use SQL_OpenDB or SQL_OpenDatabase with no number at the end. See
SQL_OpenDB »p536 for information about using the 1 and 2 functions.)

Twin

None

Family

Database Open/Close Family »p234

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_OpenDatabase1(lDatabaseNumber&, _
 OPTIONAL sIgnoreErrors$)

Parameters

lDatabaseNumber&
See Using Database Numbers and Statement Numbers »p197.

OPTIONAL sIgnoreErrors$

A string containing one or more SQL States »p897 that tells this function to
ignore a certain error or errors when the operation is performed. See
Ignoring Predictable Errors »p183 for more information.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the ODBC
driver »p76 provides a database handle »p228, or an Error Code »p180 if it does not.

Remarks

This function is not commonly used. See SQL_OpenDB »p536 for more information.

Diagnostics

This function returns Error Codes »p180 and can generate ODBC Error Messages »p181
and SQL Tools Error Messages.

Example

None.

Driver Issues

None.

Speed Issues None.
See Also Opening a Database »p78

 535

SQL_OpenDatabase2 IMPROVED

Summary

Completes the process of opening a database which was started by the
SQL_OpenDatabase1 »p534 function. (The SQL_OpenDatabase1 and
SQL_OpenDatabase2 functions are rarely used by programs. Most program use
SQL_OpenDB or SQL_OpenDatabase with no number at the end. See
SQL_OpenDB »p536 for information about using the 1 and 2 functions.)

Twin

None

Family

Database Open/Close Family »p234

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_OpenDatabase2(lDatabaseNumber&, _
 sConnectionString$, _
 lPrompt&, _
 OPTIONAL sIgnoreErrors$)

Parameters

All Parameters
See SQL_OpenDatabase »p533 for complete details.

OPTIONAL sIgnoreErrors$
A string containing one or more SQL States »p897 that tells this function to
ignore a certain error or errors when the operation is performed. See
Ignoring Predictable Errors »p183 for more information.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the open-
database process is completed without errors, or an Error Code »p180 if it is not.

Remarks

This function is not commonly used. See SQL_OpenDB »p536 for more information.

Diagnostics

This function returns Error Codes »p180 and can generate ODBC Error Messages »p181
and SQL Tools Error Messages.

Example

None.

Driver Issues None.
Speed Issues None.
See Also Opening a Database »p78

 536

SQL_OpenDB IMPROVED

Summary

Opens »p78 a database and prepares it for use with other SQL Tools functions.

Twin

SQL_OpenDatabase »p533

Family

Database Open/Close Family »p234

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_OpenDB(sConnectionString$, _
 OPTIONAL lPrompt&, _
 OPTIONAL sIgnoreErrors$)

Parameters

sConnectionString$
A string containing all or part of the information that is necessary to open a
database. This can be any one of the following:

1) The name of a DSN file »p79 in the default directory,

2) The name of a DSN file with a drive/path specification,

3) A partial DSN file name, such as *.DSN , with or without a drive/path spec,

4) A complete Connection String »p80 such as the text that is found inside a
DSN file,

5) A partial Connection String, or

6) An empty string.

See Remarks below for a discussion of each option.

OPTIONAL lPrompt&

If this parameter is omitted, the behavior is the same as if
%PROMPT_TYPE_DEFAULT (see below) is specified.

If this parameter is included, it must be one of the following constants:

%PROMPT_TYPE_NOPROMPT tells the SQL_OpenDB function that it should not
display any dialog boxes to prompt the user for a database connection. If the
function is not able to establish a connection by using the information
supplied in sConnectionString$, it will fail and return an ODBC Error Code

»p180.

 537

%PROMPT_TYPE_PROMPT tells SQL_OpenDB that it should display dialog
boxes to display the connection information, and allow the user to change it,
even if the sConnectionString$ information is valid and sufficient to establish
a connection.

%PROMPT_TYPE_COMPLETE and %PROMPT_TYPE_REQUIRED tell
SQL_OpenDB function that if the connection string contains enough valid
information, it should make the connection without displaying any dialogs. If
any information is invalid or incomplete, the same dialog boxes as
%PROMPT_TYPE_PROMPT are displayed. (If lPrompt& is
%PROMPT_TYPE_REQUIRED, the dialog boxes do not allow the user to
change any already-valid information.)

%PROMPT_TYPE_DEFAULT tells SQL_OpenDB to use
%PROMPT_TYPE_COMPLETE unless the default type has been changed with
SQL_SetOption »p681(%OPT_OPENDB_PROMPT).

OPTIONAL sIgnoreErrors$

A string containing one or more SQL States »p897 that tells this function to
ignore a certain error or errors when the operation is performed. See
Ignoring Predictable Errors »p183 for more information.

Return Values

If the SQL_OpenDB function is able to connect with a database, %SQL_SUCCESS or
%SQL_SUCCESS_WITH_INFO will be returned. (See Diagnostics below for more
information about %SQL_SUCCESS_WITH_INFO.)

If the SQL_OpenDB function displays a Select File Dialog and/or a Connection
Dialog and the user selects Cancel or Quit, this function will return
%ERROR_USER_CANCEL.

If the connection to the specified database is not successful for some other reason,
the return value of SQL_OpenDB will be either an ODBC Error Code »p180 or a SQL
Tools Error Code.

Remarks

The default prompt mode for the SQL_OpenDB function is called
%PROMPT_TYPE_COMPLETE. This means that, unless you use SQL_SetOption to
change the default mode (see below), the SQL_OpenDB function will behave in the
following way:

If you provide a complete DSN file name »p79, and if the DSN file exists in the
specified location, and if the DSN file is valid, the SQL_OpenDB function will connect
to the database without displaying any dialog boxes. (The dialog boxes are also
called "prompts".)

If you provide a partial DSN file name (such as *.DSN or MYDB?.DSN), or if you
specify a complete DSN file name but the file does not exist in the specified location,
the function will display a standard Open File dialog box to allow you to browse for
the file. You may use the Open File dialog box to select either a DSN file or a
Windows shortcut to a DSN file. If the selected DSN file is valid, this function will
connect to the database without displaying any further dialog boxes.

 538

If, instead of a file name, you provide valid Connection String »p80 that contains
enough information for the ODBC driver »p76 to open the database, this function will
open the database without displaying any dialog boxes. (DSN files contain
Connection Strings. Passing the name of a DSN file accomplishes exactly the same
thing as passing the contents of the DSN file to the SQL_OpenDB function . The
primary advantages of passing the Connection String itself are 1) it allows for the
hard-coding of connection strings, and 2) it allows for the runtime construction of
connection strings.)

If you provide a partial Connection String or an empty string, or if a DSN file that was
selected (above) is not complete and valid, this function will display a series of dialog
boxes that will allow the user to create, save, and select a DSN file.

The maximum length for sConnectionString$ is 4,096 bytes. For additional
information, see Appendix G: Connection String Syntax »p910.

The parent window or form for the Open File dialog and other dialog boxes can be
specified with the following code...

SQL_SetOption %OPT_h_PARENT_WINDOW, hWindow&

... where hWindow& is the window's Handle. If a parent window is not specified in
this way, or if the specified handle is invalid when it comes time to display a dialog
box, SQL Tools will automatically revert to using the Windows Desktop as the parent
window.

The title bar of the Open File dialog defaults to "SELECT A DSN FILE ". You can
change the title with the following code...

SQL_SetOptionStr %OPT_SELECTDSN, s Title$

... where sTitle$ is the desired text. (This option is provided primarily for non-English
programs, but it can also be used if you want to customize the dialog boxes.) The
titles of the other dialog boxes are hard-coded by Microsoft and can't be changed with
SQL Tools. The Microsoft dialogs may or may not automatically use the native
language of the runtime computer.

After a database has been opened, the SQL_OpenDB function automatically checks
to make sure that it is capable of performing something called "Fetch Scroll »p149"
operations. If it is not capable, the database cannot perform SQL_Fetch »p435
operations except in a forward-only »p148 mode, so SQL Tools automatically sets an
internal switch to allow only forward-only fetching. This switch can be manually set
with the following code...

SQL_SetOption %OPT_USE_FETCHSCROLL, lTrueFalse&

... where lTrueFalse& is Logical True »p912 or any nonzero value if you want SQL
Tools to attempt to perform "normal" fetch operations, and a zero value (0) if you
want it to perform only forward-only fetches. It should only be necessary to set this
option under very unusual circumstances, but the following code.

lResult& = SQL_Option(%OPT_USE_FETCHSCROLL)

...may be useful for troubleshooting if you suspect that a database is not capable of
Fetch Scroll operation. The value of lResult& will be a Logical True »p912 or False
value, depending on the current setting of the switch.

 539

Using SQL_OpenDatabase1 and SQL_OpenDatabase2

The SQL_OpenDB function is actually a "wrapper" function actually performs three
separate operations:

1) It uses the SQL_OpenDatabase1 »p534 function to begin the process,

2) It uses the SQL_SetDatabaseAttrib »p670 function to specify the "as-needed"
use of the ODBC Cursor Library (see Speed Issues below), and

3) It uses the SQL_OpenDatabase2 »p535 function to complete the process.

You can perform these steps individually, instead of using SQL_OpenDB, if you need
to open a database in an unusual way. For more information, please refer to the
Reference Guide entries for SQL_OpenDatabase1 , SQL_SetDatabaseAttrib

»p670(%DB_ODBC_CURSORS), and SQL_OpenDatabase2 .

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

It is very common and completely normal for this function to return
%SQL_SUCCESS_WITH_INFO and an Error Message that says...

"The driver doesn't support the version of ODBC beha vior that
the application requested ".

That message means that your program specified ODBC 3.x behavior (via the
SQL_Init »p494 or SQL_Initialize »p495 function) and that you have opened a
database such as Access 97 that does not fully support ODBC 3.x behavior. Most
ODBC drivers can emulate at least some 3.x behavior, so it is not usually a good idea
to use a different lODBCVersion& value with SQL_Initialize »p495. If you do that,
for instance, the %SQL_SUCCESS_WITH_INFO message will no longer be generated
but you will not be able to use certain ODBC functions such as Bookmarks »p154.

Examples

lResult& = SQL_OpenDB("MYDATA.DSN")

...or ...

lResult& = SQL_OpenDB("DSN=SYS1;UID=JOHN;PWD=HELLO")

...or ...

lResult& = SQL_OpenDB("")

Driver Issues

None.

Speed Issues

By default, whenever it opens a database, SQL Tools tells your ODBC driver »p76 to
use something called the "ODBC Cursor Library" on an as-needed basis. The ODBC

 540

Cursor Library simulates certain types of cursor operations if an ODBC driver does
not support them directly. For example, if an ODBC driver supports only forward-only

»p148 fetches, the ODBC Cursor Library can simulate other types of fetches.

While this is usually a good thing, it can impact the speed of database access. If
speed is an extremely critical factor in your program design, and if your program does
not need cursor behavior that is not directly supported by the ODBC driver, you might
want to consider bypassing the use of the ODBC Cursor Library.

This can be accomplished by using the SQL_OpenDatabase1 »p534 and
SQL_OpenDatabase2 »p535 functions instead of the SQL_OpenDB function. The
SQL_OpenDB and SQL_OpenDatabase functions are simply "wrappers" for the
SQL_OpenDatabase1 and 2 functions, and they automatically tell the ODBC driver
to use the ODBC Cursor Library in between those two steps. If you use the 1 and 2
functions directly, the "ODBC Cursor Library" step will be skipped, and the Library will
not be used.

See Also

Opening a Database »p78

 541

SQL_OpenStatement

Syntax

lResult& = SQL_OpenStatement(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_OpenStatement is identical to SQL_OpenStmt »p542. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 542

SQL_OpenStmt

Summary

Opens a SQL statement »p123 and prepares it for use by the SQL_Stmt »p716 function.
(This function is not used very often because the SQL_Stmt function automatically
performs this step for you.)

Twin

SQL_OpenStatement »p541

Family

Statement Open/Close Family »p239

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_OpenStmt

Parameters

None.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
statement is opened successfully, or an Error Code »p180 if it is not.

Remarks

Normally, SQL Tools automatically opens a statement whenever you use the
SQL_Stmt »p716 function, so it is not usually necessary for your programs to use this
function.

This function performs two different operations: 1) It allocates a statement handle for
a new statement, and 2) It uses the values that your program specified with the
SQL_StmtMode »p725 function (or the default values) to configure the statement
handle. A wide variety of modes can be specified; see SQL_StmtMode »p725 for
complete information.

If you have disabled the Statement-Auto-Open feature by using...

SQL_SetOption »p681 %OPT_AUTOOPEN_STMT, 0

...then your program is responsible for manually opening »p196 statements by using
the SQL_OpenStmt function.

If you have disabled the Statement Auto-Close feature by using...

SQL_SetOption %OPT_AUTOCLOSE_STMT, 0

...then your program is responsible for using the SQL_CloseStmt »p282 function to
close an already-open statement before using the SQL_OpenStmt function.

 543

Diagnostics

This statement returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

None.

Speed Issues

None.

See Also

Manually Opening and Closing Statements »p196

 544

SQL_Option

Summary

This function can be used to obtain the current values of a wide variety of SQL Tools
options, in numeric form.

Twin

None

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_Option(lOption&)

Parameters

lOption&
See Remarks below.

Return Values

If a valid lOption& value is used, this function will return the current value of the
specified option, in numeric form. If an invalid lOption& value is used, zero (0) will be
returned.

Remarks

Not all SQL Tools Option values are useful in numeric form. For example, the
%OPT_MY_PROGRAM option is usually used to store the name of your program, and
using SQL_Option to return a numeric value for this string would usually return zero.
It is possible, however, to assign a value like the string "2000 " to the
%OPT_MY_PROGRAM option, in which case the SQL_Option function would return
2000 .

For that reason, SQL Tools allows all options to be changed and read with both string
and numeric functions.

In order to avoid errors when this document is updated in the future, a single list of all
of the various SQL Tools Options is provided in the Reference Guide's
SQL_SetOptionStr »p682 entry.

Diagnostics

None.

Example

'print the current setting of %OPT_MAX_ERRORS:
PRINT SQL_Option(%OPT_MAX_ERRORS)

 545

Driver Issues
None

Speed Issues

None

See Also

Configuration Family »p231

 546

SQL_OptionResetAll

Summary

Resets all of the SQL Tools Options to their default values.

Twin

None.

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

None.

Syntax

SQL_OptionResetAll

Parameters

None.

Return Values

This function always returns %SQL_SUCCESS, so it is safe to ignore the return value.

Remarks

This function re-initializes all of the various SQL_SetOptionStr »p682 and
SQL_SetOption »p681 values that your program may have changed.

Diagnostics

None.

Example

PRINT SQL_OptionStr(%OPT_MY_PROGRAM)

SQL_SetOptionStr %OPT_MY_PROGRAM, "Hello World"
PRINT SQL_OptionStr(%OPT_MY_PROGRAM)

SQL_OptionResetAll
PRINT SQL_OptionStr(%OPT_MY_PROGRAM)

Results:

My Program
Hello World
My Program

Driver Issues None.
Speed Issues None.
See Also Configuration Family »p231

 547

SQL_OptionStr

Summary

This function can be used to obtain the current values of a wide variety of SQL Tools
options, in string form.

Twin

None

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_OptionStr(lOption&)

Parameters

lOption&
See Remarks below.

Return Values

If a valid lOption& value is used, this function will return the current value of the
specified option, in string form. If an invalid lOption& value is used, an empty string
will be returned.

Remarks

Not all SQL Tools Option values are useful in string form. For example, the
%OPT_MAX_ERRORS option is used to store the maximum number of errors that SQL
Tools will store in the Error Stack, and using SQL_OptionStr to return a string value
like "64" for this option would not normally be useful. It is possible, however, that you
might want to obtain the string representation of an option's value for display
purposes.

For that reason, SQL Tools allows all options to be changed and read with both string
and numeric functions.

In order to avoid errors when this document is updated in the future, a single list of all
of the various SQL Tools Options is provided in the Reference Guide's
SQL_SetOptionStr »p682 entry.

Diagnostics

None.

Example

'Print the name of the current program.
'(Unless you set this value, it defaults
'to "My Program".)
PRINT SQL_OptionStr(%OPT_MY_PROGRAM)

 548

Driver Issues

None.

Speed Issues

None.

See Also

Configuration Family »p231

 549

SQL_ParamCount

Summary

Indicates how many bound parameters »p128 a prepared SQL statement has.

Twin

SQL_ParameterCount »p551

Family

Statement Binding Family »p242

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_ParamCount

Parameters

None.

Return Values

If a SQL statement has not been prepared »p124, this function will return zero.
Otherwise, it will return a number that indicates how many bound parameters the
statement has. (This number can also be zero, or a positive integer value.)

Remarks

In most cases you will already know how many parameters a SQL statement has,
because you will have designed the statement. In some cases, however, it may be
necessary to determine this value programmatically, by using this function.

IMPORTANT NOTE: This function cannot be used to determine the number of
parameters that a Stored Procedure »p208 requires. For that, you will need to use the
value that is returned by the SQL_ProcColCount »p558 function with the
SQL_ProcColInfo »p560 function, to examine the procedure's "columns" and
determine which of the columns are "input columns". For more information, see
SQL_ProcColInfo »p560.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "this statement has one bound parameter". This function can, however,
generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

 550

Speed Issues
None.

See Also

Binding Statement Input Parameters »p128

 551

SQL_ParameterCount

Syntax

lResult& = SQL_ParameterCount(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ParameterCount is identical to SQL_ParamCount »p549. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 552

SQL_ParameterInfo

Syntax

lResult& = SQL_ParameterInfo(lDatabaseNumber&, _
 lStatementNumber&, _
 lParameterNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ParameterInfo is identical to SQL_ParamInfo »p554. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 553

SQL_ParameterInfoStr NEW

Syntax

sResult$ = SQL_ParameterInfoStr(lDatabaseNumber&, _
 lStatementNumber&, _
 lParameterNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ParameterInfoStr is identical to SQL_ParamInfoStr »p556. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 554

SQL_ParamInfo

Summary

Provides information about a bound statement parameter »p128 (a ? value-placeholder
in a SQL statement »p123).

Twin

SQL_ParameterInfo »p552

Family

Statement Binding Family »p242

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_ParamInfo(lParameterNumber&, _
 lInfoType&)

Parameters

lParameterNumber&
The number of the parameter for which information is being retrieved,
between one (1) and the number that is returned by the SQL_ParamCount

»p549 function (i.e. the number of ? markers in a prepared SQL statement).
lInfoType&

The type of information being requested. See Remarks below for a complete
list of legal values.

Return Values

If valid parameters are used, this function will return the requested information.
Otherwise, zero (0) will be returned.

Remarks

See Binding Statement Input Parameters »p128 for background information.

Please note that, unlike most Info values, these Info values are not cached »p200 by
SQL Tools. They are requested from the ODBC driver »p76 whenever you use this
function.

The lInfoType& parameter must be one of the following values:

%PARAM_DATA_TYPE

The SQL Data Type »p87 of the bound parameter. This numeric value will
correspond to a %SQL_ data-type constant. See SQL Data Types »p87..

%PARAM_DIGITS

The decimal digits »p120 value, for certain data types.

 555

%PARAM_NULLABLE

Returns one (1) if the parameter can accept a Null »p171 value, or zero (0) if it
cannot.

%PARAM_SIZE

The display size »p119 of the parameter's Data Type.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate value
like "the data type of this parameter is 1 (%SQL_CHAR). It can, however, generate
ODBC Error Messages »p181 and SQL Tools Error messages.

Example

See Binding Statement Input Parameters »p128 for example code.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities. See Binding
Statement Input Parameters »p128.

Speed Issues

See Binding Statement Input Parameters »p128

See Also

Execution of SQL Statements »p124

 556

SQL_ParamInfoStr NEW

Summary

Returns a string that corresponds to the numeric value returned by the
SQL_ParamInfo »p554 function. More usefully, it can also return Info/Attribute Labels

»p193.

Twin

None

Family

Statement Binding Family »p242

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_ParamInfoStr(lParameterNumber&, _
 lInfoType&)

Parameters

lParameterNumber&
The number of the parameter for which information is being retrieved,
between one (1) and the number that is returned by the SQL_ParamCount

»p549 function (i.e. the number of ? markers in a prepared SQL statement).
lInfoType&

The type of information being requested. See Remarks below for a complete
list of legal values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

See Remarks.

Remarks

All Parameter Info values are numeric, so most of the time you will use
SQL_ParamInfo »p554 instead of this function.

If you use SQL_ParamInfoStr(1, %PARAM_DATA_TYPE) (for example) the return
value will be a string that corresponds to the numeric value returned by
SQL_ParamInfo ; "1" for 1, "2" for 2, and so on.

Diagnostics

None

Example

See Info/Attribute Labels »p193.

Driver Issues

 557

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

SQL_ParamInfo »p554

 558

SQL_ProcColCount

Summary

Returns the number of columns (result columns, input parameters, etc.) that a Stored
Procedure »p208 has.

Twin

SQL_ProcedureColumnCount »p568

Family

Stored Procedure Family »p243

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_ProcColCount(lProcedureNumber&)

Parameters

lProcedureNumber&
The number of a procedure, between one (1) and the number of procedures
that is returned by the SQL_ProcCount »p567 function.

Return Values

This function will return zero (0) if the procedure does not have any columns, or a
positive number that indicates the total number of columns.

Remarks

Procedures can have three types of columns:

1) Input columns (i.e. parameters that must be defined before a procedure can be
executed),

2) Output columns (i.e. the columns of the result set that will be produced when the
procedure is executed), and

3) A "column" that contains the return value of the procedure.

The SQL_ProcColCount »p558 function returns the total number of columns that a
procedure has.

See Stored Procedures »p208 for more information.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value, such as "this procedure has one column". This function can, however,
generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example See Stored Procedures »p208.

 559

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

Binding Statement Input Parameters »p128
Execution of SQL Statements »p124

 560

SQL_ProcColInfo

Summary

Provides information about a column (result column, input parameter, etc.) of a
Stored Procedure »p208, in numeric form.

Twin

SQL_ProcedureColumnInfo »p569

Family

Stored Procedure Family »p243

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_ProcColInfo(lProcedureNumber&, _
 lProcColumnNumber&, _
 lInfoType&)

Parameters

lProcedureNumber&
The number of a procedure, between one (1) and the value returned by
SQL_ProcCount »p567.

lProcColumnNumber&
The number of a column of a procedure, between one (1) and the value
returned by SQL_ProcColCount »p558.

lInfoType&
The type of numeric information being requested. See Remarks below for a
complete list of valid values.

Return Values

If valid parameters are used, this function will return a numeric value that contains the
information that was requested. If an invalid parameter is used, zero (0) will be
returned.

Remarks

This function is used to obtain numeric information about a procedure's columns.

Keep in mind that procedures have three different kinds of columns:

1) Input columns (i.e. parameters that must be defined before a procedure can be
executed),

2) Output columns (i.e. the columns of the result set that will be produced when the
procedure is executed), and

3) A "column" that contains the return value of the procedure.

Your program should use the %PROC_COL_TYPE value (see below) to determine

 561

each column's type, to help put the rest of the column's information in context. See
Stored Procedures »p208 for more information.

Please note that not all procedure column information is useful in numeric form. For
a list of lInfoType& values that can be used to obtain string information about a
column, see SQL_ProcColInfoStr »p564.

The lInfoType& parameter must be one of the following values when you are getting
numeric information about a column:

%PROC_COL_BUFFER_LENGTH

The buffer size »p116 (in bytes) that is required for the column.

%PROC_COL_CATALOG

See SQL_ProcColInfoStr »p564.

%PROC_COL_CHAR_OCTET_LENGTH

ODBC 3.x+ ONLY : The maximum length (in bytes) of a character or binary
column. For all other data types, this column returns zero (0).

%PROC_COL_DATA_TYPE

The column's SQL Data Type »p87. This will always be one of the standard
SQL Data Types, such as %SQL_CHAR or %SQL_INTEGER.

%PROC_COL_DATA_TYPE_NAME

See SQL_ProcColInfoStr »p564.

%PROC_COL_DECIMAL_DIGITS

The number of decimal digits »p120 that the column has.

%PROC_COL_DEFAULT_VALUE

ODBC 3.x+ ONLY : The column's default value.

This lInfoType& can return either numeric or string information. Your
program should check for both.

If the Null value was specified as the default value, or if no default was
specified, the string value NULL (i.e. the word "NULL") will be returned. If the
default value cannot be represented without truncation, the word
"TRUNCATED" will be returned.

This value can be used when generating a new column definition, except
when it contains the word TRUNCATED.

%PROC_COL_IS_NULLABLE and
%PROC_COL_NAME

See SQL_ProcColInfoStr »p564.

 562

%PROC_COL_NULLABLE

One of the following values:

%SQL_NO_NULLS (The procedure column does not accept Null »p171 values.)

%SQL_NULLABLE (The procedure column does accept Null values.)

%SQL_NULLABLE_UNKNOWN (It is not known whether or not the procedure
column accepts Null values.)

%PROC_COL_NUM_PREC_RADIX

The Num Prec Radix »p118 of the column.

%PROC_COL_ORDINAL_POSITION

ODBC 3.x+ ONLY : The column's number.

For input and output parameters, this is the ordinal position of the parameter
in the procedure definition, in increasing order, starting at 1.

For result-set columns, this is the ordinal position of the column in the result
set, with the first column in the result set being column number 1. If there are
multiple result sets, the column positions are returned in different orders by
different ODBC drivers, so you will need to determine the meaning of this
value experimentally.

For a return value column, zero (0) is returned.

%PROC_COL_PROC_NAME and
%PROC_COL_REMARKS

See SQL_ProcColInfoStr »p564.

%PROC_COL_SIZE

The display size »p119 of the column.

%PROC_COL_SQL_DATA_TYPE

ODBC 3.x+ ONLY : This value is the same as %PROC_COL_DATA_TYPE
except for datetime and interval data types. For datetimes and intervals, this
value will be %SQL_ODBCx_INTERVAL_ or %SQL_DATETIME, and the
%PROC_COL_SQL_DATETIME_SUB value will be the subcode for the specific
interval or datetime data type.

%PROC_COL_SQL_DATETIME_SUB

ODBC 3.x+ ONLY : The subtype code for datetime and interval data types,
such as %SQL_ODBC2_INTERVAL_MINUTE.

%PROC_COL_TYPE

The column's type. This will always be one of the following values:

 563

Input (Parameter) Columns : %PROC_INPUT_PARAM,
%PROC_OUTPUT_PARAM, %PROC_INPUT_OUTPUT_PARAM, or
%PROC_UNKNOWN_TYPE_PARAM.

Output (Result) Columns : %PROC_RESULT_COLUMN

Return Values : %PROC_RETURN_VALUE

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value. This function can, however, generate ODBC Error Messages »p181 and SQL
Tools Error Messages.

Example

See Stored Procedures »p208.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Binding Statement Input Parameters »p128
Execution of SQL Statements »p124

 564

SQL_ProcColInfoStr

Summary

Provides information about a column (result column, input parameter, etc.) of a
Stored Procedure »p208, in string form.

Twin

SQL_ProcedureColumnInfoStr »p570

Family

Stored Procedure Family »p243

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_ProcColInfoStr(lProcedureNumber&, _
 lProcColumnNumber&, _
 lInfoType&)

Parameters

lProcedureNumber&
The number of a procedure, between one (1) and the value returned by
SQL_ProcCount »p567.

lProcColumnNumber&
The number of a column of a procedure, between one (1) and the value
returned by SQL_ProcColCount »p558.

lInfoType&
The type of string information being requested. See Remarks below for a
complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, this function will return a string that contains the
information that was requested. If an invalid parameter is used, an empty string will
be returned.

Remarks

This function is used to obtain string information about a procedure's columns.

Keep in mind that procedures have three different kinds of columns:

1) Input columns (i.e. parameters that must be defined before a procedure can be
executed),

2) Output columns (i.e. the columns of the result set that will be produced when the
procedure is executed), and

 565

3) A "column" that contains the return value of the procedure.

Your program should use the %PROC_COL_TYPE value (see SQL_ProcColInfo

»p560) to determine each column's type, to help put the rest of the column's
information in context. See Stored Procedures »p208 for more information.

Please note that not all procedure column information is useful in string form. For a
list of lInfoType& values that can be used to obtain numeric information about a
column, see SQL_ProcColInfo »p560.

The lInfoType& parameter must be one of the following values when you are getting
string information about a column:

%PROC_COL_BUFFER_LENGTH

See SQL_ProcColInfo »p560.

%PROC_COL_CATALOG

The procedure's Catalog Name.

%PROC_COL_CHAR_OCTET_LENGTH and
%PROC_COL_DATA_TYPE

See SQL_ProcColInfo »p560.

%PROC_COL_DATA_TYPE_NAME

The column's datasource-dependent data type »p108 name, such as
"INTEGER" or "COUNTER".

%PROC_COL_DECIMAL_DIGITS

See SQL_ProcColInfo »p560.

%PROC_COL_DEFAULT_VALUE

ODBC 3.x+ ONLY : The column's default value.

This lInfoType& can return either numeric or string information. Your
program should check for both.

If the Null value was specified as the default value, or if no default was
specified, the string value NULL (i.e. the word "NULL") will be returned. If the
default value cannot be represented without truncation, the word
"TRUNCATED" will be returned.

This value can be used when generating a new column definition, except
when it contains the word TRUNCATED.

%PROC_COL_IS_NULLABLE

ODBC 3.x+ ONLY : The word "NO" if the column does not include nulls,
"YES" if the column can include nulls, or an empty string if nullability is
unknown. (Also see SQL_ProcColInfo »p560(%PROC_COL_NULLABLE).)

 566

%PROC_COL_NAME

The column's name.

%PROC_COL_NULLABLE,
%PROC_COL_NUM_PREC_RADIX, and
%PROC_COL_ORDINAL_POSITION

See SQL_ProcColInfo »p560.

%PROC_COL_PROC_NAME

The name of the procedure that uses this column.

%PROC_COL_REMARKS

An optional description field.

%PROC_COL_SCHEMA

The procedure's Schema Name.

%PROC_COL_SIZE,
%PROC_COL_SQL_DATA_TYPE,
%PROC_COL_SQL_DATETIME_SUB and
%PROC_COL_TYPE

See SQL_ProcColInfo »p560.

Diagnostics
This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

See Stored Procedures »p208.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Binding Statement Input Parameters »p128
Execution of SQL Statements »p124

 567

SQL_ProcCount

Summary

Provides a count of the Stored Procedures »p208 that a database contains.

Twin

SQL_ProcedureCount »p571

Family

Stored Procedure Family »p243

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_ProcCount

Parameters

None.

Return Values

This function will return zero (0) if a database does not contain any stored procedures

»p208, or a positive number that indicates the total number of procedures.

Remarks

See Stored Procedures »p208 for more information.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a result like "this
database contains one stored procedure". It can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

See Stored Procedures »p208.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Binding Statement Input Parameters »p128
Execution of SQL Statements »p124

 568

SQL_ProcedureColumnCount

Syntax

lResult& = SQL_ProcedureColumnCount(lDatabaseNumber &, _
 lProcedureNumbe r&)

Except for the lDatabaseNumber& parameter, SQL_ProcedureColumnCount is
identical to SQL_ProcColCount »p558. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 569

SQL_ProcedureColumnInfo

Syntax

lResult& = SQL_ProcedureColumnInfo(lDatabaseNumber& , _
 lProcedureNumber &, _
 lProcColumnNumbe r&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_ProcedureColumnInfo is
identical to SQL_ProcColInfo »p560. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 570

SQL_ProcedureColumnInfoStr

Syntax

sResult$ = SQL_ProcedureColumnInfoStr(lDatabaseNumb er&, _
 lProcedureNum ber&, _
 lProcColumnNu mber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_ProcedureColumnInfoStr is
identical to SQL_ProcColInfoStr »p564. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 571

SQL_ProcedureCount

Syntax

lResult& = SQL_ProcedureCount(OPTIONAL lDatabaseNumber&)

Except for the lDatabaseNumber& parameter, SQL_ProcedureCount is identical
to SQL_ProcCount »p567. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 572

SQL_ProcedureInfo

Syntax

lResult& = SQL_ProcedureInfo(lDatabaseNumber&, _
 lProcedureNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_ProcedureInfo is identical to
SQL_ProcInfo »p574. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 573

SQL_ProcedureInfoStr

Syntax

sResult$ = SQL_ProcedureInfoStr(lDatabaseNumber&, _
 lProcedureNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_ProcedureInfoStr is identical
to SQL_ProcInfoStr »p576. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 574

SQL_ProcInfo

Summary

Provides information about a Stored Procedure »p208, in numeric form.

Twin

SQL_ProcedureInfo »p572

Family

Stored Procedure Family »p243

Availability

SQL Tools Pro only (see »p29)

Warning

See Remarks regarding %PROC_INPUT_PARAM_COUNT,
%PROC_OUTPUT_PARAM_COUNT, and %PROC_RESULT_COLUMN_COUNT.

Syntax

lResult& = SQL_ProcInfo(lProcedureNumber&, _
 lInfoType&)

Parameters

lProcedureNumber&
The number of a stored procedure, between one (1) and the number of
stored procedures that a database has, as returned by SQL_ProcCount

»p567.
lInfoType&

The type of numeric information that is being requested. See Remarks
below for a complete list of valid values.

Return Values

If valid parameters are used, this function will return the requested numeric
information. Otherwise, zero (0) will be returned.

Remarks

Not all types of procedure information are useful in numeric form. For a list of
lInfoType& values that can be used to obtain string information, see
SQL_ProcInfoStr »p576.

Here is the list of lInfoType& values that can be used to obtain numeric information:

%PROC_CATALOG
%PROC_NAME
%PROC_REMARKS
%PROC_SCHEMA

See SQL_ProcInfoStr »p576.

%PROC_TYPE

The procedure's type. This will always be one of the following values:

 575

%SQL_PT_PROCEDURE (The procedure does not have a return value.)

%SQL_PT_FUNCTION (The procedure is a function, and therefore has a
return value.)

%SQL_PT_UNKNOWN (It is not known whether or not the procedure returns a
value.)

%PROC_INPUT_PARAM_COUNT,
%PROC_OUTPUT_PARAM_COUNT, and
%PROC_RESULT_COLUMN_COUNT

WARNING: If at all possible, applications should no t rely on these
values. Even though these values were defined in the ODBC 2.0
specification, they are still defined as "reserved for future use" by the ODBC
3.8 specification.

A return value of negative one (-1) indicates "unknown".

Microsoft Access does not support %PROC_OUTPUT_PARAM_COUNT so zero
(0) will always be returned.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to four
driver-defined information types. You can use the lInfoType& values
%PROC_DRIVERDEF_9 through %PROC_DRIVERDEF_12 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "procedure type 1". This function can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

See Stored Procedures »p208.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Microsoft Access does not support %PROC_OUTPUT_PARAM_COUNT

Speed Issues

See Cached Information »p200.

See Also

Execution of SQL Statements »p124
Binding Statement Input Parameters »p128

 576

SQL_ProcInfoStr
Summary

Provides information about a Stored Procedure »p208, in string form.

Twin

SQL_ProcedureInfoStr »p573

Family

Stored Procedure Family »p243

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_ProcInfoStr(lProcedureNumber&, _
 lInfoType&)

Parameters
lProcedureNumber&

The number of a stored procedure, between one (1) and the number of
stored procedures that a database has, as returned by SQL_ProcCount

»p567.
lInfoType&

The type of string information that is being requested. See Remarks below
for a complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, this function will return a string that contains the
requested information. Otherwise, an empty string will be returned.

Remarks

Not all types of procedure information are useful in string form. For a list of
lInfoType& values that can be used to obtain numeric information, see
SQL_ProcInfo »p574.

Here is the list of lInfoType& values that can be used to obtain string information:

%PROC_CATALOG

The procedure's catalog name.

%PROC_INPUT_PARAM_COUNT

See SQL_ProcInfo »p574.

%PROC_NAME

The procedure's name.

 577

%PROC_OUTPUT_PARAM_COUNT

See SQL_ProcInfo »p574.

%PROC_REMARKS

An optional description.

%PROC_RESULT_COLUMN_COUNT

See SQL_ProcInfo »p574.

%PROC_SCHEMA

The procedure's schema name.

%PROC_TYPE

See SQL_ProcInfo »p574.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to four
driver-defined information types. You can use the lInfoType& values
%PROC_DRIVERDEF_9 through %PROC_DRIVERDEF_12 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. This
function can, however, generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

See Stored Procedures »p208.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Execution of SQL Statements »p124
Binding Statement Input Parameters »p128

 578

SQL_ResColBInt V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607
and SQL_ResultColumnNumeric in Version 3.

 579

SQL_ResColBLOB NEW

Summary

Returns data from a Long Column »p167 in binary form. (BLOB stands for Binary
Large OBject.)

Twin

SQL_ResultColumnBLOB »p631

Family

Result Column Family »p247

Availability

SQL Tools Pro only (see »p29)

Warning

This function can return extremely long strings and use large amounts of memory.

Syntax

sResult$ = SQL_ResColBLOB(lColumnNumber&, _
 OPTIONAL sFilename$)

Parameters

lColumnNumber&
The number of a result column, between zero (0) and the number returned by
the SQL_ResColCount »p584 function. Zero is used only to obtain
Bookmarks »p154; the normal minimum value for lColumnNumber& is one (1).

OPTIONAL sFilename$
If you omit this parameter, the Return Value of the function will be the
contents of the Long Column. If you use a valid file name (with optional
drive/path) SQL Tools will create (or overwrite) that file and place the BLOB
in it. See SQL_SaveFile »p661 for a list of codes that can be used in file
names.

Return Values

If you omit the sFilename$ parameter, this function will return the entire contents of
the specified column as a string. If you do specify a file name, the return value will be
the name of the disk file that was created, which may be different from sFilename$.

Remarks

BLOB stands for Binary Large OBject, which is a common term for a long string of
binary data. The data type is usually %SQL_LONGVARBINARY »p105. Common BLOBs
include images, sounds, entire documents, and the contents of executable files.
Technically speaking the string does not have to be "long" and it does not have to
contain non-text characters to be considered a BLOB. A BLOB can be anything, but
it is usually large and binary.

If you are certain that a Result Column contains binary data that is 64k bytes or less
in length, you can use the SQL_ResColString »p614 function to retrieve it. This is
generally faster and uses less memory than SQL_ResColBLOB.

Because this function can return extremely long strings -- up to 1 gigabyte -- it can
optionally place its data in a disk file instead of returning a string. To do that, specify

 580

a valid file name (with or without a drive/path) for sFilename$. If you embed certain
codes (which all include the # character) in sFilename$, SQL Tools will automatically
modify the file name for you. See SQL_SaveFile »p661 for complete information
about the # codes.

The use of FILE= is optional, in case you want to maintain consistency with
SQL_ResSet »p623 and other functions. See last Example .

If you specify sFilename$, the return value of this function will be the file name that
you specified, modified to show the results of any # codes, plus a drive/path
specification (if you did not specify one).

Internally, this function retrieves Long Data in "chunks" and assembles them before
returning the final string to your program. SQL Tools uses a default chunk size of 64k
bytes, which works well under most circumstances. Depending on your computer
and network however, you may be able to improve the speed of this function by using
a smaller or larger chunk size. See SQL_SetOption »p681 %OPT_DATALEN_CHUNK
for more information.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'get the contents of Column 3 of the current result set
sResult$ = SQL_ResColBLOB(3)

'get the contents of Column 3 of the current result set
'and store it in a file called MYFILE.BIN
sResult$ = SQL_ResColBLOB(3,"FILE=MYFILE.BIN")

'This will do exactly the same thing...
sResult$ = SQL_ResColBLOB(3,"MYFILE.BIN")

Driver Issues

See Possible Driver Restrictions on Long Columns »p169

Speed Issues

Because of the large amount of data that a Long Column »p167 can contain, and the
relatively slow speed of disk-write operations, this function can take many seconds to
execute.

See Also

SQL_ResColMemo »p602

 581

SQL_ResColBuffer NEW

Summary

Returns the entire contents of a Result Column's memory buffer.

Twin

SQL_ResultColumnBuffer »p632

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_ResColBuffer(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number returned by
the SQL_ResColCount »p584 function.

Return Values

This function returns a string that contains the entire contents of a Result Column's
memory buffer. If the actual data in the column is smaller than the buffer, the
remainder of the string will be filled with CHR$(0) or (in some circumstances) the
partial results of a previous fetch.

Remarks

SQL_ResColBuffer is normally used for troubleshooting and diagnostics only. If
you need raw data the SQL_ResColRaw »p610 function is usually a better choice.

Diagnostics

None.

Example

'Retrieve the entire contents of the column 1 buffe r
sResult$ = SQL_ResColBuffer(1)

Driver Issues

None.

Speed Issues

None.

See Also

SQL_ResColRaw »p610, SQL_ResColString »p614, SQL_ResColNumeric »p607, and
other members of the Result Column Family »p247.

 582

SQL_ResColBufferPtr

Summary

Returns a Pointer (Ptr) to the first byte of a Result Column's memory buffer.

Twin

SQL_ResultColumnBufferPtr »p633

Family

Result Column Family »p247

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

dwResult??? = SQL_ResColBufferPtr(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number returned by
the SQL_ResColCount »p584 function.

Return Values

This function returns an unsigned numeric value (a DWORD) that can be used in
functions that require a pointer (Ptr) value. Under most circumstances a LONG can
be used instead of a DWORD.

Remarks

SQL_ResColBufferPtr is normally used for troubleshooting and diagnostics only.

Diagnostics

None

Example

dwResult??? = SQL_ResColBufferPtr(1)

Driver Issues

None.

Speed Issues

None.

See Also

SQL_ResColBuffer »p581

 583

SQL_ResColChunk

Summary

This function and the related SQL_ResColMore »p604 function can be used to retrieve
data from Long Columns »p167 in small "chunks".

Twin

SQL_ResultColumnChunk »p634

Family

Result Column Family »p247

Availability

SQL Tools Pro only (see »p29)

Warning

The standard warnings about Long Columns »p167 apply to this function.

Syntax

sResult$ = SQL_ResColChunk(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column that contains Long Data, between one (1) and
the number returned by the SQL_ResColCount »p584 function.

Return Values

This function returns a string of no more than 4,096 bytes, representing a segment of
data from within a longer string.

Remarks

Most programs should use the SQL_ResColBLOB »p579 or SQL_ResColMemo »p602
function to retrieve Long Data in a single operation.

SQL_ResColMore and SQL_ResColChunk are provided mostly for backward
compatability with SQL Tools Version 2. If you are certain that you want to use
SQL_ResColMore and SQL_ResColChunk instead, see the
\SQLTOOLS\SAMPLES\ReadLongData.BAS sample program.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

See the \SQLTOOLS\SAMPLES\ReadLongData.BAS sample program.

Driver Issues

See Long Columns »p167.

Speed Issues

None.

See Also SQL_ResColMore *SQLTOOLS.S__203

 584

SQL_ResColCount

Summary

Provides a value which indicates the number of columns in a result set »p144.

Twin

SQL_ResultColumnCount »p635

Family

Result Count Family »p246

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ResColCount

Parameters

None.

Return Values

This function will return zero (0) if a SQL statement »p123 did not generate a result set
»p144, or a positive number that indicates the number of result columns that were
generated.

Remarks

If speed is an important factor in your program's design, and if you suspect that a
result set will be empty, it is usually faster to check this function's value than to
attempt to use SQL_Fetch »p435 and SQL_EOD »p409. See Detecting "No Data At All"

»p178.

IMPORTANT NOTE: If bookmarks »p154 are being used, the return value of the
SQL_ResColCount does not include the bookmark column (column zero »p156).
Strictly speaking, this function returns the number of the highest-numbered column,
not the result column "count". But because "count" is the official ODBC terminology,
it is used by SQL Tools.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with the result "this result
set has one column". It can, however, generate ODBC Error Messages »p181 and
SQL Tools Error Messages.

Example

None.

Driver Issues None.
Speed Issues See Remarks above.
See Also Result Column Family »p247

 585

SQL_ResColDate V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607

, SQL_DateTimePart »p314, and SQL_DateTimePartStr »p315 in Version 3.

 586

SQL_ResColDateTime V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607

, SQL_DateTimePart »p314, and SQL_DateTimePartStr »p315 in Version 3.

 587

SQL_ResColDateTimePart V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607

, SQL_DateTimePart »p314, and SQL_DateTimePartStr »p315 in Version 3.

 588

SQL_ResColFloat V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607
and SQL_ResultColumnNumeric in Version 3.

 589

SQL_ResColIndicator

Summary

Provides the value of the Indicator »p170 that is associated with one column of a result
set »p144.

Twin

SQL_ResultColumnIndicator »p641

Family

Result Column Binding Family »p245

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ResColIndicator(lColumnNumber&)

Parameters

lColumnNumber&
The column of the result set for which you need the Indicator value, between
one (1) and the number that is returned by the SQL_ResColCount »p584
function.

Return Values

This function returns the Indicator »p170 value for a column. See Remarks below for
more information about what the various Indicator values mean.

Remarks

This function will return zero (0) until SQL_Fetch »p435 or SQL_FetchRel »p441 is
used to retrieve the first row of a result set. After that, it will return the Indicator »p170
value that is associated with the most-recently-fetched row.

Most programs will not use this function, because the SQL_ResColNull »p605
function is easier to use.

If the Indictor value is %SQL_NULL_DATA (negative one (-1)), the column contains a
Null »p171 value.

If the Indicator value is %SQL_LENGTH_UNKNOWN (negative four (-4)), the column is a
Long column »p167 and the ODBC driver does not know how long it is.

No other negative values are defined for the ODBC functions that SQL Tools
supports.

If the indictor value is zero or a positive number, the column contains that number of
bytes of data. In the case of a Long Column »p167, the indicator value is the number
of bytes that have not yet been retrieved.

 590

Diagnostics
This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate Indicator

»p170 value of one. It can, however, generate ODBC Error Messages »p181 and SQL
Tools Error Messages.

Example

None.

Driver Issues

None.

Speed Issues

It is usually faster to use the SQL Tools SQL_ResColNull »p605 function than to use
SQL_ResColIndicator .

See Also

Result Column Family »p247

 591

SQL_ResColIndicatorPtr

Summary

Provides a pointer (ptr) to the memory buffer that SQL Tools uses for a result
column's Indicator »p170.

Twin

SQL_ResultColumnIndicatorPtr »p641

Family

Result Column Binding Family »p245

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

dwResult??? = SQL_ResColIndicatorPtr(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number that is
returned by the SQL_ResColCount »p584 function.

Return Values

This function returns an unsigned integer value (a DWORD) that represents a
memory pointer which points to the first byte of the Indicator »p170 buffer that SQL
Tools is using for the specified column.

If you attempt to obtain a pointer to an Indicator buffer for a column that has not been
autobound »p159 or direct-bound »p163 by SQL Tools, this function will return zero (0).

Remarks

This function, plus the knowledge that all Indicator buffers are four (4) bytes long,
make it possible for your program to use Proxy Binding »p161 to access an Indicator

»p170 directly instead of using a function like SQL_ResColIndicator »p591 or
SQL_ResColNull »p605. This can be an acceptable (and attractive) alternative to
Manual Binding »p164, especially if the Indicator can usually be accessed "normally"
and only sometimes needs to be accessed directly.

Diagnostics

This function does not return Error Codes »p180 because it returns a memory pointer
(which can have any value in the %BAS_DWORD range) so it would not be possible for
a program to distinguish between an Error Code and a valid pointer. This function
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

None.

 592

Speed Issues

See Result Column Binding »p158 for a discussion of your options, and how they affect
the execution speed of your program.

See Also

Indicators »p170

 593

SQL_ResColInfo
Summary

Provides information about a column of a result set »p144, in numeric form.

Twin

SQL_ResultColumnInfo »p642

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ResColInfo(lColumnNumber&, _
 lInfoType&)

Parameters
lColumnNumber&

The column of the result set about which you want information, between one
(1) and the number that is returned by the SQL_ResColCount »p584 function.

lInfoType&
The type of information that you are requesting. See Remarks below for a
complete list of valid values.

Return Values

If valid parameters are used, this function will return the requested information. If an
invalid parameter is used, this function will return zero (0).

Remarks

Only certain lInfoType& values will produce useful information in numeric form. For a
list of lInfoType& values that produce information in string form, see
SQL_ResColInfoStr »p597.

For numeric information, lInfoType& must be one of the following values:

%RESCOL_AUTO_UNIQUE_VALUE

If the column is auto-incrementing, this value will be one (1). Otherwise, it
will be zero (0).

%RESCOL_BASE_COLUMN_NAME,
%RESCOL_BASE_TABLE_NAME, and
%RESCOL_CATALOG_NAME

See SQL_ResColInfoStr »p597.

%RESCOL_CASE_SENSITIVE

If the result column is a string column (like a %SQL_CHAR column) which is
treated as case-sensitive for collations and comparisons, this value will be

 594

one (1). Otherwise, it will be zero (0).

%RESCOL_CONCISE_TYPE

The SQL Data Type »p87 of the result column, such as %SQL_INTEGER »p91
or %SQL_CHAR »p106.

%RESCOL_COUNT

The number of columns that the result set has.

%RESCOL_DISPLAY_SIZE

The display size »p119 of the result column.

%RESCOL_FIXED_PREC_SCALE

If the result column has a fixed precision and a non-zero scale that are
datasource-specific, this value will be one (1). Otherwise, it will be zero (0).

%RESCOL_LABEL

See SQL_ResColInfoStr »p597.

%RESCOL_LENGTH

ODBC 3.x+ ONLY : The maximum length of a fixed-length data type, or the
actual length of a variable-length data type. (This value always excludes the
null-termination byte at the end of an ASCIIZ character string.)

%RESCOL_LITERAL_PREFIX,
%RESCOL_LITERAL_SUFFIX,
%RESCOL_LOCAL_TYPE_NAME, and
%RESCOL_NAME

See SQL_ResColInfoStr »p597.

%RESCOL_NULLABLE

ODBC 3.x+ ONLY : One of the following values:

%SQL_NULLABLE (The result column can contain Null »p171 values.)

%SQL_NO_NULLS (The result column cannot contain Null values.)

%SQL_NULLABLE_UNKNOWN (It is not known whether or not the result
column can contain Null values.)

%RESCOL_NUM_PREX_RADIX

The Num Prec Radix »p118 of the result column.

%RESCOL_OCTET_LENGTH

ODBC 3.x+ ONLY : For fixed-length character or binary columns, this is the

 595

actual length of the column, in bytes. For variable-length character or binary
columns, this is the maximum length of the column, in bytes. This value
includes the null terminator that is used to mark the end of variable-length
strings.

%RESCOL_PRECISION

ODBC 3.x+ ONLY : This value indicates the precision of a numeric data type.
For timestamp and interval data types which represent a time interval, this
value is the precision of the fractional seconds.

%RESCOL_SCALE

ODBC 3.x+ ONLY : This value indicates the scale of a numeric data type.
For %SQL_DECIMAL and %SQL_NUMERIC data types, this is the defined
scale. For all other data types, this value will be zero.

%RESCOL_SCHEMA_NAME

See SQL_ResColInfoStr »p597.

%RESCOL_SEARCHABLE

This column will return one of the following values:

%SQL_PRED_NONE (The column cannot be used in a WHERE clause.)

%SQL_PRED_CHAR (The column can be used in a WHERE clause, but only
with the LIKE predicate. %SQL_LONGVARCHAR »p90 and
%SQL_LONGVARBINARY »p105 columns usually return %SQL_PRED_CHAR.)

%SQL_PRED_BASIC (The column can be used in a WHERE clause with all
the comparison operators except LIKE .)

%SQL_PRED_SEARCHABLE (The column can be used in a WHERE clause
with any comparison operator.

%RESCOL_TABLE_NAME

See SQL_ResColInfoStr »p597.

%RESCOL_TYPE

ODBC 3.x+ ONLY : The SQL Data Type »p87 of the result column.

When lColumnNumber& is zero (0), the constant value %SQL_BINARY »p105
is returned for variable-length bookmarks, and %SQL_INTEGER »p91 is
returned for fixed-length bookmarks.

For the datetime and interval data types, this field returns %SQL_DATETIME
or %SQL_ODBCx_INTERVAL_.

%RESCOL_TYPE_NAME

See SQL_ResColInfoStr »p597.

 596

%RESCOL_UNNAMED

ODBC 3.x+ ONLY : This value will be one (1) if the result column is named,
or zero (0) if it is not named. See SQL_ResColInfoStr »p597

(%RESCOL_NAME) for more information.

%RESCOL_UNSIGNED

If the result column contains signed numeric values or non-numeric values
(such as strings) this value will be zero (0). If the result column contains
unsigned numeric values, this value will be one (1).

%RESCOL_UPDATABLE

This value describes the "updatability" of the column in the result set, not the
column in the table from which the result set was created. (The updatability
of the column from which the result column was generated may be different
from this value.) This function will return one of these values:

%SQL_ATTR_READONLY
%SQL_ATTR_WRITE
%SQL_ATTR_READWRITE_UNKNOWN

Whether or not a result column is updateable can be based on the data type,
user privileges, and the definition of the result set itself. If it is unclear
whether or not a result column is updatable,
%SQL_ATTR_READWRITE_UNKNOWN will be returned.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value. This function can, however, generate ODBC Error Messages »p181 and SQL
Tools Error Messages.

Example

IF SQL_ResColInfo(12, %RESCOL_AUTO_UNIQUE_VALUE) = 1 THEN
 PRINT "Column 12 is Auto-Incrementing"
END IF

Driver Issues

None.

Speed Issues

This information is not cached »p200 by SQL Tools. If your program needs to use one
of these values repeatedly, you may be able to speed up your program by reading the
value once and storing it in a variable, instead of using the SQL_ResColInfo
function over and over.

See Also

Result Column Family »p247

 597

SQL_ResColInfoStr

Summary

Provides information about a column of a result set »p144, in string form.

Twin

SQL_ResultColumnInfoStr »p643

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_ResColInfoStr(lColumnNumber&, _
 lInfoType&)

Parameters

lColumnNumber&
The column of the result set about which you want information, between one
(1) and the number that is returned by the SQL_ResColCount »p584 function.

lInfoType&
The type of information that you are requesting. See Remarks below for a
complete list of valid values.

Return Values

If valid parameters are used, this function will return the requested information. If an
invalid parameter is used, this function will return an empty string.

Remarks

Only certain lInfoType& values will produce useful information in string form. For a
list of lInfoType& values that produce information in numeric form, see
SQL_ResColInfo »p593.

For string information, lInfoType& must be one of the following values:

%RESCOL_AUTO_UNIQUE_VALUE

See SQL_ResColInfo »p593.

%RESCOL_BASE_COLUMN_NAME

ODBC 3.x+ ONLY : The "base name" for the result set column, i.e. the name
of the column in the table from which the result set was created. If a base
name doesn't exist (such as when a result column is generated by an
expression), this value will be an empty string.

If this ODBC 3.x lInfoType& does not return a value, try %RESCOL_LABEL
(below).

 598

%RESCOL_BASE_TABLE_NAME

ODBC 3.x+ ONLY : The name of the table from which the column of the result
set was generated.

%RESCOL_CASE_SENSITIVE

See SQL_ResColInfo »p593.

%RESCOL_CATALOG_NAME

The name of the catalog that contains the table from which the column of the
result set was generated.

%RESCOL_CONCISE_TYPE,
%RESCOL_COUNT,
%RESCOL_DISPLAY_SIZE,
%RESCOL_EXT_INFO_OFFSET,
%RESCOL_FIXED_PREC_SCALE and
%RESCOL_INFO_FIRST_INTERNAL

See SQL_ResColInfo »p593.

%RESCOL_LABEL

The result column's label, which is usually used only for display purposes.
For example, a column named EmpName might be labeled "Employee
Name" or "This Employee's Name ". If a result column does not have a
label, the original column name is returned. If a column does not have a
label or a name, an empty string is returned.

%RESCOL_LENGTH

See SQL_ResColInfo »p593.

%RESCOL_LITERAL_PREFIX and
%RESCOL_LITERAL_SUFFIX

ODBC 3.x+ ONLY : The character(s) that the ODBC driver »p76 recognizes as
a prefix/suffix for a literal value of this data type. This will be an empty string
for data types that do not have a literal prefix/suffix.

%RESCOL_LOCAL_TYPE_NAME

ODBC 3.x+ ONLY : A "local native language" name for the data type. If there
is no localized name, an empty string is returned. This field is provided for
display purposes only.

%RESCOL_NAME

ODBC 3.x+ ONLY : An optional column alias. If no alias is specified, the
column name is returned. In either case, %RESCOL_UNNAMED (see
SQL_ResColInfo »p593) is set to the value %FALSE.

If there is no column name or alias, an empty string is returned and
%RESCOL_UNNAMED is set to the numeric value %SQL_TRUE.

 599

%RESCOL_NULLABLE,
%RESCOL_NUM_PREX_RADIX,
%RESCOL_OCTET_LENGTH,
%RESCOL_PRECISION and
%RESCOL_SCALE

See SQL_ResColInfo »p593.

%RESCOL_SCHEMA_NAME

The name of the schema of the table that contains the column from which the
result column was generated. If the column is an expression or if the column
is part of a view, this value is defined differently by different ODBC drivers.

%RESCOL_SEARCHABLE

See SQL_ResColInfo »p593.

%RESCOL_TABLE_NAME

The name of the table that contains the column from which the result column
was generated. If the column is an expression or if the column is part of a
view, this value is defined differently by different ODBC drivers.

%RESCOL_TYPE

See SQL_ResColInfo »p593.

%RESCOL_TYPE_NAME

The datasource-dependent data type »p108 name, such as "INTEGER" or
"COUNTER".

%RESCOL_UNNAMED,
%RESCOL_UNSIGNED and
%RESCOL_UPDATABLE

See SQL_ResColInfo »p593.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'Display the label of result column 1
PRINT SQL_ResColInfoStr(%RESCOL_LABEL)

Driver Issues N one.

Speed Issues

This information is not cached »p200 by SQL Tools. If your program needs to use one
of these values repeatedly, you may be able to speed up your program by reading the
value once and storing it in a variable, instead of using the SQL_ResColInfoStr
function over and over.

See Also Result Column Family »p247

 600

SQL_ResColLength

Summary

Returns the length of the data in a Result Column.

Twin

SQL_ResultColumnLength »p644

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ResColLength(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number that is
returned by the SQL_ResColCount »p584 function.

Return Values

This function returns the number of length of the data in a Result Column, in
characters.

Remarks

If a column is empty or contains the Null Value »p171 this function will return zero (0).

If the ODBC driver has not supplied a length value, this function will return the
maximum possible length, i.e. the length of the column's buffer.

For numeric columns, this function returns the length of the data type (just as
PowerBASIC's LEN function does.)

For strings, this function returns their length in characters.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the column's data is 1 character long". It can, however, generate SQL
Tools Error Messages.

Example

lResult& = SQL_Fetch
IF SQL_Okay(lResult&) THEN
 lDataLen& = SQL_ResColLength(lColumnNumber&)
END IF

 601

Driver Issues
None.

Speed Issues

None.

See Also

Result Columns »p166

 602

SQL_ResColMemo NEW

Summary

Returns data from a Long Column »p167 in text form, usually including certain control
characters.

Twin

SQL_ResultColumnMemo »p645

Family

Result Column Family »p247

Availability

Standard and Pro, although the sFilename$ parameter is SQL Tools Pro only (see

»p29)

Warning

This function can return extremely long strings and use large amounts of memory.

Syntax

sResult$ = SQL_ResColMemo(lColumnNumber&, _
 OPTIONAL sFilename$)

Parameters

lColumnNumber&
The number of a result column, between zero (1) and the number returned by
the SQL_ResColCount »p584 function.

OPTIONAL sFilename$ (SQL Tools Pro only)
If you omit this parameter, the Return Value of the function will be the
contents of the Long Column. If you use a valid file name (with optional
drive/path) SQL Tools will create (or overwrite) that file and place the
contents in it. See SQL_SaveFile »p661 for a list of codes that can be used
in file names.

Return Values

If you omit the sFilename$ parameter, this function will return the entire contents of
the specified column as a string. If you do specify a file name, the return value will be
the name of the disk file that was created, which may be different from sFilename$.

Remarks

"Memo" is the ommon name for a %SQL_LONGVARCHAR »p90 column, which is
intended to contain very large amounts of text. The text is usually human-readable.
Certain control characters are usually allowed as well, such as Carriage Returns, Line
Feeds, Tabs, Form Feeds, and sometimes others.

Technically speaking the Memo data does not have to be "long"; it may as short as
one character, or even empty. Memo fields simply have the capacity to store large
amounts of text data.

If you are certain that a Result Column contains text data that is 64k bytes or less in
length, you can use the SQL_ResColString »p614 function to retrieve it. This is
generally faster and uses less memory than SQL_ResColMemo.

 603

NOTE: Microsoft Access "Memo" fields are limited (by Access) to 64k characters, so
you should use SQL_ResColString instead of SQL_ResColMemo when dealing
with an Access database. Some Access databases use "OLE Object" fields to store
text longer than 64k; in that case you should use SQL_ResColBLOB »p579.

Internally, this function retrieves Long Data in "chunks" and assembles them before
returning the final string to your program. SQL Tools uses a default chunk size of 64k
bytes, which works well under most circumstances. Depending on your computer
and network however, you may be able to improve the speed of this function by using
a smaller or larger chunk size. See SQL_SetOption »p681 %OPT_DATALEN_CHUNK
for more information.

SQL Tools Pro only...

Because this function can return extremely long strings -- up to 1 gigabyte -- it can
optionally place its data in a disk file instead of returning a string. To do that, specify
a valid file name (with or without a drive/path) for sFilename$. If you embed certain
codes (which all include the # character) in sFilename$, SQL Tools will automatically
modify the file name for you. See SQL_SaveFile »p661 for complete information
about the # codes.

The use of FILE= is optional, in case you want to maintain consistency with
SQL_ResSet »p623 and other functions. See last Example .

If you specify sFilename$, the return value of this function will be the file name that
you specified, modified to show the results of any # codes, plus a drive/path
specification (if you did not specify one).

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'get the contents of Column 9 of the current result set
sResult$ = SQL_ResColMemo(9)

'get the contents of Column 9 of the current result set
'and store it in a file called MYFILE.TXT
sResult$ = SQL_ResColMemo(9,"FILE=MYFILE.TXT")

'This will do exactly the same thing...
sResult$ = SQL_ResColMemo(9,"MYFILE.TXT")

Driver Issues

See Possible Driver Restrictions on Long Columns »p169

Speed Issues

Because of the large amount of data that a Long Column »p167 can contain, and the
relatively slow speed of disk-write operations, this function can take many seconds to
execute.

See Also

SQL_ResColBLOB »p579

 604

SQL_ResColMore

Summary

This function can be used with the SQL_ResColChunk »p583 function to retrieve data
from Long Columns »p167 in small "chunks".

Twin

SQL_ResultColumnMore »p646

Family

Result Column Family »p247

Availability

SQL Tools Pro only (see »p29)

Warning

The standard warnings about Long Columns »p167 apply to this function as well. See
SQL_ResColMemo »p602 for details.

Syntax

lResult& = SQL_ResColMore(lColumnNumber&)

Parameter

lColumnNumber&
The number of a result column, between zero (1) and the number returned by
the SQL_ResColCount »p584 function.

Return Values

This function returns a Logical True/False »p912 value that indicates whether or not all
of the data has been retrieved from a Long Column.

Remarks

Most programs should use the SQL_ResColBLOB »p579 or SQL_ResColMemo »p602
function to retrieve Long Data in a single operation.

SQL_ResColMore and SQL_ResColChunk are provided mostly for backward
compatability with SQL Tools Version 2. If you are certain that you want to use
SQL_ResColMore and SQL_ResColChunk instead, see the
\SQLTOOLS\SAMPLES\SQLT3_ReadLongData.BAS sample program.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like %FALSE
(value 0) could be confused with a legitimate return value like "there is no more data
to retrieve". This function can, however, generate ODBC Error Messages »p181 and
SQL Tools Error Messages.

Example

See the \SQLTOOLS\SAMPLES\SQLT3_ReadLongData.BAS sample program.

Driver Issues See Long Columns »p167.
Speed Issues None.
See Also SQL_ResColChunk »p583

 605

SQL_ResColNull

Summary

Indicates whether or not one column of one row of a result set »p144 contains a Null
»p171 value (see).

Twin

SQL_ResultColumnNull »p647

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ResColNull(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number that is
returned by the SQL_ResColCount »p584 function.

Return Values

This function returns Logical True »p912 (-1) if the specified column contains a Null
value, or False (zero) if it does not.

Remarks

See Null Values »p171 for more information about this function.

Diagnostics

This function does not return Error Codes »p180, but it can generate ODBC Error Error
Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

None.

Speed Issues

None.

See Also

Result Column Family »p247

 606

SQL_ResColNumber

Summary

Returns the result column number that corresponds to a column name.

Twin

SQL_ResultColumnNumber »p648

Family

Result Column Family »p247

Availability
Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ResColNumber(sColumnName$)

Parameters

sColumnName$
A string that contains a column name.

Return Values

If a result column with the name sColumnName$ is found, this function will return the
corresponding result column number. If no match is found, negative one (-1) will be
returned.

Remarks

This function is not case-sensitive. If a result column named "COLNAME" exists, it can
be found by using "COLNAME", "colname ", "ColName", etc.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value, such as "that string matches column number 1". This function can, however,
generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

lResult& = SQL_ResColNumber("ZIPCODE")

Driver Issues

None.

Speed Issues

Whenever this function is used, SQL Tools scans the names of a statement's result
columns until it finds a match. If your program uses this function repeatedly for a
certain column, it would be faster to use this function once and store the column
number in a variable, and then repeatedly use the variable instead of this function.

See Also

SQL_ResColInfoStr »p597, Result Column Family »p247

 607

SQL_ResColNumeric NEW

Summary

Returns the value of a Result Column »p166 in numeric form.

Twin

SQL_ResultColumnNumeric »p649

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

If your program uses extremely large integers see the restrictions described under
Very Large QUAD Values in Remarks below.

Syntax

epResult## = SQL_ResColNumeric(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number that is
returned by the SQL_ResColCount »p584 function.

Return Values

This function returns the numeric value of the specified Result Column.

Remarks

If a column contains numeric data (%SQL_INTEGER »p91, %SQL_DOUBLE »p97, etc.)
then this function will return that value. If a column contains string data, this function
will return the numeric value (VAL) of that string.

This function returns an Extended Precision numeric value within the range...

3.4*10^-4932 to 1.2*10^4932

This allows the SQL_ResColNumeric function to return numeric values that are as
good (accurate) or better than all of the PowerBASIC data types, with two minor
exceptions: see Very Large QUAD Values and Unsupported Numeric Data Types
below. All other numeric data types can be obtained directly from
SQL_ResColNumeric :

lValue& = SQL_ResColNumeric(1)
iValue% = SQL_ResColNumeric(1)
bValue? = SQL_ResColNumeric(1)
wValue?? = SQL_ResColNumeric(1)
dwValue??? = SQL_ResColNumeric(1)
spValue! = SQL_ResColNumeric(1)
dpValue# = SQL_ResColNumeric(1)
epValue## = SQL_ResColNumeric(1)
curValue@ = SQL_ResColNumeric(1)

 608

ecValue@@ = SQL_ResColNumeric(1)
'...and in MOST cases...
qValue&& = SQL_ResColNumeric(1)

You must, of course, choose a variable type that is appropriate for the actual data
that a column can return. For example if you choose a PowerBASIC INTEGER (%)
variable and the database actually contains values larger than an INTEGER can hold,
SQL_ResColNumeric will return the correct value but the variable's value will not be
correct. See SQL Data Types »p87 for a list of column types and the PowerBASIC
variable types that can hold them.

Very Large QUAD Values

SQL_ResColNumeric returns Extended Precision values which have a precision of
18 digits. Quad-Integer (QUAD) values can require up to 19 digits, so if your database
contains QUAD (%SQL_BIGINT »p95) values in the gaps between...

 999,999,999,999,999,999 (which has 18 digits) and
 9,223,372,036,854,775,807 (which is the maximum positive QUAD)

...or between...

 -999,999,999,999,999,999 (which has 18 digits) and
-9,223,372,036,854,775,808 (which is the maximum negative QUAD)

...then SQL_ResColNumeric will return an incorrect value. The easiest way around
this issue is to use SQL_ResColString »p614 instead, to obtain an accurate value in
string form. Then use the PowerBASIC DEC$ function to convert it to a QUAD value,
like this:

qValue&& = DEC$(SQL_ResColString(1))

Fortunately such extremely large integer values are relatively rare, much less
numbers that fall into the gaps above. 999,999,999,999,999,999 is
approximately a billion billions. If your program requires integers larger than that, it
probably requires integers larger than a QUAD can hold.

Unsupported Numeric Data Types

SQL_ResColNumeric supports all of the numeric data types that PowerBASIC and
ODBC support, but some databases contain proprietary data types. In some cases
these appear to be standard data types like.%SQL_DECIMAL and %SQL_NUMERIC.
These proprietary data types do not have a standard format so
SQL_ResColNumeric may not be able to inpterpret them. If you encounter a
nonstandard data type, use SQL_ResColString to obtain the raw (binary) data,
then use PowerBASIC code to interpret it. The code that is necessary will depend
entirely on the database and nonstandard data type.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "this column contains a value of one (1)". It can, however, generate ODBC

 609

Error Messages »p181 and SQL Tools Error Messages.

Example

See above.

Driver Issues

None.

Speed Issues

None.

See Also

SQL_ResColString »p614

 610

SQL_ResColRaw NEW

Summary

Retrieves raw data from a Result Column »p166.

Twin

SQL_ResultColumnRaw »p650

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_ResColRaw(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number that is
returned by the SQL_ResColCount »p584 function.

Return Values

This function returns a string that contains the raw contents of a Result Column.

Remarks

This function is very similar to SQL_ResColBuffer »p581, which returns the entire
contents of a Result Column buffer. This function, however, shortens the data if the
ODBC driver has provided a valid Data Length value. This has the effect of removing
"trailing trash" that may appear in the buffer after the desired data.

This function and SQL_ResColBuffer are usually used only for troubleshooting
purposes, or for obtaining raw data from nonstandard-format columns such as
proprietary %SQL_DECIMAL »p99 and %SQL_NUMERIC »p99 columns.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'Retrieve raw data from column 12
sResult$ = SQL_ResColRaw(12)

Driver Issues None.
Speed Issues None.
See Also SQL_ResColBuffer »p581, SQL_ResColBufferPtr »p582

 611

SQL_ResColSInt V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607
and SQL_ResultColumnNumeric in Version 3.

 612

SQL_ResColSize

Summary

Provides the size of the buffer that is used for one column of a result set »p144, i.e. the
maximum length of the data that a column can return. (Compare this function to
SQL_ResColLength »p600, which returns the actual length of the data that was
retrieved by the most recent SQL_Fetch »p435 or SQL_FetchRel »p441 operation.)

Twin

SQL_ResultColumnSize »p652

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ResColSize(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number that is
returned by the SQL_ResColCount »p584 function.

Return Values

This function returns the size of the buffer that is used for the specified column of a
result set.

If a column has not been bound, or if it has been unbound »p852, or if it has been
Manually Bound »p164 or Direct Bound »p163, this function will return zero (0).
Otherwise, it will always return a minimum value of one (1).

Remarks

Compare this function to the SQL_ResColLength »p600 function for more information.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value, such as "this column uses a 1-byte buffer". This function can, however,
generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues None.
Speed Issues None.
See Also Result Column Family »p247

 613

SQL_ResColStr V2

This SQL Tools Version 2 function has been replaced by SQL_ResColString »p614
(String not Str) and SQL_ResultColumnString in Version 3.

 614

SQL_ResColString and SQL_ResColWString NEW

Summary

These functions return string (character) values which contain the data in one Result
Column »p166 in one row of a Result Set »p144. These functions can also optionally
return all of the columns in one row as a single, delimited string.

Twin

SQL_ResultColumnString and SQL_ResultColumnWString »p654

Family

Result Column Family »p247

Availability

Standard and Pro

Warnings

These functions are limited to 64k characters per string. See Remarks .

The SQL_ResColWString function is not available if you are using a version of
PowerBASIC that does not support WSTRING variables.

Syntax

sResult$ = SQL_ResColString(lColumnNumber&)

sResult$$ = SQL_ResColWString(lColumnNumber&)

Parameters

lColumnNumber&
1) The number of a result column, between one (1) and the number that is
returned by the SQL_ResColCount »p584 function, or
2) the value %ALL_COLs.

Return Values

These functions return the value of the specified Result Column as a PowerBASIC
STRING or WSTRING value. They can also return all of the columns of one row of a
Result Set as a single string.

Remarks

If a column contains ANSI string data (%SQL_CHAR »p88, %SQL_VARCHAR »p89, or
%SQL_LONGVARCHAR »p90.) you should use the SQL_ResColString function to
retrieve the data.

If a column contains Unicode string data (%SQL_wCHAR »p111, %SQL_wVARCHAR »p112,
or %SQL_wLONGVARCHAR »p113) you should use the SQL_ResColWString function
to retrieve the data. Unicode data can be retrieved with SQL_ResColString but it
is then usually necessary to use the PowerBASIC BITS$() function to convert the
data.

If a column contains non-string (numeric) data then SQL_ResColString and
SQL_ResColWString will return a string version of the numeric value, similar to the
PowerBASIC FORMAT$() function.

 615

SQL_ResColString and SQL_ResColWString can be used to retrieve strings up
to 64k characters in length. For longer strings, use SQL_ResColMemo »p602 and
SQL_ResColBLOB »p579.

Using %ALL_COLs

If you use the value %ALL_COLs for the lColumnNumber& parameter,
SQL_ResColString and SQL_ResColWString will return a string that contains all
of the columns of one row of the Result Set. If you use the SQL Tools default
settings, using %ALL_COLs will...

� Return a CSV (Comma Separated Value) string that is compatible with the

PowerBASIC PARSE$ function. (See note 1 below.)
� Replace double quotes (") within the individual values with two single quotes

('') (2)
� Insert the string [NULL] (3) for columns with Null Values »p171,
� Insert the string [not bound] (4) for unbound columns,
� Insert the string [True] or [False] (5) into %SQL_BIT columns,
� Replace control characters (6) with the [hXX] notation that is used by

SQL_TextStr »p836,
� Shorten the individual values within the string to no more than 64 (see note 7)

characters each, using the "... " notation that is used by
SQL_LimitTextLength »p501,

The default settings marked in red above can be changed with SQL_SetOptionStr

»p682 and/or SQL_SetOption »p681...

(1) SQL_SetOptionStr(%OPT_ALLCOL_DELIMITER)
(2) SQL_SetOptionStr(%OPT_TEXT_ESCAPE)
(3) SQL_SetOptionStr(%OPT_TEXT_NULL)
(4) SQL_SetOptionStr(%OPT_TEXT_UNBOUND)
(5) SQL_SetOptionStr(%OPT_TEXT_TRUE and %OPT_TEXT_FALSE)
(6) SQL_SetOption(%OPT_MIN_TEXTCHAR and %OPT_MAX_TEXTCHAR)
(7) SQL_SetOption(%OPT_ALLCOL_MAXFIELD)

Diagnostics

These functions do not return Error Codes »p180 because they return string values.
They can, however, generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

'Retrieve a string from column 13...
sResult$ = SQL_ResColString(13)

'Retrieve a CSV string containing all columns
sResult$ = SQL_ResColString(%ALL_COLs)

Driver Issues None.
Speed Issues None.
See Also SQL_ResColNumeric »p607

 616

SQL_ResColText V2

This SQL Tools Version 2 function has been replaced by SQL_ResColString »p614
and SQL_ResultColumnString in Version 3.

 617

SQL_ResColTime V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607

, SQL_DateTimePart »p314, and SQL_DateTimePartStr »p315 in Version 3.

 618

SQL_ResColType

Summary

Provides the SQL Data Type »p87 of one column of a result set »p144.

Twin

SQL_ResultColumnType »p657

Family

Result Column Family »p247

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ResColType(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number that is
returned by the SQL_ResColCount »p584 function.

Return Values

This function will return zero (0) if a column has not been autobound »p159 by SQL
Tools. Otherwise it will return the SQL Data Type »p87 of the column
(%SQL_INTEGER, %SQL_CHAR, etc.).

Remarks

For a complete list of the possible return values for this function, see SQL Data Types

»p87.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate returns
value like "this column's data type is %SQL_CHAR (value 1)". This function can,
however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'Display the data type of column 8
PRINT SQL_ResColType(8)

Driver Issues

None.

Speed Issues

None.

See Also

Result Column Family »p247

 619

SQL_ResColUInt V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607
and SQL_ResultColumnNumeric in Version 3.

 620

SQL_ResetStatementMode

Syntax

SQL_ResetStatementMode lDatabaseNumber&, _
 lStatementNumber&

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResetStatementMode is identical to SQL_ResetStmtMode »p621. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 621

SQL_ResetStmtMode

Summary

Resets the current statement's mode »p126 settings to the SQL Tools default settings.

Twin

SQL_ResetStatementMode »p620

Family

Statement Info/Attrib Family »p241

Availability

Standard and Pro

Warning

This function cannot be used to change the mode of an active (i.e. open) statement.
It only affects statements that are prepared and executed after this function is used.

Syntax

SQL_ResetStmtMode

Parameters

None.

Return Values

This function always returns %SQL_SUCCESS, so it is possible to ignore the return
value of this function.

Remarks

For a general discussion, see SQL Statement Mode »p126.

This function is used to reset all of the various Statement Mode settings to their SQL
Tools default values. This function does not affect a currently-open statement. The
default settings will be used the next time that a SQL statement is opened with
SQL_OpenStmt »p542 or is prepared or executed with SQL_Stmt »p716.

You can change the SQL Tools default statement mode settings by using the
SQL_SetOption »p681 function with one of the constant values in the SQL Tools
Declaration Files between value 70 (%OPT_STMT_ATTR_CURSOR_SENSITIVITY)
and value 84 (%OPT_STMT_ATTR_USE_BOOKMARKS). For a complete list, see
SQL_SetOption »p681.

Diagnostics

This function does not return Error Codes »p180, ODBC Error Messages »p181, or SQL
Tools Error Messages.

Example

SQL_ResetStmtMode

Driver Issues None.
Speed Issues None.
See Also SQL Statement Mode »p126

 622

SQL_ResRowCount
Summary

Provides the number of rows that were affected by a SQL statement »p123.

Twin

SQL_ResultRowCount »p659

Family

Result Count Family »p246

Availability

Standard and Pro

Warning

This function should not be used to obtain the number of rows that are contained in a
result set that was generated by a SQL SELECT statement. It should only be used
for non-SELECT statements. See Why You CAN'T Use SQL_ResRowCount for
SELECT Statements »p174 for more information.

Syntax

lResult& = SQL_ResRowCount

Parameters

None.

Return Values

This function will return zero (0) if a SQL statement has not yet been executed, or if it
has been executed and did not affect any rows. Otherwise, this function will return
the number of rows that were affected by the statement.

Remarks

See Results from non-SELECT Statements »p173 and Why You CAN'T Use
SQL_ResRowCount for SELECT Statements »p174 for a discussion of this function.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value, like "one row was affected by the SQL statement". This function can, however,
generate ODBC Error Messages »p181 and SQL Tools Error Codes.

Example

'Display the number of rows affected by
'the most-recently-executed statement:
PRINT SQL_ResRowCount

Driver Issues

Many ODBC drivers do not return a value for SQL_ResRowCount for SELECT
statements, and those that do are not always accurate. See Why You CAN'T Use
SQL_ResRowCount for SELECT Statements »p174 for more information.

Speed Issues None.
See Also Detecting "No Data At All" »p178

 623

SQL_ResSet, SQL_ResSetArray, and SQL_ResSetSafeArra y
NEW
Summary

These functions retrieve an entire Result Set »p144 (all of the rows produced by a
SELECT statement) in a single operation.

Twin

SQL_ResultSet »p660

Family

Result Set Family »p244

Availability

Standard and Pro

Warning

These functions can return extremely large amounts of data. See the lMaxRows&
parameter below for a "safety valve".

Syntax

The syntax of these functions is nearly identical...

lResult& = SQL_ResSet(sSQLStatement$, _
 sOutput$, _
 OPTIONAL lOptions&, _
 OPTIONAL lMaxRows&, _
 OPTIONAL sIgnoreErrors$)

lResult& = SQL_ResSetArray(sSQLStatement$, _
 sOutput$(), _
 OPTIONAL lOptions&, _
 OPTIONAL lMaxRows&, _
 OPTIONAL sIgnoreErrors$)

lResult& = SQL_ResSetSafeArray(sSQLStatement$, _
 saOutput, _
 OPTIONAL lOptions&, _
 OPTIONAL lMaxRows&, _
 OPTIONAL sIgnoreErrors$)

Parameters

sSQLStatement$
A valid SELECT statement that describes the contents of the desired
Result Set »p144. See Appendix A »p862 for SQL Statement Syntax.

OUTPUT PARAMETER (see Remarks for details about all three types)
sOutput$

An empty string, or the name of a disk file prefixed with FILE= .
sOutput$()

An empty string array.
saOutput

An empty PowerBASIC PowerArray object, or any other Safe Array.
OPTIONAL lOptions&

If you omit this parameter or use a value of zero (0), these functions will

 624

behave in their default manner. See Remarks below for a short list of
available options.

OPTIONAL lMaxRows&
If you omit this parameter or use a value of zero (0) the entire result set will
be returned. If you use a positive numeric value, no more than that number
of rows will be returned. If you use a negative numeric value, SQL Tools will
use it as an estimate of the final number of rows. The function will return all
of the rows; providing an estimate simply speeds up the retrieval the result
set, especially if it is significantly larger than 1024 rows. Note that
lMaxRows& is also an output parameter, see Return Values just below.

OPTIONAL sIgnoreErrors$
A string containing one or more SQL States »p897 that tells this function to
ignore a certain error or errors when the operation is performed. See
Ignoring Predictable Errors »p183 for more information.

Return Values

These functions actually provide two different values, and an optional third.

1) The primary return value of these function (lResult&) is either %SQL_SUCCESS
(zero) or a SQL Tools Error Code »p180.

2) After the function returns, the OUTPUT PARAMETER will contain...

sOutput$
If you pass a variable containing an empty string, the SQL_ResSet
function will return the Result Set as a single string. See Remarks
for information about the string format. If you pass a variable
containing the string FILE= followed by a valid file name,
SQL_ResSet will place in sOutput$ the full path/name of the file that
was created. See Remarks for details.

sOutput$()
The SQL_ResColArray function returns a PowerBASIC string array.

saOutput
The SQL_ResColSafeArray function returns a PowerBASIC
PowerArray object.

3) If you pass a variable for the OPTIONAL lMaxRows& parameter, after the function
returns the variable will contain the actual number of rows in the Result Set.

Remarks
In most cases the fastest and most efficient method is to use SQL_ResSetArray to
obtain a PowerBASIC string array that contains a Result Set. The SQL_ResSet and
SQL_ResSetSafeArray functions provide Result Sets in other useful formats.

In all cases, the first step is to create a variable to hold the Result Set.

SQL_ResSetArray

Create a string array but do not "size" it. Use one of these statements* :

LOCAL sOutput$()
LOCAL sOutput() AS STRING
DIM sOutput() AS LOCAL STRING

Note that even in the case of DIM, the array size is not specified; there is no
number in the parentheses.

 625

The SQL_ResSetArray function is compatible with PB/Win 7.1 through 10.0 and PB/CC 3.1
through 6.0. It cannot be used with earlier versions of PowerBASIC, published before 2003. It
may or may not be compatible with future versions of the PowerBASIC compilers, depending on
whether or not PowerBASIC, Inc. changes their internal "array descriptor" format. If they do,
Perfect Sync expects to provide an updated version of this function, but we cannot (of course)
guarantee compatibility with compilers that do not yet exist.

SQL_ResSet

Create a "normal" PowerBASIC dynamic string using a statement* like one of
these:

LOCAL sOutput$
LOCAL sOutput AS STRING
DIM sOutput AS LOCAL STRING

If you want SQL_ResSet to provide the Result Set as a string, there is
nothing more to do. If you want it to create a disk file containing the Result
Set, add a line of code like this:

sOutput$ = "FILE=C:\MyFolder\MyFile.data"

For more about creating files, see SQL_ResSet File Names below.

SQL_ResSet is compatible with all 32-bit versions of PB/Win and PB/CC.

SQL_ResSetSafeArray

Create a PowerBASIC PowerArray object using one of these two
statements* :

LOCAL saOutput AS IPowerArray
DIM saOutput AS LOCAL IPowerArray

Next, set the PowerArray's CLASS:

saOutput = CLASS "PowerArray"

Do not use the .Dim method -- or any other method -- on the PowerArray
before it is passed to SQL_ResSetSafeArray .

SQL_ResSetSafeArray is compatible with 32-bit versions of PB/Win and PB/CC that support
the PowerArray object, including PB/Win 10 and PB/CC 6. It is also compatible with other
computer languages (such as Microsoft Visual Basic) that support standard Safe Arrays.

* In all cases you may, of course, use a different variable name and/or use STATIC,
GLOBAL, INSTANCE or THREADED instead of LOCAL. (See the PowerBASIC
documentation for details.)

The next step is to write a SQL Statement that describes the desired Result Set. You
will normally use SELECT but you may use any SQL Statement Syntax »p862 that
returns a result set (such as CALL to invoke a Stored Procedure that uses
SELECT). In this example we will use the very simple statement SELECT *
FROM ADDRESSBOOK.

Most of the time the next step is simply to call the function -- without any of the

 626

optional parameters -- like this:

lResult& = SQL_ResSetArray("SELECT * FROM ADDRESSB OOK", _
 sOutput$())

...or...

lResult& = SQL_ResSet("SELECT * FROM ADDRESSBOOK", _
 sOutput$)

...or...

lResult& = SQL_ResSetSafeArray("SELECT * FROM ADDR ESSBOOK", _
 saOutput)

SQL_ResSetArray and SQL_ResSetSafeArray will automatically "size" (DIM) and
fill the array with the Result Set. The array will always have two (2) dimensions,
corresponding to the rows and columns of the Result Set. To obtain the number of
rows and columns, you can use the PowerBASIC LBOUND and UBOUND functions (for
a string array) or the .UBOUND and .LBOUND methods (for a PowerArray). Also see
the lMaxRows& parameter in Return Values above. Remember too that you
probably already know the number of columns, if you used their names in your SQL
Statement.

In the case of SQL_ResSet , SQL Tools will fill sOutput$ with a CSV (Comma
Separated Value) string (or file) that is compatible with the PowerBASIC PARSE$ and
PARSECOUNT functions. See CSV Result Sets below. Or, if you use the
%RESSET_PACKED option, the string or file will contain a "packed string" that is
compatible with the PowerBASIC PARSE(BINARY) statement and
PARSECOUNT(BINARY) function. See Packed String Result Sets below.

The Header Row (Row Zero)

The first row of a Result Set string or array will contain the names of the columns of
the Result Set. This is primarily done so that the row and column Numbers of the
Result Set will be the same as the element numbers of the array. For example,
sOutput$(1,2) will contain the contents of row 1, column 2. Row Zero of the array
(for example sOutput$(0,1)) will contain the column names.

By default, SQL_ResSet also returns CSV strings where the first row contains
column names. For more information about this, and its implications, see CSV
Result Sets .

Column Zero

For that same reason -- so that the Result Set row/column numbers will be the same
as array row/column numbers -- the Result Set arrays that are produced by the
SQL_ResSetArray and SQL_ResSetSafeArray functions will contain a column
zero. It will always be empty, so your program can use it for its own purposes, if
desired.

SQL_ResSet will return a packed string with a Column Zero only if the
%RESSET_PACKED option is used. CSV strings/files will not have a Column Zero, to

 627

make them easier to parse.

CSV Result Sets

Standard CSV (Comma Separated Value) strings always conform to certain rules.

1) The individual data elements are enclosed in double quotes (like "John"). Even
purely numeric values are quoted, like "98.6" .

2) The quoted data elements are separated with commas (like "John","Smith").

3) The rows of the Result Set are separated with Carriage Return/Line Feed ($CRLF)
characters, like "John","Smith"<CRLF>"","" where <CRLF> represents the
$CRLF pair.

Because of the delimiters that are used, the data elements themselves can not
contain double quotes or $CRLF characters. If they did it would be difficult for
programs to parse them reliably. For this reason, SQL_ResCol automatically
replaces double quotes with two single quotes. For example the string...

Bob said "Hello" to Vivian ...would become...
Bob said ''Hello'' to Vivian

Because pairs of single quotes are very rare in actual text, you can usually use the
PowerBASIC REPLACE statement to restore the double quotes. If you want
SQL_ResSet to use something other than two single quotes, use
SQL_SetOptionStr(%OPT_TEXT_ESCAPE) »p682 to specify a different string.

In the unlikely event that a data element contains Carriage Return, Line Feed, or any
other "control" (non-text) characters, they will be replaced with [hXX] codes. See
the SQL_TextStr »p836 function for more information about these codes, and
SQL_BinaryStr »p268 for a method of restoring the original characters.

You can obtain the number of data rows in a CSV Result Set by using code like this:

lDataRowCount& = PARSECOUNT(sOutput$, $CRLF) - 1

Note the -1 in that code. As described in The Header Row (Row Zero) above, the
CSV strings that are produced by SQL_ResCol normally include a Header containing
the column names. This makes it slightly more complicated to use PARSECOUNT and
PARSE$ to extract the data elements, because...

sRow$ = PARSE$(sOutput$,$CRLF, 1) ' will extract the Header row,
sRow$ = PARSE$(sOutput$,$CRLF, 2) ' will extract data row 1, and so on.

You can avoid this complication by using %RESSET_NO_HEADER for the lOptions&
parameter. This tells SQL_ResSet not to include the header row when creating a
CSV Result Set. If you use %RESSET_NO_HEADER...

sRow$ = PARSE$(sOutput$,$CRLF, 1) ' will extract data row 1
sRow$ = PARSE$(sOutput$,$CRLF, 2) ' will extract data row 2, and so on.

CSV Result Sets do not include Column Zero (see above) so no extra code is

 628

required. You can use the PowerBASIC PARSE$ function -- which uses CSV
behavior by default -- with no extra complications.

sData$ = PARSE$(sRow$, 1) ' will extract the data for column 1 from the
substring. Note the use of sRow$ instead of sOutput$.

To summarize, a CSV string is usually parsed twice: once (with $CRLF) to extract a
substring containing a single row of data, and then again to extract the data
element(s) from that substring.

Packed String Result Sets

Using an lOptions& value of %RESSET_PACKED tells the SQL_ResSet function to
produce a PARSE-compatible Packed String instead of a CSV string. PowerBASIC
and several other programming languages (such as Microsoft Visual Basic) can use
Packed Strings.

If a program starts with a PowerBASIC string array and uses the PowerBASIC
JOIN$(BINARY) function, it will produce a Packed String that contains all of the data
from the array. You can then use the PowerBASIC PARSE(BINARY) statement to
put the data back into a string array. (See the PowerBASIC documentation for more
information about JOIN$, PARSE(BINARY) and PARSECOUNT(BINARY).) The
%RESSET_PACKED option tells SQL_ResSet to produce a string that is compatible
with PARSE(BINARY).

Keep in mind that Packed Strings are normally used with one-dimensional arrays, not
the two-dimensional arrays that are required for a Result Set. They will work with
two-dimensional arrays, but it may complicate your code somewhat. The details of
that process are beyond the scope of this document; please contact Perfect Sync
Tech Support if you have specific questions.

SQL_ResSet File Names

If you use the sOutput$ parameter of SQL_ResSet like this...

sOutput$ = ""
lResult& = SQL_ResSet("SELECT * FROM ADDRESSBOOK",
sOutput$)

...then when the function returns the sOutput$ variable will contain a CSV or Packet
File Result Set as described above. If you do this instead...

sOutput$ = "C:\SQLTools\MyFile.CSV"
lResult& = SQL_ResSet("SELECT * FROM ADDRESSBOOK",
sOutput$)

...then a file called C:\SQLTools\MyFile.CSV will be created. It will contain the
CSV or Packed String, and will still contain the name of the file. If the file name is not
specific, for example if it does not contain a path, sOutput$ will contain the entire file
name including the path where the file can be found.

You can use several different codes in file names. In addition to the standard #
codes that are recognized by SQL_SaveFile »p661, the SQL_ResSet function also

 629

recognizes |MAXROW| and |MAXCOL|, which will be replaced by the maximum Row
Number and Column Number that are contained in the Result Set in the file. For
example if you use...

sOutput$ = "C:\SQLTools\MyFile_|MAXROW|x|MAXCOL|.CS V"
lResult& = SQL_ResSet("SELECT * FROM ADDRESSBOOK",
sOutput$)

...and the Result Set contains 20 rows and 125 columns, the file
MyFile_20x125.CSV will be created and sOutput$ would contain
"C:\SQLTools\MyFile_20x125.CSV ".

Diagnostics

This function returns Error Codes »p180 and can generate ODBC Error Messages »p181
and SQL Tools Error Messages.

Examples

See example program SQLT3_ResultSet.BAS in the \SQLTOOLS\SAMPLES folder.

Driver Issues

None.

Speed Issues

Because extremely large amounts of data can be retrieved, these functions may take
quite a bit of time to execute. Generally speaking, however, they are faster than
retrieving a Result Set row-by-row and column-by-column.

See Also

Result Column Family »p247

 630

SQL_ResultColumnBInt V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607
and SQL_ResultColumnNumeric in Version 3.

 631

SQL_ResultColumnBLOB NEW

Syntax

sResult$ = SQL_ResultColumnBLOB(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&, _
 OPTIONAL sFilename$)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnBLOB is identical to SQL_ResColBLOB »p579. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 632

SQL_ResultColumnBuffer NEW

Syntax

sResult$ = SQL_ResultColumnBuffer(lDatabaseNumber&, _
 lStatementNumber& , _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnBuffer is identical to SQL_ResColBuffer »p581. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 633

SQL_ResultColumnBufferPtr

Syntax

dwResult??? = SQL_ResultColumnBufferPtr(lDatabaseNu mber&, _
 lStatementN umber&, _
 lColumnNumb er&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnBufferPtr is identical to SQL_ResColBufferPtr »p582. To
avoid errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 634

SQL_ResultColumnChunk

Syntax

lResult& = SQL_ResultColumnChunk(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnChunk is identical to SQL_ResColChunk »p583. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 635

SQL_ResultColumnCount

Syntax

lResult& = SQL_ResultColumnCount(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnCount is identical to SQL_ResColCount »p584. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 636

SQL_ResultColumnDate V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607

, SQL_DateTimePart »p314, and SQL_DateTimePartStr »p315 in Version 3.

 637

SQL_ResultColumnDateTime V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607

, SQL_DateTimePart »p314, and SQL_DateTimePartStr »p315 in Version 3.

 638

SQL_ResultColumnDateTimePart V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607

, SQL_DateTimePart »p314, and SQL_DateTimePartStr »p315 in Version 3.

 639

SQL_ResultColumnFloat V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607
and SQL_ResultColumnNumeric in Version 3.

 640

SQL_ResultColumnIndicator

Syntax

lResult& = SQL_ResultColumnIndicator(lDatabaseNumbe r&, _
 lStatementNumb er&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnIndicator is identical to SQL_ResColIndicator »p589. To
avoid errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 641

SQL_ResultColumnIndicatorPtr

Syntax

dwResult??? = SQL_ResultColumnIndicatorPtr(lDatabas eNumber&, _
 lStateme ntNumber&, _
 lColumnN umber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnIndicatorPtr is identical to SQL_ResColIndicatorPtr

»p591. To avoid errors when this document is updated, and to reduce the size of the
Help Files, information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 642

SQL_ResultColumnInfo

Syntax

lResult& = SQL_ResultColumnInfo(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnInfo is identical to SQL_ResColInfo »p593. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 643

SQL_ResultColumnInfoStr

Syntax

sResult$ = SQL_ResultColumnInfoStr(lDatabaseNumber& , _
 lStatementNumber &, _
 lColumnNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnInfoStr is identical to SQL_ResColInfoStr »p597. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 644

SQL_ResultColumnLength

Syntax

lResult& = SQL_ResultColumnLength(lDatabaseNumber&, _
 lStatementNumber& , _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnLength is identical to SQL_ResColLength »p600. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 645

SQL_ResultColumnMemo NEW

Syntax

sResult$ = SQL_ResultColumnMemo(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&, _
 OPTIONAL sFilename$)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnMemo is identical to SQL_ResColMemo »p602. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 646

SQL_ResultColumnMore

Syntax

lResult& = SQL_ResultColumnMore(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnMore is identical to SQL_ResColMore »p604. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 647

SQL_ResultColumnNull

Syntax

lResult& = SQL_ResultColumnNull(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnNull is identical to SQL_ResColNull »p605. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 648

SQL_ResultColumnNumber

Syntax

lResult& = SQL_ResultColumnNumber(lDatabaseNumber&, _
 lStatementNumber& , _
 sColumnName$)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnNumber is identical to SQL_ResColNumber »p606. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 649

SQL_ResultColumnNumeric NEW

Syntax

eResult## = SQL_ResultColumnNumeric(lDatabaseNumber &, _
 lStatementNumbe r&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnNumeric is identical to SQL_ResColNumeric »p607. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 650

SQL_ResultColumnRaw NEW

Syntax

sResult$ = SQL_ResultColumnRaw(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnRaw is identical to SQL_ResColRaw »p610. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 651

SQL_ResultColumnSInt V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607
and SQL_ResultColumnNumeric in Version 3.

 652

SQL_ResultColumnSize

Syntax

lResult& = SQL_ResultColumnSize(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnSize is identical to SQL_ResColSize »p612. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 653

SQL_ResultColumnStr V2

This SQL Tools Version 2 function has been replaced by SQL_ResColString »p614
and SQL_ResultColumnString in Version 3.

 654

SQL_ResultColumnString and SQL_ResultColumnWString
NEW

Syntax

sResult$ = SQL_ResultColumnString(lDatabaseNumber& , _
 lStatementNumber &, _
 lColumnNumber&)

sResult$$ = SQL_ResultColumnWString(lDatabaseNumber &, _
 lStatementNumbe r&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnString and SQL_ResultColumnWString are identical to
SQL_ResColString and SQL_ResColWString »p614. To avoid errors when this
document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 655

SQL_ResultColumnText V2

This SQL Tools Version 2 function has been replaced by SQL_ResColString »p614
and SQL_ResultColumnString in Version 3.

 656

SQL_ResultColumnTime V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607

, SQL_DateTimePart »p314, and SQL_DateTimePartStr »p315 in Version 3.

 657

SQL_ResultColumnType

Syntax

lResult& = SQL_ResultColumnType(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultColumnType is identical to SQL_ResColType »p618. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 658

SQL_ResultColumnUInt V2

This SQL Tools Version 2 function has been replaced by SQL_ResColNumeric »p607
and SQL_ResultColumnNumeric in Version 3.

 659

SQL_ResultRowCount

Syntax

lResult& = SQL_ResultRowCount(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_ResultRowCount is identical to SQL_ResRowCount »p622. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 660

SQL_ResultSet, SQL_ResultSetArray, and
SQL_ResultSetSafeArray NEW

Syntax

The syntax of these functions is nearly identical...

lResult& = SQL_ResultSet(lDatabaseNumber&, _
 sSQLStatement$, _
 sOutput$, _
 OPTIONAL lOptions&, _
 OPTIONAL lMaxRows&, _
 OPTIONAL sIgnoreErrors$)

lResult& = SQL_ResultSetArray(lDatabaseNumber&, _
 sSQLStatement$, _
 sOutput$(), _
 OPTIONAL lOptions&, _
 OPTIONAL lMaxRows&, _
 OPTIONAL sIgnoreErrors$)

lResult& = SQL_ResultSetSafeArray(lDatabaseNumber&, _
 sSQLStatement$, _
 saOutput, _
 OPTIONAL lOptions&, _
 OPTIONAL lMaxRows&, _
 OPTIONAL sIgnoreErrors$)

Except for the lDatabaseNumber& parameter, these functions are identical to the
SQL_ResSet »p623, SQL_ResSetArray »p623, and SQL_ResSetSafeArray »p623
functions. To avoid errors when this document is updated, and to reduce the size of
the Help Files, information that is common to these functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 661

SQL_SaveFile NEW

Summary

Creates or overwrites a disk file.

Twin

None

Family

Utility Family »p249

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_SaveFile(sFilename$, _
 sString$)

Parameters

sFilename$
The name (and optional drive/path) of the file that you want to create or
overwrite. See Remarks below for special codes that can be used in the file
name.

sString$
A string containing the desired contents of the file.

Return Values

This function's primary return value (lResult&) will be %SQL_SUCCESS if the
requested file is created without errors, or a SQL Tools Error Code »p179 if it is not.

The sFilename$ parameter also serves as a secondary return value. If you pass the
file name as a variable, after the file is saved the variable will contain the complete
drive/path and file name that was created.

Remarks

This function creates a disk file that contains a "binary image" of the data in sString$.
Nothing is added. For example if you use...

lResult& = SQL_SaveFile("MyFile.TXT", "Hello World")

...the file MyFile.TXT will contain the string Hello World . No Carriage
Return/Line Feed -- or anything else -- will be added to the file. So if you attempted
to use PowerBASIC's LINE INPUT # statement to read that file, it would generate
an error. To create a text file that is readable in that way, you would need to use...

lResult& = SQL_SaveFile("MyFile.TXT", "Hello
World"+$CRLF)

If you do not specify a drive/path in sFilename$, the file will be created in your
program's default directory. Note that sFilename$ will be modified to include the

 662

drive and path; see Return Values above.

File Name Codes

If you include certain codes in the file name, SQL Tools will replace the codes with
runtime information.

You may also use codes in the file's path, but SQL Tools will not create the
necessary directory if it does not already exist.

These codes can also be used in the sFilename$ parameter of SQL_ResColMemo

»p602, SQL_ResultColumnMemo »p645, SQL_ResColBLOB »p579,
SQL_ResultColumnMemo »p645, SQL_ResSet »p623, and SQL_ResultSet »p660.

|DATE|

SQL Tools will replace |DATE| with the current date in the form YYMMDD.
For example if you use...

sFilename$ = "C:\MyFolder\Data|DATE|.BIN"

lResult& = SQL:_SaveFile(sFilename$,"Hello World")

...on 01 February 2056, SQL Tools would create the file...

C:\MyFolder\Data560201.BIN

...and sFilename$ would be changed to contain that string.

|TIME|

The current time in the form HHMMSS.

A four-character string containing a sequential Hex number between 0001
and FFFF. The first time that this code or ######## (just below) is used,
SQL Tools will insert 0001 . The next time it will insert 0002 and so on. After
FFFF the count will roll over to 0000 and then begin again with 0001 . This
provides 64k unique file names. Note that the count is not saved when your
program closes; the next time your program runs it will start over with 0001 .

########

Works the same as #### except that an eight-character string between
00000000 and FFFFFFFF is inserted into the file name, providing a total of
over 4.26 billion unique file names.

|AUTO|

This code cannot be used as part of a file name, it must be used alone, like....

sFilename$ = "|AUTO|"

 663

SQL Tools will create a drive/path/file spec with the following format:

EXE.PATH$ + "\" + EXE.NAME$ + "_####.output"

For example if your program's EXE file is C:\MyFolder\MyProg.EXE the
|AUTO| code will produce a file called...

C:\MyFolder\MyProg_0001.output

The second time that |AUTO| is used, the file name will be
MyProg_0002.output , and so on. See #### above for details.

|MAXCOL| and |MAXROW|

These codes can be used used only by the SQL_ResSet »p623 function.

Diagnostics

This function returns Error Codes »p180 and can generate SQL Tools Error Messages.

Example

See Remarks above.

Driver Issues

None.

Speed Issues

None.

See Also

SQL_SelectFile »p664

 664

SQL_SelectFile

Summary

Displays a standard Windows "Select A File" dialog box.

Twin

None

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_SelectFile(sTitle$, _
 sFileSpec$, _
 sInitialDir$, _
 sFilter$, _
 sDefExtension$, _
 lFlags&)

Parameters

sTitle$
A string that specifies the title that the dialog box should display. If an empty
string is used for this parameter, the default title is "Open".

sFileSpec$
VERY IMPORTANT NOTE: This is an input-output parameter. See Remarks
below for complete information.

sInitialDir$
The drive and/or directory that will be displayed in the "Look In" listbox when
the dialog box is first displayed. This parameter also affects the initial file-list
display. If an empty string is used for this parameter, the dialog box will start
in the default directory.

sFilter$
The description(s) and file filter(s), separated with pipe symbols, that the
dialog box should display in the "Files Of Type" listbox. See Remarks below
for more information.

sDefExtension$
The default extension. If the user types a file name without an extension, this
string is automatically appended to the file name when the function exits.
Also see %OFN_EXTENSIONDIFFERENT below, for another use of this
parameter.

lFlags&
VERY IMPORTANT NOTE: This is an input-output parameter. A bitmasked

»p916 value that can contain many different options. See Remarks below for
a complete list.

Return Values

This function actually returns three values.

 665

1) The numeric return value of the function indicates the dialog box button that the
user selected. If the Open button is selected, the value %OPEN_BUTTON is returned.
Otherwise, %CANCEL_BUTTON is returned. (This value can also be accessed with the
SQL_MsgBoxButton »p516 function.)

2) The sFileSpec$ parameter, which is passed to the function, will contain the name
of the selected file (if any) when the function returns

3) The lFlags& parameter, which is passed to the function, will contain additional
information about the file that the user selected.

Remarks

sFileSpec$ and lFlags& are unusual parameters (at least for SQL Tools parameters)
because they are used for both input and output. You should therefore use variables
(not literal values) for these parameters, so that your program can use the values that
are returned.

sFileSpec$ Input value : The string that you pass to this parameter is used as an
initial file specification. The file name (like MYFILE.TXT) or file spec (like *.DSN)
that you specify will appear in the "File Name" field of the dialog box. (It is possible to
do so, but you should not normally specify a drive and/or directory with this
parameter.) If an empty string is used for this parameter, the File Name field will be
blank when the dialog is first displayed.

sFileSpec$ Output value : When the SQL_SelectFile function returns, this
parameter will contain the name of the file that was actually selected by the user. If
no file was selected (as would be the case if the user selected the Cancel button),
this will be an empty string.

The sFilter$ parameter (input only) can be used to specify one or more pairs of
strings that will be displayed in the "Files Of Type" listbox. Each string pair should
represent a "description" and a matching "file spec", separated by the pipe (|)
symbol. If you use more that one pair, they should also be separated by pipe
symbols. For example, if you use the string...

DSN Files|*.DSN

...the "Files Of Type" listbox will contain the string "DSN Files" and only files that
match the filter *.DSN will be displayed. If you use the string...

DSN Files|*.DSN|Text Files|*.TXT|Batch Files|*.BAT

...the initial display will be the same as if you had used the shorter string above, but
the Files Of Type listbox will allow you to select "DSN Files", "Text Files", or "Batch
Files", and whenever one of those items is selected, the corresponding filter will be
used.

Note that the filter itself is not automatically displayed. If you want the listbox to say
"DSN Files (*.DSN)" you must use a string with duplicate information like this:

DSN Files (*.DSN)|*.DSN

You can also specify multiple filters for a single description by using semicolons. For
example, using...

 666

Source Code Files|*.BAS;*.INC;*.RES

...would display the files that match all of the filters shown.

If you use an empty string for sFilter$, files of all types will be shown and the Files Of
Type listbox will be empty.

The lFlags& value is an input-output parameter.

For input purposes, you can tell the SQL_SelectFile function how to perform
certain operations by passing the flag values shown below to the function. You can
add any of the flag values together (see Example below) to specify multiple options.
Also see Using Bitmasked Values »p916.

Input flag %OFN_ALLOWMULTISELECT

Tells the SQL_SelectFile function to allow the selection of multiple files. If
the user does in fact select more than one file, the sFileSpec$ parameter will
return the path to the current directory, followed by the filenames of the
selected files. All of the elements of the sFileSpec$ string (the directory and
all of the file names) will be separated by CHR$(0). Multiple files are
selected by holding down a Shift or Ctrl key while clicking on file names.

Input Flag %OFN_CREATEPROMPT

This flag has no effect unless the %OFN_FILEMUSTEXIST flag is also used.

If the user types the name of a file that does not exist, the
%OFN_CREATEPROMPT option causes the dialog box to prompt the user for
permission to create the file. If the user chooses to create the file, the dialog
box will close and the sFileSpec$ parameter will contain the name of the file
that was entered by the user. Otherwise, the file-selection dialog box will
remain open and allow the user to make another selection. In any case, the
file will not actually be created automatically. Your program must do that.

Input Flag %OFN_FILEMUSTEXIST

If you use this flag, it specifies that the user can only select existing files. If
the user types an invalid name and selects the Open button, the
SQL_SelectFile function will display a warning message and refuse to
close. (If this flag is specified, the %OFN_PATHMUSTEXIST flag is also used
automatically.)

Input Flag %OFN_HIDEREADONLY

Hides the Read Only check box that is normally displayed on the dialog box.

Input Flag %OFN_NOCHANGEDIR

If the user changes the directory while searching for files, this option restores
the current directory to its original value when the Open or Cancel button is
selected. It does not, however, keep your program's current directory from
being changed while files are being selected. This can be important if you
are creating a multi-threaded applications, because the current directory of all

 667

threads will be temporarily changed during the file-selection process. (This is
the normal behavior of the Windows select-file dialog. It is not a bug in SQL
Tools.)

Input Flag %OFN_NODEREFERENCELINKS

Affects the selection of Windows Shortcut files. It you use this option, and if
the user selects a shortcut file, the SQL_SelectFile function will return the
path and filename of the selected shortcut (.LNK) file. If this option is not
used, the function will automatically return the path and filename of the file
that is referenced by the shortcut

Input Flag %OFN_NONETWORKBUTTON

Hides and disables the Network button that is normally displayed on the
dialog box.

Input Flag %OFN_NOTESTFILECREATE

This description is from the official Microsoft Win32 documentation: "Specifies
that the file is not created before the dialog box is closed. This flag should be
specified if the application saves the file on a create-nonmodify network
sharepoint. When an application specifies this flag, the library does not
check for write protection, a full disk, an open drive door, or network
protection. Applications using this flag must perform file operations carefully,
because a file cannot be reopened once it is closed."

Input Flag %OFN_NOVALIDATE

Specifies that the SQL_SelectFile function should allow invalid characters
in the returned filename.

Input Flag %OFN_PATHMUSTEXIST

Specifies that the user can type only valid (i.e. existing) paths. If this flag is
used and the user types an invalid path in the File Name field, the
SQL_SelectFile function will display a message box.

This flag is used automatically whenever the %OFN_FILEMUSTEXIST flag is
used.

Input Flag %OFN_READONLY

The use of this flag causes the Read Only check box to be checked when the
dialog box is first displayed. Also see Output Flag %OFN_READONLY below.

The following flags can be returned by the SQL_SelectFile function. You
can test the return value of lFlags& for the following values by using the AND
syntax (see Example below). Also see Using Bitmasked Values »p916.

Output Flag %OFN_EXTENSIONDIFFERENT

If this flag is set when the SQL_SelectFile function returns, it means that
the user typed a filename extension that was different from the default
extension that you specified with the sDefExtension$ parameter.

 668

Output Flag %OFN_NOREADONLYRETURN

If this flag is set when the SQL_SelectFile function returns, it means that
the selected file does not have the Read Only check box checked, and that it
is not in a write-protected directory.

Output Flag %OFN_READONLY

If this flag is set when the SQL_SelectFile function returns, it means that
the Read Only check box was checked when the dialog box was closed.

Other (Non-Flag) Values

Finally, there is one SQL_SelectFile option that cannot be set with a
"parameter" value. By default, the SQL_SelectFile function will use the
Windows Desktop as its parent window. If you want to specify a different
window or form, use the SQL_SetOption »p681(%OPT_h_PARENT_WINDOW)
function.

Diagnostics

This function does not return Error Codes »p180, ODBC Error Messages »p181, or SQL
Tools Error Messages.

Example

'Display a "Select File" dialog that:
'1) has the title "Select a DSN File"
'2) starts with nothing in the File Name
' field,
'3) initially displays the files in the
' \SQLTools directory,
'4) limits the file display to *.DSN files,
'5) does not have a Read Only button or
' a Network button,
'6) requires that an existing file be
' selected by the user,
'7) returns the flag %OFN_EXTENSIONDIFFERENT
' if a file that does not have the
' default extension DSN is selected, and
'8) automatically resets the default directory
' if the user changes it while looking for
' a file.

lFlags& = %OFN_FILEMUSTEXIST OR _
 %OFN_NOCHANGEDIR OR _
 %OFN_HIDEREADONLY OR _
 %OFN_NONETWORKBUTTON

sFileSpec$ = ""

lResult& = SQL_SelectFile("Select a DSN File:", _
 sFileSpec$, _
 "\SQLTOOLS", _
 "DSN Files|*.DSN", _
 "*.DSN", _
 lFlags&)

 669

'examine the three different return values:

IF lResult& = %CANCEL_BUTTON THEN
 'User selected Cancel
END IF

IF (lFlags& AND %OFN_EXTENSIONDIFFERENT) THEN
 'User selected a non-DSN file.
 'Note the REQUIRED parentheses, which
 'force a "bitwise" operation.
END IF

'display the name of the selected file:
PRINT sFileSpec$

Driver Issues

None.

Speed Issues

None.

See Also

Utility Family »p249

 670

SQL_SetDatabaseAttrib

Syntax

lResult& = SQL_SetDatabaseAttrib(lDatabaseNumber&, _
 lAttribute&, _
 dwValue???) 'or l Value&

Except for the lDatabaseNumber& parameter, SQL_SetDatabaseAttrib is
identical to SQL_SetDBAttrib »p672. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 671

SQL_SetDatabaseAttribStr

This SQL Tools Version 2 function has been replaced by enhanced
SQL_SetDBAttrib »p672 and SQL_SetDatabaseAttrib »p670 functions, which can
set both numeric and string attributes.

 672

SQL_SetDBAttrib

Summary

Sets the value of a database attribute »p190

Twin

SQL_SetDatabaseAttrib »p670

Family

Database Info/Attrib Family »p235

Availability

SQL Tools Pro only .

Warning

Most attributes can be set only at certain times. See Remarks below for details.

Syntax

 (Numeric Attributes)
 lResult& = SQL_SetDBAttrib(lAttribute&, _
 dwValue???) 'or lValue&

 (String Attributes)
 lResult& = SQL_SetDBAttrib(lAttribute&, _
 0, _
 sValue$)

Parameters

lAttribute&
One of the constants described in Remarks below.

dwValue???
A valid numeric value for the specified lAttribute&. When setting a string
attribute, this value must be zero (0).

sValue$
A valid string value for the specified lAttribute&. When setting a numeric
attribute, this optional value should be omitted.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the attribute
is changed successfully, or an ODBC Error Code »p180 or SQL Tools Error Code if it is
not.

Remarks

IMPORTANT NOTE: Some database attributes can be set only after a database has
been opened with SQL_OpenDB »p536 or SQL_OpenDatabase »p533. Other attributes
can be set only after the SQL_OpenDatabase1 »p534 step has been completed, but
before SQL_OpenDatabase2 »p535.

lAttribute& must be one of the following values:

%DB_ATTR_ACCESS_MODE (Numeric)

 673

ODBC 3.x+ ONLY : This attribute can be set to %SQL_MODE_READ_WRITE
(the default) or %SQL_MODE_READ_ONLY.

IMPORTANT NOTE: %SQL_MODE_READ_ONLY is only used as an indicator
that the database is not required to support SQL statements that cause
database updates. The ODBC driver is not required to prevent update
statements from being submitted or executed. The behavior of the driver
when asked to process SQL statements that are not read-only during a read-
only connection is defined differently by different ODBC drivers.

IMPORTANT NOTE: If you need to set this attribute, you must keep in mind
that some ODBC drivers only allow it to be set between
SQL_OpenDatabase1 »p534 and SQL_OpenDatabase2 »p535. All drivers
allow it to be set then, so if you need to set this attribute, you should use
SQL_OpenDatabase1 and 2 instead of SQL_OpenDB or
SQL_OpenDatabase , and set this attribute between steps 1 and 2. (Also
remember to set the %DB_ATTR_ODBC_CURSORS attribute, which is normally
set by SQL Tools when SQL_OpenDatabase is used.)

%DB_ATTR_AUTOCOMMIT (Numeric)

This attribute can be set to %SQL_AUTOCOMMIT_OFF or
%SQL_AUTOCOMMIT_ON (the default). The SQL_DBAutoCommit »p327
function is usually used to set this attribute value.

If you use %SQL_AUTOCOMMIT_OFF, your program must use the
SQL_EndTrans »p402 function to either commit or roll back each transaction.

IMPORTANT NOTE: Some Datasources delete all prepared statements and
close all open statements each time a statement is committed. The
AutoCommit mode can cause this to happen after each non-query statement
is executed, or when the cursor is closed for a query.

IMPORTANT NOTE: When a batch is executed in the AutoCommit mode,
two different behaviors are possible: 1) The entire batch can be treated as an
autocommitable unit, or 2) each statement in a batch can be treated as an
autocommitable unit. Each ODBC driver »p76 defines for itself which behavior
it will support. (Some Datasources support both behaviors and provide a way
of choosing between them.)

%DB_ATTR_CONNECTION_DEAD (Numeric)

This is a read-only database attribute. It can be read with SQL_DBAttrib

»p322 and SQL_DatabaseAttrib »p291 but cannot be set.

%DB_ATTR_CONNECTION_TIMEOUT (Numeric)

ODBC 3.x+ ONLY :This attribute can be used to tell the ODBC driver how
long it should wait for a request to be completed before returning control to
your program. The default value is zero (0), meaning "no timeout", i.e. "wait
forever".

IMPORTANT NOTE: This attribute can only be set between
SQL_OpenDatabase1 »p534 and SQL_OpenDatabase2 »p535. If you need to

 674

set this attribute, you should use SQL_OpenDatabase1 and 2 instead of
SQL_OpenDB or SQL_OpenDatabase , and set this attribute between steps 1
and 2. (Also remember to set the %DB_ATTR_ODBC_CURSORS attribute,
which is normally set by SQL Tools when SQL_OpenDatabase is used.)

%DB_ATTR_CURRENT_CATALOG (String)

A string that contains the name of the catalog that is to be used by the
Datasource. For example, a SQL Server catalog is a database, so the driver
sends a USE database statement to the Datasource, where database is the
string that was specified with this function. For a single-tier driver, on the
other hand, the catalog might be a directory, so the driver would change its
current directory to the directory specified by this function.

IMPORTANT NOTE: If you need to set this attribute, you must keep in mind
that some ODBC drivers require it to be set between SQL_OpenDatabase1

»p534 and SQL_OpenDatabase2 »p535. All drivers allow it to be set then, so if
you need to set this attribute, you should use SQL_OpenDatabase1 and 2
instead of SQL_OpenDB or SQL_OpenDatabase , and set this attribute
between steps 1 and 2. (Also remember to set the
%DB_ATTR_ODBC_CURSORS attribute, which is normally set by SQL Tools
when SQL_OpenDB or SQL_OpenDatabase is used.)

%DB_ATTR_DISCONNECT_BEHAVIOR (Numeric)

ODBC 3.x+ ONLY : This attribute is not fully documented by the Microsoft
ODBC Software Developer Kit »p915. It appears to be related to connection
pooling. This attribute will always be %SQL_DB_RETURN_TO_POOL (zero) or
%SQL_DB_DISCONNECT (one) but the official documentation does not define
what that means.

%DB_ATTR_LOGIN_TIMEOUT (Numeric)

The number of seconds that the driver should wait for a login request to be
completed before returning to your program. The default value is driver-
dependent, but it is often zero (0), which means "no timeout", i.e. "wait
forever".

%DB_ATTR_METADATA_ID (Numeric)

This attribute controls the way the ODBC driver processes various names,
such as table names, column names, schema names, and so on. SQL Tools
handles this value internally; you should change it only under very unusual
circumstances.

%DB_ATTR_ODBC_CURSORS (Numeric)

This attribute can be set to one of the following values:

%SQL_CUR_USE_IF_NEEDED (The ODBC cursor library is used only if the
ODBC driver does not support the requested behavior. This is the SQL Tools
default setting for this parameter. It is used automatically whenever
SQL_OpenDB »p536 or SQL_OpenDatabase »p533 is used.)

 675

%SQL_CUR_USE_ODBC (The ODBC cursor library is always used, even if the
ODBC driver supports the requested behavior.)

%SQL_CUR_USE_DRIVER (The ODBC cursor library is never used. This is
the default setting if you use SQL_OpenDatabase1 »p534 and
SQL_OpenDatabase2 »p535 instead of using SQL_OpenDB or
SQL_OpenDatabase . If you use SQL_OpenDatabase1 and 2 because you
need to set a different attribute, you will probably also need to set the
%DB_ATTR_ODBC_CURSORS attribute.)

IMPORTANT NOTE: This attribute can only be set between
SQL_OpenDatabase1 and SQL_OpenDatabase2 . If you need to set this
attribute, you should use SQL_OpenDatabase1 and 2 instead of
SQL_OpenDB or SQL_OpenDatabase , and set this attribute between steps 1
and 2.

%DB_ATTR_ODBC_TRACE (Numeric)

This attribute can be set to %SQL_TRACE_OFF (the default) or
%SQL_TRACE_ON. If it is set to ON, the ODBC driver will create a "trace file"
that contains all of the ODBC API function calls that SQL Tools makes. (Also
see %DB_ATTR_ODBC_TRACEFILE.)

Please note that this ODBC API Trace Mode »p187 is not the same thing as
the SQL Tools Trace Mode »p186. See SQL_Trace »p845 for more information.

WARNING: Because it involves the creation of a large text file, the use of the
ODBC Trace Mode can greatly slow down a program. One of our very small
test programs took 40.50 seconds to execute when the ODBC Trace Mode
was turned on, but less than 0.05 seconds with tracing turned off. And the
slowdown can be made worse if the SQL Tools Trace Mode »p186 is used at
the same time, or if an existing Trace File is being appended (which is the
default behavior). Instead of activating the ODBC Trace Mode at the very
beginning of your program, we suggest that you attempt to isolate a small
section of code that is likely to be causing a problem, and turn the ODBC
Trace Mode on then off again as quickly as possible.

%DB_ATTR_ODBC_TRACEFILE (String)

The name of the trace file that will be used if ODBC API Tracing »p187 is
activated.

%DB_ATTR_PACKET_SIZE (Numeric)

This value specifies the network packet size, in bytes. Many Datasources do
not allow this attribute to be set.

IMPORTANT NOTE: If a datasource allows it to be set, this attribute can only
be set between SQL_OpenDatabase1 »p534 and SQL_OpenDatabase2

»p535. If you need to set this attribute, you should use SQL_OpenDatabase1
and 2 instead of SQL_OpenDB or SQL_OpenDatabase , and set this
attribute between steps 1 and 2. (Also remember to set the
%DB_ATTR_ODBC_CURSORS attribute, which is normally set by SQL Tools
when SQL_OpenDatabase is used.)

 676

%DB_ATTR_QUIET_MODE (Numeric)

You can use this option to specify a 32-bit window handle value that will be
used as the parent window when dialog boxes are displayed by the ODBC
driver »p76. If the value of this attribute is zero (the default), the ODBC driver
will not display any dialog boxes.

IMPORTANT NOTE: The %DB_ATTR_QUIET_MODE attribute does not affect
dialog boxes that are displayed by SQL Tools, such as those provided by
SQL_OpenDB »p536, SQL_SelectFile »p664, SQL_MsgBox »p516, etc. Those
dialogs use the Windows desktop as the default parent window. See
SQL_hParentWindow »p486 for more information.

%DB_ATTR_TRANSLATE_LIB (String)

A string that contains the name of a library containing the ODBC API
functions called SQLDriverToDataSource and SQLDataSourceToDriver,
which the ODBC driver uses (internally) to perform tasks such as character
set translation.

IMPORTANT NOTE: This attribute cannot be set between
SQL_OpenDatabase1 »p534 and SQL_OpenDatabase2 »p535. It can be set
only after a connection has been fully established, i.e. after the entire
SQL_OpenDB »p536 or SQL_OpenDatabase »p533 process has been
completed.

%DB_ATTR_TRANSLATE_OPTION (Numeric)

A 32-bit bitmasked »p916 value that is passed to the translation DLL.

IMPORTANT NOTE: This attribute cannot be set between
SQL_OpenDatabase1 »p534 and SQL_OpenDatabase2 »p535. It can only be
set after a connection has been established, i.e. after the entire
SQL_OpenDatabase process has been completed.

%DB_ATTR_TXN_ISOLATION (Numeric)

A 32-bit bitmasked »p916 value that sets the transaction isolation level for the
current connection. A program must call SQL_EndTrans »p402 to commit or
roll back all open transactions before setting this attribute. The valid values
for this function can be determined by using the SQL_DBInfo »p338

(%DB_TXN_ISOLATION_OPTION) function.

IMPORTANT NOTE: This attribute can only be set when there are no open
transactions on the database.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

SQL_SetDBAttrib %DB_ATTR_LOGIN_TIMEOUT, 60

 677

Driver Issues
See Remarks above.

Speed Issues

None.

See Also

Database Information and Attributes »p190

 678

SQL_SetDBAttribStr

This SQL Tools Version 2 function has been replaced by enhanced
SQL_SetDBAttrib »p672 and SQL_SetDatabaseAttrib »p670 functions, which can
set both numeric and string attributes.

 679

SQL_SetEnvironAttrib

Summary

Sets the value of an ODBC environment attribute, which affects all databases. While
this function can be used, it is not usually necessary. Most of the important ODBC
environment attributes should usually be set with the SQL_Initialize »p495
function.

Twin

None. (Please also note that there is no corresponding Str (string) function because
all of the Environment Attributes are numeric.)

Family

Environment Family »p232

Availability

Some sub-functions are limited to the SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_SetEnvironAttrib(lAttribute&, _
 lValue&)

Parameters

lAttribute&
One of the constants described in Remarks , below.

lValue&
A valid value for the specified lAttribute&.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the attribute
is changed successfully, or an ODBC Error Code »p180 SQL Tools Error code if it is
not changed.

Remarks

Most of the important ODBC environment attributes should normally be set with the
SQL_Initialize »p495 function. While the SQL_SetEnvironAttrib function can
be used, it is not usually necessary.

The lAttribute& parameter must have one of the following values:

%ENV_ATTR_CONNECTION_POOLING SQL Tools Pro only (see »p29)

This attribute can be set to one of the following values:

%SQL_CP_OFF (Connection pooling is turned off. This is the default.)

%SQL_CP_ONE_PER_DRIVER (A single connection pool is supported for
each driver. Every database connection in a pool is associated with one
driver.)

 680

%SQL_CP_ONE_PER_HENV (A single connection pool is supported for each
environment. Every database connection in a pool is associated with one
environment, i.e. one program.)

See SQL_Initialize »p495 for more information.

%ENV_ATTR_CP_MATCH

This attribute is ignored unless %ENV_ATTR_CONNECTION_POOLING has
been set to a value other than %SQL_CP_OFF.

This attribute can be set to one of the following values:

%SQL_CP_STRICT_MATCH (Only connections that exactly match the
connection options and connection attributes specified by your program are
reused. This is the default value.)

%SQL_CP_RELAXED_MATCH (Connections with matching connection string
keywords can be used. Keywords must match, but not all connection
attributes must match.)

See SQL_Initialize »p495 for more information.

%ENV_ATTR_ODBC_VERSION

This attribute can be set to either two (2) or three (3), to indicate the ODBC
Version behavior that should be emulated by the environment. If an ODBC
function (and therefore a SQL Tools function) behaves differently if ODBC 2
or 3 is used, this function can be used specify which behavior should be
emulated.

By default, SQL Tools sets this attribute to 3 because most drivers can
support at least some ODBC 3.x behavior.

See SQL_Initialize »p495 for more information.

%ENV_ATTR_OUTPUT_NTS

This attribute is "read-only" and cannot be set. See SQL_EnvironAttrib

»p405 for more information.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages. Furthermore, the use of this function can
cause many other SQL Tools functions to generate ODBC Error Messages.

Example None.
Driver Issues None.
Speed Issues None.

See Also Database Information and Attributes »p190 Statement Information and Attributes
»p191

 681

SQL_SetOption

Summary

Sets the value of a SQL Tools numeric option.

Twin

None.

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_SetOption(lOption&, _
 lValue&)

Parameters

lOption& and lValue&
An option, and the value to which that option should be set. See Remarks
below.

Return Values

This function returns %SQL_SUCCESS if valid parameters are used, or
%ERROR_BAD_PARAM_VALUE if they are not.

Remarks

Not all SQL Tools Option values are useful in numeric form. For example, the
%OPT_MY_PROGRAM option is usually used to specify the name of your program, so
using the SQL_SetOption function to set this option to a numeric value would not
usually be desirable. It is possible, however, to assign a value like the string "2000 "
to the %OPT_MY_PROGRAM string, in which case the SQL_SetOption function could
be used. (There are other examples of this, which should become clear later.)

For that reason, SQL Tools allows all options to be changed and read with both string
and numeric functions. In order to avoid errors when this document is updated in the
future, a single list of all of the various SQL Tools Options is provided in the
Reference Guide's SQL_SetOptionStr »p682 entry.

Diagnostics

This function returns Error Codes »p180 and can generate SQL Tools Error Messages

»p181.

Example

SQL_SetOption %OPT_MAX_ERRORS, 32

Driver Issues None.
Speed Issues None.
See Also Configuration Family »p231

 682

SQL_SetOptionStr

Summary

Sets the value of a SQL Tools string option. (Information about numeric options and
read-only values are also listed below.)

Twin

None.

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_SetOptionStr(lOption&, _
 sValue$)

Parameters
lOption&

See Remarks below for a complete list of valid values.
sValue$

A valid value for the specified lOption&.

Return Values

This function returns %SQL_SUCCESS if the option is successfully changed, or an
Error Code »p180 if it is not.

Remarks

IMPORTANT NOTE: Not all SQL Tools Option values are useful in string form. For
example, the %OPT_ERROR_SOUNDTYPE option is used to specify a numeric value
which tells SQL Tools what kind of sound it should make (if any) when an error is
detected. Normally, you would use the SQL_SetOption »p681 function to specify a
numeric value like 2. It is also possible, however, to use the SQL_SetOptionStr
function to assign a value like the string "2" to the %OPT_ERROR_SOUNDTYPE option,
which would accomplish exactly the same thing. (There are other examples of this,
which should become clear later.)

For that reason, SQL Tools allows all options to be changed and read with both string
and numeric functions. In order to avoid errors when this document is updated in the
future, a single list of all of the various SQL Tools Options is provided here. You
should use this list whenever you are using the SQL_OptionStr , SQL_Option »p544,
SQL_SetOptionStr »p682, or SQL_SetOption »p681 function.

The list is presented in alphabetical order, and the normal method of using the option
(String or Numeric) is listed after the equate name.

%OPT_ALLCOL_DELIMITER (String)

This option tells SQL Tools which character(s) to place between individual

 683

fields when you use the %ALL_COLs option with SQL_ResColString »p614
or SQL_ResultColumnString »p654. The default value is quote-comma-
quote (PowerBASIC's $QCQ equate). This special value also tells SQL Tools
to add leading and trailing quotes to the record, so that all of the fields will be
surrounded by quotes and separated by commas. This format is known as
Comma Separated Values or CSV, and is a very common form of delimited
string. PowerBASIC's PARSE$ function is an easy way to extract individual
fields from a CSV string.

If you use a different value for %OPT_ALLCOL_DELIMITER it will be used
verbatim between fields. No leading or trailing characters will be added
automatically to the multi-field string.

To use a single text character such as the "pipe" symbol (|) for this option,
use:

SQL_SetOptionStr %OPT_ALLCOL_DELIMITER, "|"

To use a single control character, you can use the [hXX] notation. See
SQL_TextStr »p836 for details.

To use multiple characters, use [h00] (the notation for the $NUL character)
and then use the PowerBASIC REPLACE function to insert the desired
character string in place of the $NUL characters in the final string

To reset this option to the default setting, use $QCQ.

Note that delimiter characters are automatically "escaped" by SQL Tools, to
avoid the corruption of the string by unexpected data. For example if you use
the default setting (Quote-Comma-Quote) and the data contains a double
quote character, SQL Tools will replace the double quote character(s) in the
data with two single quotes before adding the surrounding double quotes. If
you specify a different character, the data will be escaped with the [hXX]
notation. For example if you specify the pipe symbol, the data will be
escaped using [h7C] because 7C is the hex value of the pipe.
"Hello|World " would be returned as "Hello[h7C]World "

%OPT_ALLCOL_MAXFIELD (Numeric)

This option tells SQL Tools the maximum length of any single field within a
multi-field string when the %ALL_COLs option is used with
SQL_ResColString »p614 or SQL_ResultColumnString »p654. The
default value is 64. Strings longer than %OPT_ALLCOL_MAXFIELD will be
truncated and will end with "... ".

%OPT_AUDIT_APPEND (Numeric)

By default, SQL Tools automatically appends existing Audit Files »p188. If you
change this option to %FALSE (zero) it will delete the information in existing
Audit Files whenever a file is opened with SQL_Audit »p260.

%OPT_AUDIT_FILE (Numeric)

Tells SQL Tools to use a specific file when the Audit Mode »p188 is used. The

 684

default file name is based on the name and location of your program. For
example if your program is C:\MyFolder\MyProgram.EXE the default
audit file would be C:\MyFolder\MyProgram.AUDIT .

If you use this option to change the Audit File name while the Audit Mode is
turned on, SQL Tools will automatically close the current file and open the
new one.

%OPT_AUTOAUTO_BIND (Numeric)

This option tells SQL Tools whether or not it should automatically AutoBind

»p159 all of the columns in a result set whenever the SQL_Stmt »p716

(%EXECUTE) or SQL_Stmt(%IMMEDIATE) function is used to execute a
SQL statement »p123.

The default value for this option is Logical True »p912 (-1). Set this value to
zero (0) to turn off AutoAutoBinding, or any nonzero value to turn it back on.
If you turn it off, your program is responsible for the binding of all result
columns.

%OPT_AUTOCLOSE_DB (Numeric)

This option tells SQL Tools whether or not it should automatically close an
open database if your program attempts to open another database using the
same database number.

The default value for this option is Logical True »p912 (-1). Set this value to
zero (0) to turn off the Database AutoClose feature, or any nonzero value to
turn it on. If you turn it off, your program is responsible for closing a database
(with the SQL_CloseDB »p279 function) before opening another database
using the same database number.

Even if this option is turned on, you program can use the SQL_CloseDB »p279
function to explicitly close a database.

If you turn this option off and fail to use the SQL_CloseDB function properly,
a SQL Tools Error Message (%ERROR_DB_NOT_CLOSED) will be generated
by the SQL_OpenDB »p536 statement.

%OPT_AUTOCLOSE_STMT (Numeric)

This option tells SQL Tools whether or not it should automatically close an
open statement if your program attempts to open another statement using the
same statement number.

The default value for this option is Logical True »p912 (-1). Set this value to
zero (0) to turn off the Statement AutoClose feature, or any nonzero value to
turn it on. If you turn it off, your program is responsible for closing an open
statement (with the SQL_CloseStmt »p282 function) before opening another
statement using the same statement number.

Even if this option is turned on, your program can use the SQL_CloseStmt
function to explicitly close a statement. In fact, this is recommended practice
if you are going to change a statement's mode. (Using the SQL_StmtMode

 685

»p725 function while a statement is open will generate an %ERROR_ADVISORY
message to warn you that the mode change will not take effect until the next
time a statement is opened.)

If you turn off this option and fail to use the SQL_CloseStmt properly, a SQL
Tools Error Message (%ERROR_STMT_NOT_CLOSED) will be generated by the
SQL_Stmt »p716 or SQL_OpenStmt »p542 function.

%OPT_AUTOOPEN_DB (Numeric)

This option tells SQL Tools whether or not it should automatically use the
SQL_OpenDB »p536 function to prompt the user for a database connection if
your program attempts to use the SQL_Stmt »p716 function with a database
number that is not currently open.

The default value for this option is Logical True »p912 (-1). Set this value to
zero (0) to turn off the Database AutoOpen feature, or any nonzero value to
turn it on. If you turn it off, your program is responsible for opening a
database before using the SQL_Stmt function.

Even if this option is turned on, your program can still use SQL_OpenDB to
manually open a database. In fact, this is the recommended procedure. The
Database AutoOpen feature is provided as a programming convenience, for
those time when you are writing "quick and dirty" programs.

If you turn this option off and fail to use SQL_OpenDB before you use
SQL_Stmt or SQL_OpenStmt , a SQL Tools Error Message
(%ERROR_DB_NOT_OPEN) will be generated.

%OPT_AUTOOPEN_STMT (Numeric)

This option tells SQL Tools whether or not it should automatically use the
SQL_OpenStmt »p542 function to open a statement if your program attempts
to use the SQL_Stmt »p716 function with a statement number that is not
currently open.

The default value for this option is Logical True »p912 (-1). Set this value to
zero (0) to turn off the Statement AutoOpen feature, or any nonzero value to
turn it on. If you turn it off, your program is responsible for using the
SQL_OpenStmt function to explicitly open a statement before using the
SQL_Stmt function.

Even if this option is turned on, your program can still use the
SQL_OpenStmt function to manually open a statement.

If you turn this option off and then fail to use SQL_OpenStmt properly, a
SQL Tools Error Message (%ERROR_STMT_NOT_OPEN) will be generated by
the SQL_Stmt function.

%OPT_COL_DELIMITER (String)

This option is used to specify the Column Delimiter string that SQL Tools
uses to delimit multiple return values from the SQL_Diagnostic »p388
function.

 686

The default value for this option is one comma and one space (", ").

%OPT_DATALEN_BINARY
%OPT_DATALEN_CHAR
%OPT_DATALEN_CHUNK -- see separate entry

%OPT_DATALEN_LONGVARBINARY
%OPT_DATALEN_LONGVARCHAR
%OPT_DATALEN_UNKNOWN
%OPT_DATALEN_VARBINARY
%OPT_DATALEN_VARCHAR
%OPT_DATALEN_WCHAR
%OPT_DATALEN_WLONGVARCHAR
%OPT_DATALEN_WVARCHAR (All Numeric)

The _DATALEN_ or "data length" options are used to tell SQL Tools the size
of the "bind buffer »p158" that it should create for the various SQL data types

»p87.

SQL Tools uses a default value of 256 for all these data types, except for the
three Unicode Data Types »p109, which use a length of 512 bytes (256
characters)

For example, SQL Tools uses a default buffer size of 256 bytes for all
%SQL_BINARY »p105 result columns, unless you use the
SQL_SetOption(%OPT_DATALEN_BINARY) function to change the default
value.

VERY IMPORTANT NOTE: You should only change these values before you
use the SQL_Stmt »p716 function. If you execute a SQL statement and these
values are used to create buffers, and then you change these values, SQL
Tools may or may not be able to maintain the statement's buffers correctly.

%OPT_DATALEN_CHUNK

The SQL_ResColMemo »p602 and SQL_ResColBLOB »p579 functions retrieve
Long Column »p167 data in "chunks" and assemble the data before returning it
to your program. The default %OPT_DATALEN_CHUNK value is 64 , which tells
SQL Tools to use a 64k byte buffer. This value works well in most
circumstances, but depending on your computer and network setup you may
be able to increase the retrieval speed (and/or decrease the demands on
your network) by using a larger or smaller value. Legal values for
%OPT_DATALEN_CHUNK range from 1 (1 kilobyte) to 1024 (1 megabyte).

%OPT_DATE_FORMAT_x (String)

%OPT_DATE_FORMAT_1 through %OPT_DATE_FORMAT_4 are used by the
SQL_DateTimePartStr »p315 function.

%OPT_DATE_TIME_SEPARATOR (String)

This option tells the SQL_DateTimePartStr »p315 function which
character(s) to place between the Date and Time portions of a DateTime
string when %PART_DATETIME_LOCALE_SYSTEM,
%PART_DATETIME_LOCALE_USER and %PART_DATETIME_FORMAT_1 are
used. The default value is " @ " -- an at-sign with a space character on
either side.

 687

%OPT_DB_ATTR_ODBC_CURSORS (Numeric)

This option specifies a default Database Mode that is used whenever a
database is opened »p78. The default value is %SQL_CUR_USE_IF_NEEDED.

%OPT_DEFAULT_DATETIME_FORMAT

This option tells the SQL_ResColString »p614 function how to format
Date/Time values. Noter that only the following three options are available
here; use SQL_ResColNumeric »p607 and SQL_DateTimePartStr »p315
instead of SQL_ResColString if you need other formats.

%PART_ALL (the default)
%PART_YYYY_MM_DD_HH_MM_SS (compatible with Excel)
%PART_FILETIME

%OPT_ERRMSGBOX1 (String)
%OPT_ERRMSGBOX2 (String)
%OPT_ERROR_MSGBOXTYPE (Numeric)

These options are used to control the message box that SQL Tools can
display whenever an error is detected »p185.

The default value for %OPT_ERROR_MSGBOXTYPE is %MSGBOX_NONE, so
SQL Tools does not display this message box unless you change this option
to one of the following values: %MSGBOX_OK, %MSGBOX_OKCANCEL,
%MSGBOX_ABORTRETRYIGNORE, %MSGBOX_YESNOCANCEL,
%MSGBOX_YESNO, or %MSGBOX_RETRYCANCEL. The names of the constants
indicate which buttons will appear on the message box.

If the %OPT_ERROR_MSGBOXTYPE option has been set to a value other than
%MSGBOX_NONE, the %OPT_ERRMSGBOX1 and %OPT_ERRMSGBOX2 options
can be used to specify the wording that is used in the message box.

The default value of %OPT_ERRMSGBOX1 is "ERROR: ". This string is
automatically added to the beginning of every error-message box. You can
change this value to use different wording, such as "ERROR DETECTED!
PLEASE REPORT THE FOLLOWING INFORMATION TO THE TECHNICAL
SUPPORT DEPARTMENT: ". You could also use a phrase in a different
language.

The default value of %OPT_ERRMSGBOX2 is an empty string. If you specify a
value for this option, the string will be added to the end of the text in the error-
message-box.

Keep in mind that it is possible to use SQL_IString »p498 "shorthand" strings
(see) to add text formatting (such as NewLine characters) to these strings.

See %OPT_ICON_ID and %OPT_MY_PROGRAM (below) for other ways to
customize the error-message box.

Also see %OPT_ERROR_SOUNDTYPE (just below).

 688

%OPT_ERROR_SOUNDTYPE (Numeric)

SQL Tools can optionally play a Windows Event Sound whenever an error is
detected.

The default value for this option is %SOUND_NONE, so no sound is normally
played when an error is detected. You can change this option to
%SOUND_OK, %SOUND_HAND, %SOUND_QUESTION, %SOUND_EXCLAMATION,
or %SOUND_ASTERISK. (The constant names correspond to the standard
Windows Event Sound names. The actual sound that is produced for each
value will depend on your computer's configuration at runtime.)

%OPT_EXIT_CHECK (Numeric)

Normally, your program should handle and clear all errors from the SQL
Tools Error Stack before it exits. During development it is useful to know
whether or not there are any "unhandled errors" when the SQL_Shutdown

»p706 function is used, so you may want to set this option to Logical True »p912.
If there are any unhandled errors in the Error Stack when SQL Tools unloads
from memory (the final shutdown step), a message box will be displayed.

When it comes time you distribute your program you will probably want to set
this option to False (zero), so that your users will not see the message box.

%OPT_FORCE_STRING_TYPE

The legal values for this option are %RAW_STRINGS (the default),
%ACODE_STRINGS, and %UCODE_STRINGS. See Unicode Data Types »p109
for more information, under the heading How SQL Tools Handles Unicode
Data.

%OPT_h_EXE_INSTANCE (Numeric)

This option can be used to specify the "EXE Instance Handle" of your
program. It is common to specify this value as a parameter of the
SQL_Initialize »p495 function (see), but if you prefer to use SQL_Init

»p494 you can use this option to pass the Instance Handle to SQL Tools.

SQL Tools only needs to know the instance handle of your EXE program if
you want to use the %OPT_ICON_ID option (see below).

%OPT_h_PARENT_WINDOW (Numeric)

This option can be used to tell SQL Tools to use a specific window as the
parent window of the dialog boxes that it displays. See
SQL_hParentWindow »p486 for more details.

%OPT_ICON_ID (Numeric)

By default, SQL Tools uses a Perfect Sync S »p16 logo as the icon that is
displayed in all message boxes. You can use this option to specify a different
icon.

You may use any of the following values: %ICON_APPLICATION,
%ICON_HAND, %ICON_ERROR, %ICON_QUESTION, %ICON_EXCLAMATION,

 689

%ICON_WARNING, %ICON_ASTERISK, %ICON_INFORMATION,
%ICON_WINLOGO, or zero (for no icon). The names of the constants
correspond to the Windows names of the various standard icons. The actual
images that are displayed will depend on the runtime configuration of your
computer, including the Windows version.

If you have already set the %OPT_h_EXE_INSTANCE option (see above), you
can also specify the Resource ID Number of an icon that is embedded in your
EXE or DLL file. (Icons are embedded by using the PowerBASIC
#RESOURCE metastatement.)

%OPT_ISTRING_ASCII
%OPT_ISTRING_CR
%OPT_ISTRING_ENTER
%OPT_ISTRING_LF
%OPT_ISTRING_PREFIX
%OPT_ISTRING_QUOTE
%OPT_ISTRING_REPLACE
%OPT_ISTRING_SEARCH
%OPT_ISTRING_SUFFIX
%OPT_ISTRING_TAB (All String)

These options are used to control the way the SQL_IString »p498 function
works.

%OPT_MAX_COL_NUMBER
%OPT_MAX_DB_NUMBER
%OPT_MAX_PARAM_NUMBER
%OPT_MAX_STMT_NUMBER (Both Numeric)

Under normal circumstances, these values are set with the parameters of the
SQL_Initialize »p495 function. However, if your program uses a value for
SQL_Initialize that turns out to be too large once the program is
running, you can reduce the values by using these options. For example, if
your program determines that it has connected to a database that does not
support multiple connections, you might reduce the MAX_DB number to one
(1).

Note that it is not possible to increase any of the values by using these
options.

IMPORTANT NOTE: The use of these options does not reclaim the memory
that SQL Tools reserved for the original SQL_Initialize values. It will,
however, affect the operation of functions like SQL_NewDBNumber »p521. In
fact, all SQL Tools functions will generate an %ERROR_BAD_PARAM_VALUE
error message if you attempt to use a number that is larger than the new
value that you specify with these options.

You must be careful not to reduce these values while a database, statement,
column, or parameter with a larger number is open. For example, if database
number 2 is open and you reduce the %OPT_MAX_DB_NUMBER value to 1, it
will be impossible for your program to access (or even close) database
number 2.

 690

%OPT_MAX_ERRORS (Numeric)

If multiple runtime errors are detected, SQL Tools stores the errors in the
Error Stack »p181. The performance of SQL Tools can be affected if too many
errors accumulate in the stack, so the %OPT_MAX_ERRORS option is used to
specify the maximum number of errors that can be stored in the stack at any
one time.

The default value for this option is 64 . If 64 error messages are in the error
stack and a 65th error is detected, the oldest error in the stack will be
discarded.

In practice, your program should handle and clear errors long before the
%OPT_MAX_ERRORS value is reached. This feature is provided primarily as
an aid during program development. You can increase or decrease the
%OPT_MAX_ERRORS value during development, but we recommend a value
of 64 (or a smaller value) for distribution programs.

%OPT_MAX_ITEM_NUMBER (Numeric)

Basically, this option controls the maximum number of tables and columns
that SQL Tools can handle. Specifically, it controls the point at which the
various SQL_Get »p250 (Info) functions return %ERROR_TOO_MANY, so it
affects nearly all of the Info functions.

The default value is 16,384 . If your database contains an unusually large
number of tables, columns, privileges, stored procedures, etc., the maximum
value for this option is 32,768 . If you are certain that your program will be
used with relatively small numbers of tables and columns, you can save
some memory and speed up your program (very slightly) by using a number
like 100 . The minimum legal value for this option is 64 .

%OPT_MAX_PARAM_NUMBER
%OPT_MAX_STMT_NUMBER (Both Numeric)

See %OPT_MAX_DB_NUMBER above.

%OPT_MAX_TEXTCHAR
%OPT_MIN_TEXTCHAR (Both Numeric)

The %OPT_MIN_TEXTCHAR and %OPT_MAX_TEXTCHAR options are used to
tell the SQL_TextStr »p836 function which characters should be considered
"printable". The default values for these options are 32 and 255 , which
means that the space character CHR$(32) and above are printable. (Most
Windows fonts support that character range.)

If a string that contains a character less than CHR$(32) is submitted to the
SQL_TextStr unction, it will be converted to the [hXX] notation.

If you are using a font (such as Terminal) that supports a different range of
characters, you can change the range of printable characters by using these
options.

If you change these values so that the MIN value is larger than the MAX

 691

value, an Error Message will be generated whenever the SQL_TextStr
function is used. Since that function is used internally by SQL Tools, this can
result in a large number of error messages.

%OPT_MAX_THREAD_NUMBER (Numeric)

This value can only be set with the SQL_Thread(%THREAD_MAX) function.
This option is provided so that the SQL_Option »p544 function can return the
current value.

%OPT_MY_COMPANY
%OPT_MY_FUNCTION (both String)

These string values are not currently used by SQL Tools. They are provided
as a programmer convenience, to complement the %OPT_MY_PROGRAM and
%OPT_MY_MODULE options (see below).

%OPT_MY_MODULE,
%OPT_MY_PROGRAM (both String)

These string values are used by SQL Tools in various error-related message
boxes. The default values for these options are "My Module " and "My
Program ". You will therefore see message boxes that say things like...

ERROR: My Program / My Module / SQL_OpenDB

ERR #999000030 (and so on)

You can change these values to provide useful information to the person that
sees the message. For example, your program could display message
boxes that look like this:

ERROR: AddressBook 2000 / Main / SQL_OpenDB

ERR #999000030 (and so on)

(If you use the SQL_ErrorSimulate »p426 function in your program, the
name of one of your program's functions may be displayed instead of a SQL
Tools function like SQL_OpenDB.)

%OPT_OLE_STRING_PARAMS (Numeric)

This SQL Tools Version 2 option is not needed by Version 3 programs, and is
ignored if used.

%OPT_ON_ERROR_HANDLER (Numeric)

This value can only be set with the SQL_OnErrorCall »p531 function.
%OPT_ON_ERROR_HANDLER is provided so that the SQL_Option »p544
function can return the current value. This is usually useful only if a program
needs to determine whether or not an external error handler is currently being
used.

 692

%OPT_OPENDB_PROMPT (Numeric)

This option tells the SQL_OpenDB »p536 function which type of prompting it
should use if the connection string that you provide is not sufficient to make a
connection to a database. See SQL_OpenDB »p536 for more information,
including a list of valid values. The default value for this option is
%PROMPT_TYPE_COMPLETE.

%OPT_ROW_DELIMITER (String)

This option is used to specify a Row Delimiter that is used by the
SQL_ErrorQuickAll »p423 function, to separate multiple errors. Under
certain circumstances it can also affect the SQL_ResSet »p623 and
SQL_ResultSet »p660 functions.

The default value is " | " -- a "pipe" symbol (|) with one space on either
side.

%OPT_SELECTDSN (String)

This option can be used to change the dialog caption when a select-DSN
dialog is displayed by the SQL_OpenDB »p536 or SQL_OpenDatabase »p533
function. The default value is "SELECT A DSN FILE" .

%OPT_SOFT_SUCCESS (Numeric)

Most ODBC function can produce the %SQL_SUCCESS (value 0) and
%SQL_SUCCESS_WITH_INFO (value 1) error codes. Your program can use
code like this...

IF lResult& = %SQL_SUCCESS OR _
 lResult& = %SQL_SUCCESS_WITH_INFO THEN...

...or it can use the SQL_Okay »p529 function, or it can change the value of the
%OPT_SOFT_SUCCESS option to Logical True »p912, in which case all SQL
Tools functions will automatically return %SQL_SUCCESS whenever
%SQL_SUCCESS_WITH_INFO is detected. If your program relies on Error
Messages »p181 instead of Error Codes »p180 (which we recommend), you can
then simply use...

IF lResult& = %SQL_SUCCESS THEN...

The default value for this option is False.

%OPT_SQLSTATE_PREFIX (String)

By default, SQL Tools uses the "number" symbol # (known in the United
States as a Pound Sign), as the first character of SQL State »p897 values that
it produces. This is intended to make it easy to differentiate SQL Tools Error
Messages from Error Messages that are produced by ODBC drivers.

If you are using an ODBC driver that uses the # prefix, you can use this
option to change the prefix that SQL Tools uses. You may specify a prefix
string that is zero, one, or two characters long.

 693

%OPT_STAT_ENSURE (Numeric)
See the SQL_TblStatInfo »p824 for complete information.

%OPT_STMT_ATTR_ASYNC_ENABLE
%OPT_STMT_ATTR_BIND_TYPE
%OPT_STMT_ATTR_CONCURRENCY
%OPT_STMT_ATTR_CURSOR_SCROLLABLE
%OPT_STMT_ATTR_CURSOR_SENSITIVITY
%OPT_STMT_ATTR_CURSOR_TYPE
%OPT_STMT_ATTR_KEYSET_SIZE
%OPT_STMT_ATTR_MAX_COLUMN_LENGTH
%OPT_STMT_ATTR_MAX_RESULT_ROWS
%OPT_STMT_ATTR_QUERY_TIMEOUT
%OPT_STMT_ATTR_RETRIEVE_DATA
%OPT_STMT_ATTR_ROWSET_SIZE
%OPT_STMT_ATTR_SCANFORESCAPES
%OPT_STMT_ATTR_SIMULATE_CURSOR
%OPT_STMT_ATTR_USE_BOOKMARKS (All Numeric)

These options specify default Statement Modes. See SQL Statement Mode

»p126.

%OPT_TABLE_CATALOG
%OPT_TABLE_SCHEMA
%OPT_TABLE_TYPES (All Numeric)

These options control the types of tables about which the SQL_GetTblInfo
function retrieves information. They therefore affect nearly all of the
Database Info »p190 functions. The default value for all of these options is an
empty string, which tells SQL_GetTblInfo to retrieve information about all
types of tables and their columns.

If you use the value "TABLE" for %OPT_TABLE_TYPES the various SQL Tools
Info functions will ignore System Tables even if they have been made visible
to external programs. For example, the Microsoft Access MSysACEs,
MSysModules, MSysModules2, MSysObjects, MSysQueries, and
MSysRelationships System Tables would be ignored. See
SQL_GetTblInfo »p475 for more information.

%OPT_TEXT_FALSE (String)

This option specifies the string that is returned by the SQL_ResColString

»p614 and SQL_ResultColumnString »p654 functions when the %ALL_COLs
option is used and a SQL_BIT column contains a False value. The default
value is "False" .

%OPT_TEXT_NULL (String)

This option specifies the string that is returned by the SQL_ResColString

»p614 and SQL_ResultColumnString »p654 functions when the %ALL_COLs
option is used and a column contains a Null »p171 value. The default value is
"[NULL] ".

%OPT_TEXT_ESCAPE (String)

This option specifies the string that is substituted by the

 694

SQL_ResColString »p614 and SQL_ResultColumnString »p654 functions
when the %ALL_COLs option is used and a column contains a double-quote
(") character The default value is two single-quotes ('').

This option also controls the string that is used to replace double-quote
characters in the data portion of CSV strings returned by the SQL_ResSet

»p623 and SQL_ResultSet »p660 functions.

%OPT_TEXT_TRUE (String)

This option specifies the string that is returned by the SQL_ResColString

»p614 and SQL_ResultColumnString »p654 functions when the %ALL_COLs
option is used and a SQL_BIT column contains a True value. The default
value is "True " .

%OPT_TEXT_UNBOUND (String)

This option specifies the string that is returned by the SQL_ResColString

»p614 and SQL_ResultColumnString »p654 functions when the %ALL_COLs
option is used and a SQL_BIT column contains a True value. The default
value is "True " .

%OPT_TIME_FORMAT_x (String)

%OPT_TIME_FORMAT_1 through %OPT_TIME_FORMAT_4 are used by the
SQL_DateTimePartStr »p315 function.

%OPT_TRACE_APPEND (Numeric)

By default, the SQL Tools Trace Mode (see SQL_Trace »p845) automatically
appends an existing trace file (if any) when the trace mode is activated. You
can change this option to False (zero) if you want a new trace file to overwrite
an old file.

%OPT_TRACE_FILE (String)

Tells SQL Tools to use a specific file when the Trace Mode »p186 is used. The
default file name is based on the name and location of your program. For
example if your program is C:\MyFolder\MyProgram.EXE the default
Trace File would be C:\MyFolder\MyProgram.TRACE .

If you use this option to change the Trace File name while the Trace Mode is
turned on, SQL Tools will automatically close the current file and open the
new one.

WARNING: If you are using the SQL Tools Trace Mode »p186 and the ODBC
Trace Mode »p187 at the same time you should not attempt to have both
functions use the same file. If you do, one or both of the trace functions will
fail.

%OPT_UNIQUE_SCOPE (Numeric)

See SQL_TblUColInfo »p829(%UCOL_SCOPE) for complete information.

 695

%OPT_USE_FETCHSCROLL (Numeric)

See SQL_OpenDB »p536 for information about this option.

Diagnostics

This function returns Error Codes »p180, and can generate SQL Tools Error Messages

»p181.

Example

These four lines of code would all do exactly the same thing...

SQL_SetOption %OPT_MAX_ERRORS, 32

SQL_SetOptionStr %OPT_MAX_ERRORS, "32"

lResult& = SQL_SetOption(%OPT_MAX_ERRORS, 32)

lResult& = SQL_SetOptionStr(%OPT_MAX_ERRORS, "32")

Driver Issues

None.

Speed Issues

None.

See Also

Statement Information and Attributes »p191

 696

SQL_SetPos

Summary

Sets the cursor »p147 position within a MultiRow Cursor »p210, and optionally performs
delete, update, refresh, and row-locking operations. This function cannot be used to
position a single-row cursor within a result set. For that, use SQL_Fetch »p435.

Twin

SQL_SetPosition »p699

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

Some drivers simulate positioned update and delete statements, and may not be able
to guarantee that the operation will not affect other rows. This problem can be
minimized by the correct construction of your result set. For more information, see
the %STMT_ATTR_SIMULATE_CURSOR attribute of the SQL_StmtMode »p725 function.

Syntax

lResult& = SQL_SetPos(lOperation&, _
 lRowNumber&, _
 lLockType&)

Parameters

lOperation&
One of the following values: %SET_POSITION, %SET_REFRESH,
%SET_UPDATE, or %SET_DELETE. See Remarks below for details.

lRowNumber&
The position of the row in the rowset »p210 on which lOperation& is to be
performed. If lRowNumber& is zero (0), the operation will be performed on
all of the rows in the rowset.

lLockType&
One of the following values: %LOCK_NO_CHANGE, %LOCK_ON, or %LOCK_OFF.
See Remarks below.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
operation is successful, or an ODBC Error Code »p180 or SQL Tools Error Code if it is
not.

Remarks

This function works only with MultiRow Cursors »p210, i.e. it will not work unless you
have configured SQL Tools to return the results of a SQL statement in "blocks" that
contain multiple rows, instead of one row at a time.

The SQL_SetPos function can be used to perform a number of different operations
on a MultiRow cursor.

If you use an lOperation& value of %SET_POSITION, the cursor is simply moved to

 697

lRowNumber& within the rowset. In other words, an lRowNumber& value of 1 would
move the cursor to the first row of the current rowset, as retrieved by SQL_Fetch

»p435. (It would not move the cursor to the first row of the result set, unless the rowset
"block" started with the first row of the result set.)

If you use an lOperation& value of %SET_DELETE, %SET_UPDATE, or
%SET_REFRESH, the cursor is moved ("set") to row lRowNumber&, and that row is
immediately deleted, updated, or refreshed.

%SET_DELETE deletes data from the rowset buffers and the database. Whether or
not the row still remains visible to SQL_Fetch operations depends on the type of
cursor »p147 (static, dynamic, etc.) that is being used.

%SET_UPDATE effectively moves data from the rowset buffers (which have
presumably been modified by your program) into the database.

%SET_REFRESH simply refreshes the data in the rowset buffers, in the event that your
program has changed them and you want to abandon the changes. It does not re-
fetch the data from the database. %SET_REFRESH cannot be used to undo a
%SET_DELETE or %SET_UPDATE operation.

Note that %SET_ADD has been deprecated (i.e. it is not supported) in the ODBC 3.x
specification and should not be used. You should use the SQL_BulkOp »p276

(%BULK_ADD) function instead.

For more information about the various SET options, we suggest that you consult the
Microsoft ODBC Software Developer Kit »p915.

If your ODBC driver supports it, the lLockType& parameter can be used to specify
how the row should be locked after the lOperation& is performed. To determine
which types of locking are supported by a database, you can use the SQL_DBInfo

»p338(%DB_type_CURSOR_ATTRIBUTES1) function, where type is the type of
cursor (dynamic, static, etc.) that is being used.

If the lock status should remain unchanged (or if your driver does not support
locking), use %LOCK_NO_CHANGE.

To lock or unlock a row, use %LOCK_ON or %LOCK_OFF, respectively.

A row that is locked with %LOCK_ON will remain locked until 1) %LOCK_OFF is used on
the row, or 2) all of the statements that can access the rowset are closed, or 3) the
database is closed, or 4) SQL_EndTrans »p402 is used to commit or roll back a
database transaction.

Locking operations are not specific to one SQL statement or result set. In other
words, one statement can use %LOCK_ON to lock a row, and another (concurrent)
statement can use %LOCK_OFF to unlock it.

For more information about locking, we suggest that you consult the Microsoft ODBC
Software Developer Kit »p915.

For information about using Long »p167 data values with SQL_SetPos , see Using
Long Values with Bulk and Positioned Operations »p220.

 698

Diagnostics
This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

Some ODBC drivers do not support locking. Also, there are some minor differences
in the ways that some drivers respond to the various SET options.

Speed Issues

None.

See Also

Bulk Operations »p213
Positioned Operations »p219

 699

SQL_SetPosition

Syntax

lResult& = SQL_SetPosition(lDatabaseNumber&, _
 lStatementNumber&, _
 lOperation&, _
 lRowNumber&, _
 lLockType&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_SetPosition is identical to SQL_SetPos »p696. To avoid errors when this
document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 700

SQL_SetStatementAttrib

Syntax

lResult& = SQL_SetStatementAttrib(lDatabaseNumber&, _
 lStatementNumber& , _
 lAttribute&, _
 dwValue???) 'or lValue&

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_SetStatementAttrib is identical to SQL_SetStmtAttrib »p701. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 701

SQL_SetStmtAttrib

Summary

Changes one attribute »p191 of a currently-open statement. (Compare this to the
SQL_StmtMode »p725 function, which pre-sets certain statement attributes and should
be used in most cases.)

Twin

SQL_SetStatementAttrib »p700

Family

Statement Info/Attrib Family »p241

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_SetStmtAttrib(lAttribute&, _
 dwValue???)

...or...

lResult& = SQL_SetStmtAttrib(lAttribute&, _
 lValue&)

Parameters

lAttribute&
One of the constants described in Remarks below.

dwValue??? or lValue&
A valid value for the specified lAttribute&.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the attribute
is changed, or an Error Code »p180 if it is not.

Remarks

IMPORTANT NOTE: It is usually best to use the SQL_StmtMode »p725 function to pre-
set most of the statement attributes, instead of using SQL_SetStmtAttrib to set
them "manually", after a statement has been opened or executed.

If you choose to use SQL_SetStmtAttrib instead of SQL_StmtMode , there are
two different groups of %STMT_ATTR_ constants that you can use:

1) All of the attributes and values that are described under SQL_StmtMode »p725 can
also be set with SQL_SetStmtAttrib . The attribute values that these two functions
share are identical, so To avoid errors when this document is updated, information
that is common to both functions is not duplicated here. You should refer to the
SQL_StmtMode »p725 entry of this document for a list of valid Statement Attributes
and their values.

 702

2) In addition to the SQL_StmtMode attributes, you can use the following constants
with the SQL_SetStmtAttrib function. The functions are divided into two groups
of related functions. If you set the first attribute in a group, you will usually need to
set others.

Multi-Row Cursors (six related attributes)

%STMT_ATTR_ROW_ARRAY_SIZE

ODBC 3.x+ ONLY : This mode setting is used to specify the number of rows
that will be returned by each SQL_Fetch »p435 or SQL_FetchRel »p441
operation. In other words, this attribute sets the number of rows in a multirow
cursor »p210, which is also known as a "block cursor" or a "row array". This
attribute is sometimes called the "block size".

The default value is one (1), which indicates that only one row at a time will
be retrieved by SQL_Fetch , i.e. a MultiRow Cursor »p210 is not being used. If
you specify a value larger than 1 for this attribute, your program will be
responsible for handling all aspects (including binding »p158) of the MultiRow
Cursor.

If you specify a value that is too large for the ODBC driver that you are using,
an error message will be generated when the statement is opened and the
driver will use the largest value that it can. (The value of this attribute will be
changed automatically, so you can then use the SQL_StmtAttrib »p719

(%STMT_ATTR_ROW_ARRAY_SIZE) function to find out the actual block size
that the ODBC driver used.)

%STMT_ATTR_ROWS_FETCHED_PTR

This attribute is a memory pointer which points to a variable into which the
ODBC driver will place 1) the total number of rows that are retrieved by each
SQL_SetPos »p696(%SET_REFRESH) or multi-row-cursor SQL_Fetch »p435
operation, or 2) the total number of rows that are affected by a SQL_BulkOp

»p276 operation.

The value of the variable will include error rows, if any.

%STMT_ATTR_ROW_BIND_OFFSET_PTR

ODBC 3.x+ ONLY : This attribute is a memory pointer which points to a
variable which contains an offset value that is added to pointers, to change
the binding of column data.

Bind offsets allow a program to change an existing result column binding
without using the SQL_ManualBindCol »p508 function. Using
SQL_ManualBindCol to rebind a column changes the buffer pointer and
the Indicator pointer. Rebinding with an offset, on the other hand, simply
adds an offset to the existing pointer values. It does not represent an offset
from the previous offset.

%STMT_ATTR_ROW_NUMBER

IMPORTANT NOTE: This is a READ-ONLY attribute, which can be read with

 703

SQL_StmtAttrib but cannot be set with SQL_SetStmtAttrib .

IMPORTANT NOTE: Some ODBC drivers support this attribute only when a
multi-row cursor is being used.

The row number of the current row, in the context of entire result set. If the
row number cannot be determined, or if there is no current row, this value will
be zero (0).

%STMT_ATTR_ROW_OPERATION_PTR

ODBC 3.x+ ONLY : This attribute is a memory pointer which points to an
array of %BAS_WORD »p121 values. The array is used to ignore one or more
rows during the execution of a SQL_SetPos »p696 operation. Each element
of the array is set to either zero (0) if the corresponding row is to be
executed, or one (1) if the row is to be ignored.

%STMT_ATTR_ROW_STATUS_PTR

ODBC 3.x+ ONLY : This attribute is a memory pointer which points to an
array of %BAS_WORD »p121 values. After a SQL_Fetch »p435 or
SQL_FetchRel »p441 operation, the array will contain row status values.

Bound SQL Statement Parameter Arrays (six related attributes)

%STMT_ATTR_PARAMSET_SIZE

ODBC 3.x+ ONLY : This attribute specifies the number of elements that each
bound-parameter array has. (See Bound Parameters »p128 for more
information.)

The default value for this attribute is zero (0), which means that bound
parameter arrays are not being used. (It does not mean that bound
parameters are not being used.)

If this attribute has a value greater than 1, your program is responsible for
creating and maintaining an array of values for each bound parameter in a
SQL statement.

%STMT_ATTR_PARAMS_PROCESSED_PTR

ODBC 3.x+ ONLY : This attribute is a memory pointer which points to a
variable in which the ODBC driver will return the number of sets of
parameters that have been processed, including error sets. In other words, if
you set this attribute to a VARPTR value which points to a %BAS_LONG »p121
variable, then when the SQL_Stmt »p716(%IMMEDIATE) or
SQL_Stmt(%EXECUTE) function is used, the ODBC driver will set the value
of the variable to indicate the number of parameters that were processed. (If
the SQL_Stmt function returns an error, this value should not be trusted.)

%STMT_ATTR_PARAM_BIND_OFFSET_PTR

ODBC 3.x+ ONLY : This attribute is a memory pointer which points to a
variable which contains an offset value that is added to pointers, to change

 704

the binding of parameters.

Bind offsets allow a program to change an existing parameter binding without
using the SQL_BindParam »p269 function. Using SQL_BindParam to rebind
a parameter changes the buffer pointer and Indicator pointer to new values.
Rebinding with an offset, on the other hand, simply adds an offset to the
existing pointers. A new offset can be specified at any time by changing the
value of the variable (not of this attribute). IMPORTANT NOTE: The new
offset is always added to the original pointer values. It does not represent an
offset from the previous offset.

%STMT_ATTR_PARAM_BIND_TYPE

ODBC 3.x+ ONLY : This attribute contains a value that indicates the "bind
type" that is to be used for bound parameters. The default value is
%COLUMN_WISE.

To select row-wise parameter binding, this attribute is set to the length of the
structure that will be bound to a set of dynamic parameters. We recommend
that you consult the Microsoft ODBC Software Developer Kit »p915 for more
information about row-wise parameter binding.

%STMT_ATTR_PARAM_OPERATION_PTR

ODBC 3.x+ ONLY : This attribute is a memory pointer which points to an
array of %BAS_WORD »p121 or %BAS_LONG »p121 values. The array is used to
ignore one or more rows of parameters during the execution of a SQL
statement. Each element of the array is set to either zero (0) if the
corresponding row of parameters is to be executed, or one (1) if the row of
parameter is to be ignored.

The array must have a number of elements equal to the
%STMT_ATTR_PARAMSET_SIZE attribute.

%STMT_ATTR_PARAM_STATUS_PTR

ODBC 3.x+ ONLY : This attribute is a memory pointer which points to an
array of %BAS_WORD »p121 values. After a SQL_Stmt »p716(%IMMEDIATE) or
SQL_Stmt(%EXECUTE) operation, the array will contain status information
about each row of parameter values.

This attribute must be set if (and only if) %STMT_ATTR_PARAMSET_SIZE
(see above) is greater than 1. The array must have a number of elements
equal to the %STMT_ATTR_PARAMSET_SIZE attribute.

Each of the elements of the array will contain one of the following values.
You should note that the numeric values of these constants do not
correspond to the normal SQL Tools Error Code values, so they are not
interchangeable. For example, %SQL_PARAM_SUCCESS_WITH_INFO has a
value of 6, and %SQL_SUCCESS_WITH_INFO has a value of 1, so you must
be careful to use the only following constants when dealing with a status
array:

%SQL_PARAM_SUCCESS (The SQL statement was successfully executed for
this set of parameters.)

 705

%SQL_PARAM_SUCCESS_WITH_INFO (The SQL statement was successfully
executed for this set of parameters, however an Error Message was
generated)

%SQL_PARAM_ERROR (There was an error in processing this set of
parameters. Additional error information is provided by an Error Message.)

%SQL_PARAM_UNUSED (This parameter set was unused, possibly because a
previous parameter set causing an error that aborted further processing, or
because the parameter was ignored (see
%STMT_ATTR_PARAM_OPERATION_PTR above).

%SQL_PARAM_DIAG_UNAVAILABLE (The driver does not provide parameter
status information.)

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

See SQL_StmtMode »p725.

Speed Issues

None.

See Also

Statement Information and Attributes »p191

 706

SQL_Shutdown

Summary

Closes all open statements and databases, and shuts down SQL Tools.

Twin

None.

Family

Configuration Family »p231

Availability

Standard and Pro

Warning

Your program must use this function to properly shut down SQL Tools when your
program is finished using SQL Tools functions. Failure to do so can result in a
number of different problems, including Application Errors. See Four Critical Steps
For Every SQL Tools Program »p61 for more information.

Syntax

lResult& = SQL_Shutdown

Parameters

None.

Return Values

This function returns %SQL_SUCCESS if it is able to perform the final shutdown step
(the freeing of the ODBC environment handle), or an Error Code »p180 if it is not able
to free the handle.

Remarks

See Four Critical Steps For Every SQL Tools Program »p61 for more information about
this function.

Diagnostics

If this function fails to shut down SQL Tools properly, please contact Perfect Sync
Technical Support (Support@PerfectSync.com) with information about your program.

Example

None.

Driver Issues

None.

Speed Issues

None.

See Also

Configuration Family »p231

 707

SQL_State

Summary

Provides the SQL State »p897 value that is associated with the oldest error message

»p181 in the SQL Tools Error Stack.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_State

Parameters

None.

Return Values

This function will return an empty string if there are no error messages »p181 in the
SQL Tools Error Stack. Otherwise, it will return a five-character string that represents
the SQL State »p897 value that was provided by the program (the ODBC driver, SQL
Tools, etc.) which generated the Error Message.

Remarks

See ODBC Error Messages »p897 for more information about SQL States, including a
partial list of the values that this function can return.

Diagnostics

None.

Example

'Display the SQLState of the oldest error
'in the SQL Tools Error Stack...
PRINT SQL_State

Driver Issues

Many SQL State »p897 values are driver-specific. In other words, a certain error
condition may cause a given ODBC driver to generate a SQL State value, and a
different driver may generate a different SQL State value.

Speed Issues

None.

See Also

Error Handling in SQL Tools Programs »p179

 708

SQL_Statement IMPROVED

Syntax

lResult& = SQL_Statement(lDatabaseNumber&, _
 lStatementNumber&, _
 lAction&, _
 sStatement$, _
 OPTIONAL sIgnoreErrors$)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_Statement is identical to SQL_Stmt »p716. To avoid errors when this document
is updated, and to reduce the size of the Help Files, information that is common to
both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 709

SQL_StatementAttrib

Syntax

lResult& = SQL_StatementAttrib(lDatabaseNumber&, _
 lStatementNumber&, _
 lAttribute&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_StatementAttrib is identical to SQL_StmtAttrib »p719. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 710

SQL_StatementAttribStr NEW

Syntax

sResult$ = SQL_StatementAttribStr(lDatabaseNumber&, _
 lStatementNumber& , _
 lAttribute&)

...or...

sResult$ = SQL_StatementAttribStr(%INFO_LABEL, _
 0, _
 lAttribute&)

...or...

sResult$ = SQL_StatementAttribStr(%INFO_FORMAT, _
 0, _
 lAttribute&)

This function can be used to retrieve numeric Attribute values in string form,
however...

All Statement Attribute values are numeric and can be retrieved more conveniently
with the SQL_StatementAttrib »p709 and SQL_StmtAttrib »p719 function. The
SQL_StatementAttribStr function's primary purpose is to return Info/Attribute
Labels »p193.

Note that that there is no SQL_StmtAttribStr function, because it would provide
exactly the same information as FORMAT$(SQL_StmtAttrib »p719) .

 711

SQL_StatementCancel

Syntax

lResult& = SQL_StatementCancel(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_StatementCancel is identical to SQL_StmtCancel »p720. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 712

SQL_StatementInfoStr

Syntax

sResult$ = SQL_StatementInfoStr(lDatabaseNumber&, _
 lStatementNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_StatementInfoStr is identical to SQL_StmtInfoStr »p722. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 713

SQL_StatementIsOpen

Syntax

lResult& = SQL_StatementIsOpen(lDatabaseNumber&, _
 lStatementNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_StatementIsOpen is identical to SQL_StmtIsOpen »p724. To avoid errors
when this document is updated, and to reduce the size of the Help Files, information
that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 714

SQL_StatementMode

Syntax

lResult& = SQL_StatementMode(lDatabaseNumber&, _
 lStatementNumber&, _
 lMode&, _
 dwValue???) 'or lValu e&

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_StatementMode is identical to SQL_StmtMode »p725. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 715

SQL_StatementNativeSyntax

Syntax

sResult$ = SQL_StatementNativeSyntax(lDatabaseNumbe r&, _
 sStatement$)

Except for the lDatabaseNumber& parameter, SQL_StatementNativeSyntax is
identical to SQL_StmtNativeSyntax »p732. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 716

SQL_Stmt IMPROVED

Summary

Prepares and/or executes a SQL statement »p123.

Twin

SQL_Statement »p708

Family

Statement Family »p240

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_Stmt(lAction&, _
 sStatement$, _
 OPTIONAL sIgnoreErrors$)

Parameters

lAction&
One of the following constants: %PREPARE, %EXECUTE, or %IMMEDIATE. (A
number of aliases for these values are also recognized.) See Remarks
below.

sStatement$
The SQL statement »p123 to be prepared and/or executed »p124. The exact
syntax that you use will depend on the capabilities of the ODBC driver »p76
that your program uses. For a summary of the basic syntax that is
recognized by all ODBC-compliant drivers, see Appendix A: SQL Statement
Syntax »p862.

OPTIONAL sIgnoreErrors$
A string containing one or more SQL States »p897 that tells this function to
ignore a certain error or errors when the operation is performed. See
Ignoring Predictable Errors »p183 for more information.

Return Values

If the SQL statement »p123 is prepared and/or executed »p124 without errors, the return
value of this function will be %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO.

Please note that "without errors" does not mean "the way you expect". As with all
programming languages, SQL is very literal. A return value of %SQL_SUCCESS
indicates that the ODBC driver did precisely what you asked it to do.

If the preparation or execution is not successful, an ODBC Error Code »p180 or SQL
Tools Error Code will be returned.

Remarks

The processing of most SQL statements »p123 is basically an "interpreted" operation.
The ODBC driver »p76 must first analyze the string that contains the SQL statement
and then "compile" the statement into an executable form. This step is called

 717

"preparation »p124" and is roughly equivalent to the steps that are taken by a BASIC
interpreter like Microsoft QBASIC to convert source code into executable code at run
time. The actual "execution »p124" of a SQL statement is a separate process.

%PREPARE tells the SQL_Stmt function to prepare the SQL statement in sStatement$
but not to execute it. The alias PREP is also recognized.

%EXECUTE tells the SQL_Stmt function to execute a SQL statement that was
previously prepared. The alias %EXEC is also recognized.

%IMMEDIATE tells the SQL_Stmt function to prepare and execute a SQL statement,
as if it was a one-step process. The alias %IMMED is also recognized, as is %DIRECT,
which is based on the original ODBC terminology.

Most programs will use %IMMEDIATE most of the time.

The major advantage of using %PREPARE and %EXECUTE as separate steps is that it
allows statement parameters »p128 to be bound to the SQL statement between the two
steps. A SQL statement can be prepared once, bound to one or more parameter
variables, and then executed many times with different parameter values. If a SQL
statement is to be executed repeatedly with different parameter values it is much
more efficient to use this procedure than to use %IMMEDIATE to prepare and execute
the statement over and over.

Databases can also contain pre-prepared SQL statements called Stored Procedures

»p208. They are stored in the database in compiled form. Creating Stored Procedures
can be a complex process, but they are the fastest, most efficient way to execute
most SQL statements because the process of preparing the statement is performed
before runtime.

If you use the %EXECUTE or %IMMEDIATE option with a SELECT statement, SQL
Tools will automatically bind »p145 all of the columns in the SQL statement's result set
»p144, so that your program can access the resulting data. (See Result Column
Binding »p145 for more information.)

If you use the %PREPARE or %IMMEDIATE option, the sStatement$ parameter must
contain a valid SQL statement »p123.

If you use the %EXECUTE option, the sStatement$ string is optional. If you use an
empty string for sStatement$, SQL Tools will assume that you mean "execute the
statement that was just prepared". If you have not previously prepared a statement,
an error (%ERROR_STMT_NOT_PREPARED) will be generated. If you do pass a
sStatement$ string to the SQL_Stmt function when the %EXECUTE option is used,
SQL Tools will check to make sure that it is exactly the same statement string that
was previously prepared. If you are writing complex programs with many different
statements that can be prepared and executed, this can be a valuable double-check
that makes sure that your program is executing the statement that you think it is. If
the strings do not match, an error (%ERROR_BAD_PARAM_VALUE) will be generated.

If you attempt to use the SQL_Stmt function before you have used SQL_OpenDB
»p536 to open a database, and if the SQL Tools Database AutoOpen feature has not
been disabled, the SQL_Stmt function will automatically call the SQL_OpenDB
function for you. An empty string will be used for the sConnectionString$ parameter,
to allow the user to specify a database. This is rarely necessary, however, since

 718

most SQL statements only have meaning in the context of a database connection. In
other words, you are unlikely to need to execute a SQL statement like SELECT *
FROM MYTABLE unless your program has already opened a database that
contains a table called MYTABLE. The auto-open feature is primarily provided as a
programming convenience, for those times that you are writing quick-and-dirty test
programs.

If you attempt to use the SQL_Stmt function before a statement from a previous
SQL_Stmt function has been closed (with SQL_CloseStmt »p282), and if you have
not disabled the SQL Tools Statement AutoClose feature, SQL Tools will
automatically close the previous SQL statement for you. WARNING: If you are not
operating in the default AutoCommit »p207 mode, and if you have also not used the
SQL_EndTrans »p402 function to explicitly commit or roll back a transaction, the auto-
closing of a statement will result in an abandoned transaction.

Diagnostics
This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

lResult& = SQL_Stmt(%IMMED,"SELECT * FROM MYTABLE")

Driver Issues

None.

Speed Issues

If a statement is to be executed repeatedly with different parameter values, it is best
to %PREPARE the statement, bind the parameters to variables, then %EXECUTE the
statement repeatedly, changing only the parameters.

Stored Procedures »p208 are usually the fastest way to execute a SQL statement.

See Also

Execution of SQL Statements »p124

 719

SQL_StmtAttrib

Summary

Provides the current value of a statement attribute »p191.

Twin

SQL_StatementAttrib »p709

Family

Statement Info/Attrib Family »p241

Availability

Standard and Pro

Warning

None.

Syntax

dwResult??? = SQL_StmtAttrib(lAttribute&)

Parameters

lAttribute&
A constant that represents a statement attribute »p191. See Remarks below.

Return Values

If a valid lAttribute& value is used, and if a statement is open, this function will return
the value of the attribute. Otherwise, it will return zero (0).

Remarks

This function can be used to determine the current setting of a statement attribute

»p191.

Statement attributes can be set with the SQL_SetStmtAttrib »p701 and
SQL_StmtMode »p725 functions. The lAttribute& values that are used by all of these
functions are identical. To avoid errors when this document is updated, information
that is common to all functions is not duplicated here. Only information that is unique
to SQL_StmtAttrib is shown below.

For a list of lAttribute& values, see SQL_StmtMode »p725 and SQL_SetStmtAttrib

»p701.

Diagnostics

This function does not return Error Codes »p180, but it can generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

None.

Speed Issues None.
See Also Statement Information and Attributes »p191

 720

SQL_StmtCancel

Summary

Cancels the execution of a SQL statement »p123 that is running asynchronously »p125,
running in another thread »p224, or a Bulk Operation »p213 or Positioned Operation »p219

. that has not finished executing.

Twin

SQL_StatementCancel »p711

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

Depending on the ODBC driver, the use of the SQL_StmtCancel function will not
necessarily stop the processing of a SQL statement. The return value of the
SQL_StmtCancel function simply indicates whether or not the driver acknowledged
the cancellation request. If SQL_StmtCancel is used to cancel a statement that is
being executed asynchronously »p125 or in another thread, it is possible for the
execution to succeed and return %SQL_SUCCESS, while the cancellation is also
considered to be successful. In any event, once SQL_StmtCancel has been used
1) the thread that originated the statement must continue to wait for the SQL_Stmt
function to exit, and 2) you should not attempt to access the results of the affected
SQL statement.

Syntax

lResult& = SQL_StmtCancel

Parameters

None.

Return Values

This function returns %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the ODBC
driver acknowledges the request, or an ODBC Error Code »p180 if it does not. This
function can also return SQL Tools Error Codes.

Remarks

Once the SQL_Stmt »p716 function has been used to execute a SQL statement »p123,
your program "pauses" until the execution is complete. Depending on the size of the
database and the complexity/size of the result set, this can cause your program to
appear to be locked up for an extended period of time.

To solve this problem you can use asynchronous »p125 execution or multiple threads

»p224. A SQL statement can be executed in one thread, and a second thread can be
used to display a "please wait" message with a time display, check for a timeout
condition, check for a "user cancel" signal, check for Windows Message Loop (GUI)
activity, and many other things.

If one thread detects a timeout condition or a user-cancel signal, it can use the
SQL_StmtCancel function to cancel the SQL statement that is running in the other

 721

thread.

See Warning above.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

See Warning above. Also, this function is supported by most but not all ODBC
Drivers. The SQL_FuncAvail »p446 function can be used to determine a driver's
capabilities.

Speed Issues

None.

See Also
Execution of SQL Statements »p124

 722

SQL_StmtInfoStr

Summary

Provides information about a SQL statement »p191. (Generally speaking, "information"
is a value that cannot be changed. "Attributes" are values that can be changed by
your program.)

Twin

SQL_StatementInfoStr »p712

Family

Statement Info/Attrib Family »p241

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_StmtInfoStr(lInfoType&)

Parameters

lInfoType&
One of the constants described in Remarks below.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If an invalid lInfoType& is used, or if a statement is not open, this function will return
an empty string. Otherwise, it will return the requested information in string form.

Remarks

The lInfoType& parameter must have one of the following values:

%STMT_SUBMITTED

The most recent sStatement$ value that was submitted to the SQL_Stmt

»p716 function.

%STMT_TRANSLATED

The "Native Syntax" version of the most recent sStatement$ value that was
submitted to the SQL_Stmt function. In other words, the actual syntax that
was executed by the ODBC driver »p76, based on the SQL statement that you
submitted. See SQL_StmtNativeSyntax »p732 for more information.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

 723

Example

'Visually compare the submitted and
'translated SQL statements...
PRINT SQL_StmtInfoStr(%STMT_SUBMITTED)
PRINT SQL_StmtInfoStr(%STMT_TRANSLATED)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

Statement Information and Attributes »p191

 724

SQL_StmtIsOpen
Summary

Indicates whether or not a SQL statement »p123 is open.

Twin

SQL_StatementIsOpen »p713

Family

Statement Open/Close Family »p239

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_StmtIsOpen

Parameters

None.

Return Values

This function will return Logical True »p912 (-1) if the statement is open, or False (zero)
if it is not.

Remarks

This function can be used to determine whether or not the current statement number
(the default value of 1, or the statement number specified with SQL_UseStmt »p861) is
currently open.

Since it returns a Logical True/False »p912 value, you can use either syntax that is
shown here...

IF SQL_StmtIsOpen THEN

...or...

IF NOT SQL_StmtIsOpen THEN

Diagnostics

This function does not return Error Codes »p180, but it can return SQL Tools Error
Messages »p181.

Example

IF SQL_StmtIsOpen THEN
 'the current statement is open
END IF

Driver Issues None.
Speed Issues None.
See Also Manually Opening and Closing Statements »p196

 725

SQL_StmtMode

Summary

Pre-sets a statement attribute »p126 value, for future use by the SQL_Stmt »p716 or
SQL_OpenStmt »p542 function. (Attributes can also be set after a statement is open,
by using the SQL_SetStmtAttrib »p701 function, but the SQL_StmtMode function
should normally be used instead of SQL_SetStmtAttrib .)

Twin

SQL_StatementMode »p714

Family

Statement Info/Attrib Family »p241

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_StmtMode(lMode&, _
 dwValue???)

...or...

lResult& = SQL_StmtMode(lMode&, _
 lValue&)

Parameters

lMode&
One of the constants described in Remarks , below.

dwValue??? or lValue&
A valid value for the specified lMode&.

Return Values

This function can return %ERROR_ADVISORY to warn you that you have used this
function while a statement is open (see below).

It will return %ERROR_BAD_PARAM_VALUE if you specify an invalid lMode& value.

Otherwise it will return %SQL_SUCCESS, regardless of whether or not the value of
dwValue??? or lValue& is valid. (This is because the valid values for each mode are
ODBC driver-dependent, so errors cannot be detected until a statement is actually
opened using a value. Some errors may not be detected until a statement is
executed.)

Remarks

This function is used to pre-set the attribute values that will be used the next time the
SQL_Stmt »p716 or SQL_OpenStmt »p542 function is used. That is a very important
distinction: this function cannot be used to change the attributes of a currently-open
statement. If you use this function while a statement is open, the mode value will be
changed for future use by SQL_Stmt and SQL_OpenStmt , and an

 726

%ERROR_ADVISORY message will be generated to remind you that the new setting
will not affect the currently-open statement. If you have already executed one or
more SQL statements and need to change the statement mode for future statements,
you should use SQL_CloseStmt »p282 to make sure that the statement is closed
before you use this function to change the mode. Otherwise you will receive the
%ERROR_ADVISORY described above.

The lMode& parameter must be one of the following values:

%STMT_ATTR_CONCURRENCY

This mode can be set to any one of the following values, as long as the value
is supported by your ODBC driver »p76. If the specified value is not
supported, the ODBC driver will substitute a different value and an ODBC
Error Message will be generated. (Older versions of ODBC provided a
method of determining the level of concurrency that is supported, but it has
been deprecated in ODBC 3.x.)

%CONC_READONLY (The cursor »p147 is read-only. If you attempt to use a
SQL statement to modify a database when %STMT_ATTR_CONCURRENCY is
set to %CONC_READONLY, an ODBC Error Message will be generated when
the statement is executed.)

%CONC_LOCK (The cursor will use the lowest level of locking that is sufficient
to ensure that the row can be updated. This option is not supported by all
ODBC drivers.)

The remaining two options use "optimistic concurrency control", which are
usually reliable but do not ensure that a row can always be updated. If a row
is not updated properly, an ODBC Error Message will be generated and your
program should try again. If your program is update-intensive, and if multiple
applications and/or statements will be accessing the database at the same
time, you should probably try to use %CONC_LOCK to improve reliability.

%CONC_ROWVER (The cursor will use optimistic concurrency control,
comparing "row versions" such as SQLBase ROWID or Sybase
TIMESTAMP. This option is not supported by many ODBC drivers.)

%CONC_VALUES (The cursor will use optimistic concurrency control,
comparing values. This is the SQL Tools default value, because it allows
updates and is supported by almost all ODBC drivers.)

Please note the following interactions between this mode setting and
%STMT_ATTR_CURSOR_TYPE (which is described in its own section, below):

If you specify a value for %STMT_ATTR_CONCURRENCY that does not support
the current value of %STMT_ATTR_CURSOR_TYPE, the value of
%STMT_ATTR_CURSOR_TYPE will be changed by the ODBC driver.

If you specify a value for %STMT_ATTR_CURSOR_TYPE that does not support
the current value of %STMT_ATTR_CONCURRENCY, the value of
%STMT_ATTR_CONCURRENCY will be changed by the ODBC driver.

%STMT_ATTR_CURSOR_SCROLLABLE

 727

IMPORTANT NOTE: This attribute should not be set if the ODBC Cursor
Library »p536 is being used. SQL Tools uses the ODBC Cursor Library by
default, so unless your program uses SQL_OpenDatabase1 »p534 and
SQL_OpenDatabase2 »p535 to bypass this default, you should not attempt to
set this attribute. Use %STMT_ATTR_CURSOR_TYPE (below) and/or
%STMT_ATTR_CONCURRENCY (above) instead.

ODBC 3.x+ ONLY : This mode can be set to one of the following values:

%SCRL_OFF (Scrollable cursors »p149 are not required. If you use
SQL_Fetch »p435, the only valid value for the lWhichRow& parameter is
%NEXT_ROW.)

%SCRL_ON (Scrollable cursors are required.)

NOTE: If the ODBC Cursor Library is being used (which is the SQL Tools
default mode) it is not usually necessary to change this attribute.

%STMT_ATTR_CURSOR_SENSITIVITY

IMPORTANT NOTE: This attribute should not be set if the ODBC Cursor
Library »p536 is being used. SQL Tools uses the ODBC Cursor Library by
default, so unless your program uses SQL_OpenDatabase1 »p534 and
SQL_OpenDatabase2 »p535 to bypass this default, you should not attempt to
set this attribute. Use %STMT_ATTR_CURSOR_TYPE (below) and/or
%STMT_ATTR_CONCURRENCY (above) instead.

ODBC 3.x+ ONLY : Specifies whether or not the statement's cursor »p147
"sees" the changes that are made to a result set by another cursor.

%SENS_NONE (It is unspecified what the cursor type is and whether or not
the cursor sees the changes that are made to a result set by another cursor.
Cursors may see none, some, or all such changes. This is the default
setting.)

%SENS_INSENSITIVE (The cursor does not see any changes that are made
by other cursors. Insensitive cursors are read-only. This corresponds to a
static cursor, which has a concurrency that is read-only.)

%SENS_SENSITIVE (The cursor sees all changes made to a result set by
other cursors.)

%STMT_ATTR_CURSOR_TYPE

%CUR_FORWARDONLY (The cursor »p147 can only scroll forward.)

%CUR_STATIC (The data in the result set is static. This is the SQL Tools
default value.)

%CUR_KEYSET (The driver saves and uses the keys for the number of rows
specified in the %STMT_ATTR_KEYSET_SIZE setting (see below).)

%CUR_DYNAMIC (The driver only saves and uses the keys for the rows in the
rowset.)

 728

Please note the following interactions between this mode setting and
%STMT_ATTR_CONCURRENCY (which is described in its own section, above):

If you specify a value for %STMT_ATTR_CURSOR_TYPE that does not support
the current value of %STMT_ATTR_CONCURRENCY, the value of
%STMT_ATTR_CONCURRENCY will be changed by the ODBC driver.

If you specify a value for %STMT_ATTR_CONCURRENCY that does not support
the current value of %STMT_ATTR_CURSOR_TYPE, the value of
%STMT_ATTR_CURSOR_TYPE will be changed by the ODBC driver.

%STMT_ATTR_KEYSET_SIZE

Specifies the number of rows in the keyset for a keyset-driven »p149 cursor

»p147. (See %STMT_ATTR_CURSOR_TYPE just above.)

If the value of %STMT_ATTR_CURSOR_TYPE (see above) is %CUR_KEYSET
and if the keyset size is %KEYSET_FULL (zero, the default), the cursor is fully
keyset-driven.

If the keyset size is greater than 0 , the cursor is keyset-driven within the
keyset and dynamic outside of the keyset. This is called a "mixed" cursor.

%STMT_ATTR_MAX_COLUMN_LENGTH

Specifies the maximum amount of data that the driver will return from a
character string) or binary column. IMPORTANT NOTE: This setting is
intended to reduce network traffic and should be used only when the
Datasource (as opposed to the driver) in a multiple-tier driver can implement
it. This setting should not be used as a way to truncate data.

If the value of this setting is zero (0, the default), the driver will attempt to
return all of the available data. If the length of the available data is greater
than the length of the memory buffer that is supplied by SQL Tools, the
SQL_Fetch »p435 and SQL_FetchRel »p441 functions will truncate the data
and %SQL_SUCCESS_WITH_INFO will be returned, along with an ODBC
Error Message »p181 indicating that the data was truncated.

If the value of this setting is changed to a nonzero value, and if that value is
less than the length of the available data in a column, SQL_Fetch and
SQL_FetchRel will truncate the data and return %SQL_SUCCESS.

If the value of this setting is 1) less than the minimum amount of data that the
Datasource can return, or 2) greater than the maximum amount of data that
the Datasource can return, the driver will substitute a value that it can handle,
and an ODBC Error Message will be generated when the statement is
opened.

This setting can also affect the SQL_ResColMemo »p602 and
SQL_ResColBLOB »p579 functions, depending on the behavior of the ODBC
driver.

%STMT_ATTR_MAX_RESULT_ROWS

 729

The maximum number of rows that the ODBC driver should return for a
SELECT statement.

The default value is zero (0), which tells the driver to return all rows.

This setting is intended to reduce network traffic. If the number of rows in the
result set is greater than this setting's value, the result set will be truncated.

%STMT_ATTR_QUERY_TIMEOUT

The number of seconds that the driver should wait for a SQL statement to
execute before returning to your program.

The default value is zero (0), which means "no timeout", i.e. "wait forever".

%STMT_ATTR_RETRIEVE_DATA

This setting can be used to tell the SQL_Fetch »p435 and SQL_FetchRel

»p441 functions to not actually retrieve any data. It can be used when all you
need to do is confirm that a row exists, and you don't care what the row
contains.

You can use either %RD_SEEKONLY or %RD_NORMAL (the default) for this
setting.

%STMT_ATTR_ROW_BIND_TYPE

This mode setting determines whether or not Row-wise binding »p165 will be
used.

The default value is %COLUMN_WISE (zero). If you specify a positive integer
value for this mode, it represents the number of bytes that will be used for the
"row bind buffer". If you use row-wise binding, your program is responsible
for managing all aspects (including binding) of the row buffer.

%STMT_ATTR_SCANFORESCAPES

You can use either %DO_SCAN (the default) or %DONT_SCAN for this setting,
which tells the ODBC driver whether or not it should scan SQL statements for
escape sequences »p862.

%STMT_ATTR_SIMULATE_CURSOR

Specifies whether or not ODBC drivers »p76 which simulate positioned update
and delete statements »p219 guarantee that those statements will affect only
one row.

To simulate positioned update and delete statements, most ODBC drivers
construct an UPDATE or DELETE statement that contains a WHERE
clause which specifies the value of each column in the current row. Unless
these columns make up a unique key »p203, the constructed statement may
affect more than one row. To guarantee that such statements will affect only
one row, the driver determines the columns in a unique key and adds these
columns to the result set.

 730

If your program guarantees that the columns in the result set make up a
unique key, the driver is not required to do so, so changing the value of this
attribute may reduce execution time.

You may use any one of the following values, as long as your ODBC driver
supports the value:

%SIMC_NONUNIQUE (The driver does not guarantee that simulated
positioned update or delete statements will affect only one row. It is your
program's responsibility to do so. If a statement affects more than one row,
an ODBC Error Message will be generated.)

%SIMC_TRYUNIQUE (The driver attempts to guarantee that simulated
positioned update or delete statements affect only one row. The driver
always executes such statements, even if they might affect more than one
row, such as when there is no unique key. If a statement affects more than
one row, an ODBC Error Message will be generated.)

%SIMC_UNIQUE (The driver guarantees that simulated positioned update or
delete statements affect only one row. If the driver cannot guarantee this for
a given statement, an ODBC Error Message will be generated.)

If the Datasource provides native support for positioned update and delete
statements, and the driver does not simulate cursors, %SQL_SUCCESS is
returned when %SIMC_UNIQUE is specified.

A %SQL_SUCCESS_WITH_INFO message is usually generated if
%SIMC_TRYUNIQUE or SIMC_NONUNIQUE is requested.

If the Datasource provides the SIMC_TRYUNIQUE level of support, and the
driver does not, %SQL_SUCCESS is returned for SIMC_TRYUNIQUE and
%SQL_SUCCESS_WITH_INFO is returned for SIMC_NONUNIQUE.

If the specified cursor simulation type is not supported by the Datasource, the
driver will substitute a value that it can handle and an ODBC Error Message
will be generated.

%STMT_ATTR_USE_BOOKMARKS

Specifies whether or not a program will use bookmarks »p154 with a cursor:

%BMARKS_OFF (The default value. Bookmarks are not used.)

%BMARKS_ON (For ODBC 2.0 applications only. See bookmarks »p154 for
more information.)

%BMARKS_VARIABLE (A program will use bookmarks with a cursor, and the
driver will provide variable-length bookmarks if they are supported.)

Please note that %BMARKS_ON (also know as %SQL_UB_FIXED) is
deprecated in ODBC 3.x. All programs should always use variable-length
bookmarks, even when working with ODBC 2.x drivers.

Diagnostics

This function returns Error Codes »p180 and can generate SQL Tools Error Messages

 731

»p181, but it does not generate ODBC Error Messages. If you specify an invalid mode
value, however, it is very likely that an ODBC Error Message will be generated when
a statement is opened or executed.

Example

See SQL Statement Modes »p126 for examples.

Driver Issues

See individual comments about each mode setting, in Remarks above.

Speed Issues

None.

See Also

Statement Information and Attributes »p191

 732

SQL_StmtNativeSyntax

Summary

Translates a SQL statement »p123 into the syntax that the ODBC driver »p76 will
actually use if the statement is prepared or executed with SQL_Stmt »p716.

Twin

SQL_StatementNativeSyntax »p715

Family

Statement Info/Attrib Family »p241

Availability

Standard and Pro

Warning

This function does not actually prepare or execute SQL statements. It is primarily a
diagnostic tool.

Syntax

sResult$ = SQL_StmtNativeSyntax(sStatement$)

Parameters

sStatement$
A string that contains a SQL statement »p123.

Return Values

sResult$ will be the ODBC driver's »p76 translation of the SQL statement.

Remarks

Different databases and ODBC drivers can actually implement and execute SQL
statements somewhat differently. In addition to minor differences in delimiters,
different databases may make other changes in SQL syntax in order to optimize the
execution of a statement, or to implement otherwise-unsupported syntax.

Diagnostics

This function does not return Error Codes »p180, but it can generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

'Different ODBC drivers will interpret
'the CONVERT function differently...

sStmt$ = "SELECT { fn CONVERT (ZIPCODE, %SQL_INTEGE R) } FROM
ADDRESSBOOK"

PRINT SQL_StmtNativeSyntax(sStmt$)

 If the Oracle ODBC Driver was being used, that code might produce...

SELECT to_number (ZIPCODE) FROM ADDRESSBOOK

 If the Microsoft SQL Server ODBC driver was being used...

 733

SELECT convert (integer, ZIPCODE) FROM ADDRESSBOOK

 And if Microsoft Access was being used...

SELECT { fn CONVERT (ZIPCODE, %SQL_INTEGER) } FROM ADDRESSBOOK

Different databases and ODBC drivers -- and even different versions of the same
driver -- may produce different results. Note that Microsoft Access returned exactly
the same string that was submitted.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

SQL Statements »p123

 734

SQL_StringToType

Summary

Assigns the value of a string to a User Defined Type. (See your BASIC
documentation for general information about User Defined Types.)

Twin

None.

Family

Utility Family »p249

Availability
Standard and Pro

Warning

None.

Syntax

lResult& = SQL_StringToType(sString$, _
 dwPointer???, _
 lLength&)

...or...

lResult& = SQL_StringToType(sString$, _
 lPointer&, _
 lLength&)

Parameters

sString$
The string value that should be assigned to the User Defined Type. This
string must be at least one byte long or %ERROR_BAD_PARAM_VALUE will
be generated.

lPointer& or dwPointer???
A pointer (from the VARPTR function) which points to the User Defined
Type. See Remarks below.

lLength&
Either 1) the length of the User Defined Type, or 2) a smaller value, indicating
the portion of the UDT that should be affected.

Return Values

This function returns %SQL_SUCCESS if the string value is assigned to the User
Defined Type, or %ERROR_BAD_PARAM_VALUE if it is not.

Remarks

PowerBASIC programmers can use the LSET function to perform this type of
operation. The SQL_StringToType function is provided primarily for non-
PowerBASIC programmers, but it can be used by any programming language that
supports OLE strings.

A detailed (and useful) example is provided in the section of this document that is
titled %SQL_TIMESTAMP »p100.

 735

This function performs a "direct assignment" of the string value to the User Defined
Type (UDT), so the sString$ parameter must contain a string that is compatible with
the UDT. In other words, the bytes of the string must align properly with the bytes of
the UDT. This is not usually a problem if you are using a string that is returned by
SQL Tools for a date-time column, because the string data is designed to be
compatible with UDTs. But databases are allowed to contain any type of UDT, so if
you are using a nonstandard type, it is up to you to make sure that the string is
compatible with the target UDT.

The lPointer& or dwPointer??? parameter must be a pointer to one of the bytes
(usually the first byte) of the UDT. To obtain a pointer to the first byte of a UDT, use:

VARPTR(MyType)

To obtain a pointer to the fifth byte (for example), use:

VARPTR(MyType) + 5

The lLength& parameter must not, under any circumstances, be larger than the actual
length of the User Defined Type. If you use a value that is too large, data corruption
will take place and Application Errors are possible. A smaller value may be used if
you want to assign a value to a portion of the UDT. For example:

SQL_StringToType sString$, VARPTR(MyType), 2

...would assign the values in the first 2 bytes of sString$ to the first 2 bytes of
MyType.

Diagnostics

This function returns Error Codes »p180 and can generate SQL Tools Error Messages

»p181.

Example

See %SQL_TIMESTAMP »p100.

Driver Issues

None.

Speed Issues

None.

See Also

%SQL_TIMESTAMP »p100

 736

SQL_SyncFetchPos

Summary

Re-synchronizes the SQL Tools row-counting system. It is only necessary to use this
function if your program performs a fetch operation that causes SQL Tools to lose
track of the current row number. See SQL_FetchPos »p437 for more information.

Twin

SQL_SyncFetchPosition »p737

Family
Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_SyncFetchPos(lPosition&)

Parameters

lPosition&
The correct row number for the current statement.

Return Values

This function will return %SQL_SUCCESS if you use a value for lPosition& that is
greater than or equal to zero (0). Otherwise, it will return
%ERROR_BAD_PARAM_VALUE. Please note that if you use an incorrect row number,
this function will still return %SQL_SUCCESS. Keep in mind that you are telling SQL
Tools that lPosition& is the correct value.

Remarks

Certain types of fetch operations can cause SQL Tools to lose track of a SELECT
statement's current row number, causing the SQL_FetchPos and
SQL_FetchPosition functions to return negative two (-2). The
SQL_SyncFetchPos function can be used to re-synchronize the row-counting
system. For a much more detailed description of this process, see SQL_FetchPos

»p437.

Diagnostics
This function returns Error Codes »p180 and can generate SQL Tools Error Messages

»p181.

Example

See SQL_FetchPos »p437.

Driver Issues

None.

Speed Issues None.
See Also Result Sets »p146

 737

SQL_SyncFetchPosition

Syntax

lResult& = SQL_SyncFetchPosition(lDatabaseNumber&, _
 lStatementNumber&, _.
 lPosition&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_SyncFetchPosition is identical to SQL_SyncFetchPos »p736. To avoid
errors when this document is updated, and to reduce the size of the Help Files,
information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 738

SQL_TableAutoColumnCount

Syntax

lResult& = SQL_TableAutoColumnCount(lDatabaseNumber &, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_TableAutoColumnCount is
identical to SQL_TblAColCount »p768. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 739

SQL_TableAutoColumnInfo

Syntax

lResult& = SQL_TableAutoColumnInfo(lDatabaseNumber& , _
 lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableColumnInfo is identical
to SQL_TblColInfo »p776. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 740

SQL_TableAutoColumnInfoStr

Syntax

sResult$ = SQL_TableAutoColumnInfoStr(lDatabaseNumb er&, _
 lTableNumber& , _
 lColumnNumber &, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableAutoColumnInfoStr is
identical to SQL_TblAColInfoStr »p772. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 741

SQL_TableColumnCount

Syntax

lResult& = SQL_TableColumnCount(lDatabaseNumber&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_TableColumnCount is identical
to SQL_TblColCount »p774. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 742

SQL_TableColumnInfo

Syntax

lResult& = SQL_TableColumnInfo(lDatabaseNumber&, _
 lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableColumnInfo is identical
to SQL_TblColInfo »p776. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 743

SQL_TableColumnInfoStr

Syntax

sResult$ = SQL_TableColumnInfoStr(lDatabaseNumber&, _
 lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableColumnInfoStr is
identical to SQL_TblColInfoStr »p780. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 744

SQL_TableColumnNumber

Syntax

lResult& = SQL_TableColumnNumber(lDatabaseNumber&, _
 lTableNumber&, _
 sColumnName$)

Except for the lDatabaseNumber& parameter, SQL_TableColumnNumber is
identical to SQL_TblColNumber »p783. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 745

SQL_TableColumnPrivilegeCount

Syntax

lResult& = SQL_TableColumnPrivilegeCount(lDatabaseN umber&, _
 lTableNumb er&, _
 lColumnNum ber&)

Except for the lDatabaseNumber& parameter,
SQL_TableColumnPrivilegeCount is identical to SQL_TblColPrivCount »p785.
To avoid errors when this document is updated, and to reduce the size of the Help
Files, information that is common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 746

SQL_TableColumnPrivilegeInfoStr

Syntax

sResult$ = SQL_TableColumnPrivilegeInfoStr(lDatabas eNumber&, _
 lTableNu mber&, _
 lColumnN umber&, _
 lPrivile geNumber&, _
 lInfoTyp e&)

Except for the lDatabaseNumber& parameter,
SQL_TableColumnPrivilegeInfoStr is identical to
SQL_TblColPrivInfoStr »p787. To avoid errors when this document is updated,
and to reduce the size of the Help Files, information that is common to both functions
is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 747

SQL_TableCount

Syntax

lResult& = SQL_TableCount(OPTIONAL lDatabaseNumber&)

Parameters
lDatabaseNumber&

If the optional lDatabaseNumber& parameter is missing, this function will use
the current database number (as specified with the SQL_UseDB »p859
function).

If lDatabaseNumber& is specified, it must be either 1) the number of a
database between one (1) and the maximum database number that was
specified with the lMaxDatabaseNumber& parameter of the
SQL_Initialize »p495 function, or 2) the number zero, to indicate the
current database (as specified with SQL_UseDB).

Remarks

Except for the lDatabaseNumber& parameter, SQL_TableCount is identical to
SQL_TblCount »p790. To avoid errors when this document is updated, and to reduce
the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 748

SQL_TableForeignKeyCount

Syntax

lResult& = SQL_TableForeignKeyCount(lDatabaseNumber &, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_TableForeignKeyCount is
identical to SQL_TblFKeyCount »p791. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 749

SQL_TableForeignKeyInfo

Syntax

lResult& = SQL_TableForeignKeyInfo(lDatabaseNumber& , _
 lTableNumber&, _
 lKeyNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableForeignKeyInfo is
identical to SQL_TblFKeyInfo »p793. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 750

SQL_TableForeignKeyInfoStr

Syntax

sResult$ = SQL_TableForeignKeyInfoStr(lDatabaseNumb er&, _
 lTableNumber& , _
 lKeyNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableForeignKeyInfoStr is
identical to SQL_TblFKeyInfoStr »p797. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 751

SQL_TableIndexCount

Syntax

lResult& = SQL_TableIndexCount(lDatabaseNumber&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_TableIndexCount is identical
to SQL_TblIndexCount »p800. To avoid errors when this document is updated, and
to reduce the size of the Help Files, information that is common to both functions is
not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 752

SQL_TableIndexInfo

Syntax

lResult& = SQL_TableIndexInfo(lDatabaseNumber&, _
 lTableNumber&, _
 lIndexNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableIndexInfo is identical to
SQL_TblIndexInfo »p752. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 753

SQL_TableIndexInfoStr

Syntax

sResult$ = SQL_TableIndexInfoStr(lDatabaseNumber&, _
 lTableNumber&, _
 lIndexNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableIndexInfoStr is
identical to SQL_TblIndexInfoStr »p804. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 754

SQL_TableInfo

This SQL Tools Version 2 function has been retired because all Table Info data is
string-based and can be retrieved with SQL_TblInfoStr »p808 and
SQL_TableInfoStr »p755, so there is no need for a numeric-based function.

 755

SQL_TableInfoStr

Syntax

sResult$ = SQL_TableInfoStr(lDatabaseNumber&, _
 lTableNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableInfoStr is identical to
SQL_TblInfoStr »p808. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 756

SQL_TableNumber

Syntax

lResult& = SQL_TableNumber(lDatabaseNumber&, _
 sTableName$, _
 sTableType$)

Except for the lDatabaseNumber& parameter, SQL_TableNumber is identical to
SQL_TblNumber »p810. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 757

SQL_TablePrimaryKeyCount

Syntax

lResult& = SQL_TablePrimaryKeyCount(lDatabaseNumber &, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_TablePrimaryKeyCount is
identical to SQL_TblPKeyCount »p812. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 758

SQL_TablePrimaryKeyInfo

Syntax

lResult& = SQL_TablePrimaryKeyInfo(lDatabaseNumber& , _
 lTableNumber&, _
 lKeyNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameters, SQL_TablePrimaryKeyOnfo is
identical to SQL_TblPKeyInfo »p813. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 759

SQL_TablePrimaryKeyInfoStr

Syntax

sResult$ = SQL_TablePrimaryKeyInfoStr(lDatabaseNumb er&, _
 lTableNumber& , _
 lKeyNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TablePrimaryKeyInfoStr is
identical to SQL_TblPKeyInfoStr »p815. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 760

SQL_TablePrivilegeCount

Syntax

lResult& = SQL_TablePrivilegeCount(lDatabaseNumber& , _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_TablePrivilegeCount is
identical to SQL_TblPrivCount »p817. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 761

SQL_TablePrivilegeInfoStr

Syntax

sResult$ = SQL_TablePrivilegeInfoStr(lDatabaseNumbe r&, _
 lTableNumber&, _
 lPrivilegeNumb er&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TablePrivilegeInfoStr is
identical to SQL_TblPrivInfoStr »p819. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 762

SQL_TableRowCount NEW

Syntax

lResult& = SQL_TableRowCount(lDatabaseNumber&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_TableRowCount is identical to
SQL_TblRowCount »p822. To avoid errors when this document is updated, and to
reduce the size of the Help Files, information that is common to both functions is not
duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 763

SQL_TableStatisticInfo

Syntax

lResult& = SQL_TableStatisticInfo(lDatabaseNumber&, _
 lTableNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableStatisticInfo is
identical to SQL_TblStatInfo »p824. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 764

SQL_TableStatisticInfoStr NEW

Syntax

sResult$ = SQL_TableStatisticInfoStr(lDatabaseNumbe r&, _
 lTableNumber&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableStatisticInfoStr is
identical to SQL_TblStatInfoStr »p826. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 765

SQL_TableUniqueColumnCount

Syntax

lResult& = SQL_TableUniqueColumnCount(lDatabaseNumb er&, _
 lTableNumber&)

Except for the lDatabaseNumber& parameter, SQL_TableUniqueColumnCount is
identical to SQL_TblUColCount »p828. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 766

SQL_TableUniqueColumnInfo

Syntax

lResult& = SQL_TableUniqueColumnInfo(lDatabaseNumbe r&, _
 lTableNumber&, _
 lColumnNumber& , _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableUniqueColumnInfo is
identical to SQL_TblUColInfo »p829. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 767

SQL_TableUniqueColumnInfoStr

Syntax

sResult$ = SQL_TableUniqueColumnInfoStr(lDatabaseNu mber&, _
 lTableNumbe r&, _
 lColumnNumb er&, _
 lInfoType&)

Except for the lDatabaseNumber& parameter, SQL_TableUniqueColumnInfoStr
is identical to SQL_TblUColInfoStr »p832. To avoid errors when this document is
updated, and to reduce the size of the Help Files, information that is common to both
functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 768

SQL_TblAColCount

Summary

Indicates the number of AutoColumns »p202 that a table has.

Twin

SQL_TableAutoColumnCount »p738

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblAColCount(lTableNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

Return Values

This function returns zero or a positive number to indicate the number of
AutoColumns that a given table has.

Remarks

An AutoColumn is a column that is automatically updated when any value in the row
is updated by a transaction. For more information, see AutoColumns »p202.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the specified table has one AutoColumn".

Example

See AutoColumns »p202.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Unique Columns »p203

 769

SQL_TblAColInfo

Summary

Provides information about one AutoColumn »p202, in numeric form.

Twin

SQL_TableAutoColumnInfo »p739

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblAColInfo(lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lColumnNumber&
The number of an AutoColumn, between one (1) and the number returned by
the SQL_TblAColCount »p768 function.

lInfoType&
The type of information that is being requested. See Remarks below for a
complete list of valid values.

Return Values

If valid parameters are provided, this function returns the numeric information value.
Otherwise, zero (0) is returned.

Remarks

An AutoColumn is a column that is automatically updated when any value in the row
is updated by a transaction. For more information, see AutoColumns »p202.

Please note that only some types of AutoColumn information are useful in numeric
form. For a list of lInfoType& values that can be used to obtain information about an
AutoColumn in string form, see SQL_TblAColInfoStr »p772.

To obtain numeric information, the lInfoType& parameter must be one of the following
values:

%ACOL_BUFFER_LENGTH

The length of the AutoColumn data in bytes. This is the amount of data that
is transferred by a SQL_Fetch or SQL_FetchRel operation if a data type of
%SQL_DEFAULT is specified. See Buffer Size. »p116

 770

%ACOL_DATA_TYPE

The AutoColumn's SQL data type »p87.

%ACOL_DECIMAL_DIGITS

The number of decimal digits »p120 that the AutoColumn has. Zero (0) will be
returned for columns that have data types where decimal digits are not
applicable (strings, integers, binary values, etc.).

%ACOL_NAME

See SQL_TblAColInfoStr »p772.

%ACOL_PSEUDO_COLUMN

Indicates whether or not the column is a pseudo-column, such as an Oracle
ROWID column. This function will return one of the following values:

%SQL_PC_PSEUDO
%SQL_PC_NOT_PSEUDO
%SQL_PC_UNKNOWN

(For maximum interoperability, pseudo-column names should not be quoted
with the identifier quote character that is returned by SQL_DBInfoStr .)

%ACOL_SIZE

The display size »p119 of the AutoColumn.

%ACOL_TYPE_NAME

See SQL_TblAColInfoStr »p772.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to five
driver-defined information types. You can use the lInfoType& values
%ACOL_DRIVERDEF_8 through %ACOL_DRIVERDEF_12 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the SQL data type of the specified AutoColumn is %SQL_CHAR (value 1)".
It can, however, generate ODBC Error Messages and SQL Tools Error Messages.

Example

PRINT SQL_TblAColInfo(%ACOL_DATA_TYPE)

 771

Driver Issues
This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information.

See Also

AutoColumns »p202

 772

SQL_TblAColInfoStr

Summary

Provides information about one AutoColumn »p202, in string form.

Twin

SQL_TableAutoColumnInfoStr »p740

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_TblAColInfoStr(lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lColumnNumber&
The number of an AutoColumn, between one (1) and the number returned by
the SQL_TblAColCount »p768 function.

lInfoType&
The type of information that is being requested. See Remarks below for a
complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are provided, this function returns the requested information value.
Otherwise, an empty string is returned.

Remarks

An AutoColumn is a column that is automatically updated when any value in the row
is updated by a transaction. For more information, see AutoColumns »p202.

Please note that only some types of AutoColumn information are useful in string form.
For a list of lInfoType& values that can be used to obtain information about an
AutoColumn in numeric form, see SQL_TblAColInfo »p769.

To obtain string information, the lInfoType& parameter must be one of the following
values:

%ACOL_BUFFER_LENGTH
%ACOL_DATA_TYPE

 773

%ACOL_DECIMAL_DIGITS

See SQL_TblAColInfo »p769.

%ACOL_NAME

The name of the AutoColumn. The driver will return an empty string if a
column does not have a name.

%ACOL_PSEUDO_COLUMN
%ACOL_SIZE

See SQL_TblAColInfo »p769.

%ACOL_TYPE_NAME

Datasource-dependent data type »p108 name. For example, "INTEGER", or
"COUNTER".

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to five
driver-defined information types. You can use the lInfoType& values
%ACOL_DRIVERDEF_8 through %ACOL_DRIVERDEF_12 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes because it returns string information. It
can, however, generate ODBC Error Messages and SQL Tools Error Messages.

Example

PRINT SQL_TblAColInfoStr(1,10,%ACOL_NAME)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information.

See Also

AutoColumns »p202

 774

SQL_TblColCount

Summary

Indicates how many columns »p85 a table has.

Twin

SQL_TableColumnCount »p741

Family

Table Column Info Family »p237

Availability

Standard and Pro

Warning

Some ODBC drivers »p76 do not include all columns in this value. For example, an
ODBC driver might not return any information about columns that are created by
expressions, or about pseudo-columns such as Oracle ROWID columns. Your
program can use any valid column, regardless of whether or not it is counted by
SQL_TblColCount .

Syntax

lResult& = SQL_TblColCount(lTableNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

Return Values

If a valid lTableNumber& value is used, this function will return the number of
columns that a table contains. Otherwise, it will return zero (0). Please note that
certain types of tables do not have any columns, so this function may also return zero
for a valid lTableNumber&.

Remarks

This function can be used to determine the number of columns »p85 that a table
contains.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the specified table has 1 column". It can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

'Display the names of the
'columns in table 2
FOR lCol& = 1 TO SQL_TblColCount(2)
 PRINT SQL_TblColInfoStr(2,lCol&,%TBLCOL_COLUMN_ NAME)
NEXT

 775

Driver Issues
This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Tables, Rows, Columns, and Cells »p85

 776

SQL_TblColInfo

Summary

Provides information about one column »p85 of a table, in numeric form.

Twin

SQL_TableColumnInfo »p742

Family

Table Column Info Family »p237

Availability

Standard and Pro

Warning

Some ODBC drivers »p76 do not provide information about all of the columns in a
table. For example, an ODBC driver might not return any information about columns
that are created by expressions, or about pseudo-columns such as Oracle ROWID
columns. Your program can use any valid column, regardless of whether or not this
function returns any information about it.

Syntax

lResult& = SQL_TblColInfo(lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lColumnNumber&
The number of a column, between one (1) and the number returned by the
SQL_TblColCount »p774 function.

lInfoType&
The type of numeric information that is being requested. See Remarks
below for a complete list of valid values.

Return Values

If valid parameters are used, this function will return the requested numeric
information. Otherwise, zero (0) will be returned.

Remarks

Please note that not all of the information about a table's columns is useful in numeric
form. For a list of lInfoType& values that can be used to obtain string information
about a table's columns, see SQL_TblColInfoStr »p780.

To obtain numeric information about a table's columns, use one of the following
lInfoType& values:

%TBLCOL_BUFFER_LENGTH

The column's buffer size »p116.

 777

In the case of %SQL_CHAR, %SQL_VARCHAR, and %SQL_LONGVARCHAR
columns the buffer length may be reported in bytes or it may be reported in
characters. (This behavior is driver-dependent.) That means that if the
database uses Unicode »p109 internally -- even if the column itself does not
appear to contain Unicode -- the value that is reported for
%TBLCOL_BUFFER_LENGTH may be twice as large as the actual column
size. In practice it is not necessary to use a buffer which is that large.

The %TBLCOL_DISPLAY_SIZE value (see below) returns values that are
generally more useful when dealing with %SQL_CHAR, %SQL_VARCHAR, and
%SQL_LONGVARCHAR columns.

%TBLCOL_CATALOG_NAME

See SQL_TblColInfoStr »p780.

%TBLCOL_CHAR_OCTET_LENGTH

ODBC 3.x+ ONLY : The maximum length of a character or binary column, in
bytes. For all other data types, this lInfoType& returns zero (0).

%TBLCOL_COLUMN_NAME

See SQL_TblColInfoStr »p780.

%TBLCOL_DATA_TYPE

The column's SQL Data Type »p87 (%SQL_CHAR, %SQL_INTEGER, etc.)

%TBLCOL_DATETIME_SUB

ODBC 3.x+ ONLY : The sub-type code for datetime and interval data types.
For all other data types, this lInfoType& returns zero (0).

See %TBLCOL_SQL_DATA_TYPE (below) for more information.

%TBLCOL_DECIMAL_DIGITS

The number of decimal digits »p120 that the column has.

%TBLCOL_DEFAULT_VALUE

ODBC 3.x+ ONLY : The default value of the column.

Please note that Microsoft Access 97 has been observed returning erroneous
values for this lInfoType&.

Please also note that is lInfoType& can return both string and numeric data,
depending on the column type, so your program will need to use this function
and/or SQL_TblColInfoStr »p780 with %TBLCOL_DEFAULT_VALUE to
obtain a value.

The value in this column should be interpreted as a string if it is enclosed in
quotation marks. Otherwise, it should be interpreted as a numeric or binary
value.

 778

If the Null value »p171 was specified as the default value, this lInfoType& will
return the word NULL, not enclosed in quotation marks.

If the default value cannot be represented without truncation, this lInfoType&
will return the word TRUNCATED, not enclosed in quotation marks. (The value
of %TBLCOL_DEFAULT_VALUE can be used when you are generating a new
column definition, except when it is TRUNCATED.)

If no default value was specified, then this lInfoType& will return an empty
string or the number zero.

%TBLCOL_DISPLAY_SIZE

The column's display size »p119.

%TBLCOL_IS_NULLABLE

See SQL_TblColInfoStr »p780.

%TBLCOL_NULLABLE

This value indicates the column's nullability. It will always return one of the
following values:

%SQL_NO_NULLS (The column can not include Null values »p171.)

%SQL_NULLABLE (The column accepts Null values.)

%SQL_NULLABLE_UNKNOWN (It is not known whether or not the column
accepts Null values.)

Please note that the value that is returned for %TBLCOL_NULLABLE is
different from the value returned by TBLCOL_IS_NULLABLE (see
SQL_TblColInfoStr »p780). The %TBLCOL_NULLABLE value indicates with
certainty that a column can accept Null values, but cannot indicate with
certainty that a column does not accept Null values. The
TBLCOL_IS_NULLABLE value, on the other hand, indicates with certainty
that a column does not accept Null values, but cannot indicate with certainty
that a column can accept Null values.

%TBLCOL_NUM_PREC_RADIX

The column's Num Prec Radix »p118 value.

%TBLCOL_ORDINAL_POSITION

ODBC 3.x+ ONLY : The first column in a table will return 1, the second will
return 2, and so on.

%TBLCOL_REMARKS and
%TBLCOL_SCHEMA_NAME

See SQL_TblColInfoStr »p780.

 779

%TBLCOL_SQL_DATA_TYPE

ODBC 3.x+ ONLY : This value is the same as the %TBLCOL_DATA_TYPE
value, except for datetime and interval columns. For datetime and interval
data types, this lInfoType& returns the non-concise data type (such as
%SQL_DATETIME or %SQL_ODBCx_INTERVAL_), rather than the concise
data type (such as %SQL_ODBCx_INTERVAL_YEAR_TO_MONTH).

If this column returns %SQL_DATETIME or %SQL_ODBCx_INTERVAL_, the
specific data type can be determined from the %TBLCOL_DATETIME_SUB
function (see above).

%TBLCOL_TABLE_NAME and
%TBLCOL_TYPE_NAME

See SQL_TblColInfoStr »p780.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to six
driver-defined information types. You can use the lInfoType& values
%TBLCOL_DRIVERDEF_19 through %TBLCOL_DRIVERDEF_24 to access
this information. If your ODBC driver supports them, the driver-defined data
will be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the specified column has a data type of %SQL_CHAR (value 1)". It can,
however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'Display the data type of
'table 1, column 7:
PRINT SQL_TblColInfo(1,7,%TBLCOL_DATA_TYPE)

Driver Issues

See note regarding Microsoft Access and %TBLCOL_DEFAULT_VALUE, above.

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Tables, Rows, Columns, and Cells »p85

 780

SQL_TblColInfoStr

Summary

Provides information about one column »p85 of a table, in string form.

Twin

SQL_TableColumnInfoStr »p743

Family

Table Column Info Family »p237

Availability

Standard and Pro

Warning

Some ODBC drivers »p76 do not provide information about all of the columns in a
table. For example, an ODBC driver might not return any information about columns
that are created by expressions, or about pseudo-columns such as Oracle ROWID
columns. Your program can use any valid column, regardless of whether or not this
function returns any information about it.

Syntax

sResult$ = SQL_TblColInfoStr(lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lColumnNumber&
The number of a column, between one (1) and the number returned by the
SQL_TblColCount »p774 function.

lInfoType&
The type of string information that is being requested. See Remarks below
for a complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, this function will return the requested information.
Otherwise, an empty string will be returned.

Remarks

Please note that not all of the information about a table's columns is useful in string
form. For a list of lInfoType& values that can be used to obtain numeric information
about a table's columns, see SQL_TblColInfo »p776.

To obtain string information about a table's columns, use one of the following
lInfoType& values:

 781

%TBLCOL_BUFFER_LENGTH

See SQL_TblColInfo »p776.

%TBLCOL_CATALOG_NAME, %TBLCOL_SCHEMA_NAME, and %TBLCOL_TABLE_NAME

The name of the catalog, schema, and table that contain the column about
which information is being requested. If a database does not support catalog
and/or schema names, these values may be empty strings.

%TBLCOL_CHAR_OCTET_LENGTH

See SQL_TblColInfo »p776.

%TBLCOL_COLUMN_NAME

The name of the column. This can be (but is not usually) an empty string.

%TBLCOL_DATA_TYPE,
%TBLCOL_DATETIME_SUB, and
%TBLCOL_DECIMAL_DIGITS

See SQL_TblColInfo »p776.

%TBLCOL_DEFAULT_VALUE

ODBC 3.x+ ONLY : The default value of the column.

Please note that Microsoft Access 97 has been observed returning erroneous
values for this lInfoType&.

Please also note that is lInfoType& can return both string and numeric data,
depending on the column type, so your program will need to use this function
or SQL_TblColInfoStr with %TBLCOL_DEFAULT_VALUE to obtain a value.

The value in this column should be interpreted as a string if it is enclosed in
quotation marks. Otherwise, it should be interpreted as a numeric or binary
value.

If the Null value »p171 was specified as the default value, this lInfoType& will
return the word NULL, not enclosed in quotation marks.

If the default value cannot be represented without truncation, this lInfoType&
will return the word TRUNCATED, not enclosed in quotation marks. (The value
of %TBLCOL_DEFAULT_VALUE can be used when you are generating a new
column definition, except if it contains TRUNCATED.)

If no default value was specified, then this lInfoType& will return an empty
string or the number zero.

%TBLCOL_DISPLAY_SIZE

See SQL_TblColInfo »p776.

%TBLCOL_IS_NULLABLE

 782

This function will return one of the following values:

The string "NO" if the column does not allow Null values »p171.

The string "YES" if the column does allow Null values.

An empty string if the column's nullability is not known.

See SQL_TblColInfo »p776(%TBLCOL_NULLABLE) (as opposed to this
string lInfoType&, %TBLCOL_IS_NULLABLE) for more information.

%TBLCOL_NULLABLE,
%TBLCOL_NUM_PREC_RADIX,
%TBLCOL_ORDINAL_POSITION, and
%TBLCOL_SQL_DATA_TYPE

See SQL_TblColInfo »p776.

%TBLCOL_REMARKS

An optional column description.

%TBLCOL_TYPE_NAME

The datasource-dependent »p108 name of the column's data type, such as
"INTEGER" or "COUNTER".

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to six
driver-defined information types. You can use the lInfoType& values
%TBLCOL_DRIVERDEF_19 through %TBLCOL_DRIVERDEF_24 to access
this information. If your ODBC driver supports them, the driver-defined data
will be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'Display the name of
'table 1, column 7:
PRINT SQL_TblColInfoStr(1,7,%TBLCOL_COLUMN_NAME)

Driver Issues

See note regarding Microsoft Access and %TBLCOL_DEFAULT_VALUE, above.

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues See Cached Information »p200.
See Also Tables, Rows, Columns, and Cells »p85

 783

SQL_TblColNumber

Summary

Returns the column »p85 number that corresponds to a column name.

Twin

SQL_TableColumnNumber »p744

Family

Table Column Info Family »p237

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_TblColNumber(lTableNumber&, _
 sColumnName$)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

sColumnName$
A string that contains the name of a column.

Return Values

If sColumnName$ contains a string that matches the name of a column in the
specified table number, the corresponding column number is returned.

If no match is found, negative one (-1) will be returned.

Remarks

This function is not case sensitive. If Column 4 is named "ADDRESS", then using a
sColumnName$ value of "ADDRESS", "address ", or "Address " (etc.) would return
the number 4.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the specified column name matches column 1". It can, however, generate
ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'Display the column number of the
'table 1 ADDRESS column...
PRINT SQL_TblColNumber(1,"ADDRESS")

Driver Issues

None.

 784

Speed Issues

See Cached Information »p200.

See Also

Tables, Rows, Columns, and Cells »p85

 785

SQL_TblColPrivCount

Summary

Indicates the number of Column Privileges »p206 that a column has.

Twin

SQL_TablePrivilegeCount »p760

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblColPrivCount(lTableNumber&, _
 lColumnNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lColumnNumber&
The number of a column, between one (1) and the number returned by the
SQL_TblColCount »p774 function.

Return Values

If valid parameters are used, this function will return the number of Column Privileges
that are associated with a particular column. This number may be zero or a positive
number. If invalid parameters are used, zero (0) will be returned.

Remarks

A Column Privilege is an "access right" that is granted to a user, called the Grantee,
by another user, called the Grantor. See Column Privileges »p206 for more
information.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the specified column has one privilege". It can, however, generate ODBC
Error Messages »p181 and SQL Tools Error Messages.

Example

'Display the number of Column Privileges
'for table 2, column 8:
PRINT SQL_TblColPrivCount(2,8)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

 786

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Table Privileges and Column Privileges »p206

 787

SQL_TblColPrivInfoStr

Summary

Provides information about a Column Privilege »p206, in string form.

Twin

SQL_TableColumnPrivilegeInfoStr »p746

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_TblColPrivInfoStr(lTableNumber&, _
 lColumnNumber&, _
 lPrivilegeNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lColumnNumber&
The number of a column, between one (1) and the number returned by the
SQL_TblColCount »p774 function.

lPrivilegeNumber&
The number of a privilege, between one (1) and the number returned by the
SQL_TblColPrivCount »p785 function.

lInfoType&
The type of numeric information that is being requested. See Remarks
below for a list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, this function will return the requested numeric
information. Otherwise, an empty string will be returned.

Remarks

A Column Privilege is an "access right" that is granted to a user, called the Grantee,
by another user, called the Grantor. For example, if Column Privileges have been
specified for a certain column like ANNUALSALARY, a certain user may have a
SELECT privilege (the right to use the SELECT statement to retrieve data from the
column) but not an UPDATE privilege (the right to change the values in the column).
Other users might not have any rights to access the ANNUALSALARY column in any
way.

 788

See Column Privileges »p206 for more information.

Please note that all of the information about a column's Privileges is useful in string
form, so there is no corresponding SQL_TblColPrivInfo function which returns
numeric values, as there is with most other SQL Tools Info functions.

To obtain information about a column's Privileges, use one of the following
lInfoType& values:

%TBLCOL_PRIV_COLUMN_NAME

The name of the column to which the privilege applies.

%TBLCOL_PRIV_GRANTEE

The name of the user to whom the privilege has been granted.

%TBLCOL_PRIV_GRANTOR

The name of the user that granted the privilege. If the value of
%TBLCOL_PRIV_GRANTEE (just above) is the owner of the object, the
%TBLCOL_PRIV_GRANTOR value will be "_SYSTEM".

%TBLCOL_PRIV_IS_GRANTABLE

Indicates whether the grantee is permitted to grant the privilege to other
users.

This lInfoType& will return "YES" or "NO", or an empty string if the grantability
is unknown or not applicable to the Datasource.

%TBLCOL_PRIV_NAME

The name that was assigned to the privilege by SQL Tools.

%TBLCOL_PRIV_PRIVILEGE

Identifies the column privilege. May be one of the following values, or other
values that may be supported by the Datasource: Please note that the
quotation marks that are shown below are not part of the value that will be
returned by this lInfoType&.

"SELECT" (The grantee is permitted to retrieve data from the column.)

"INSERT" (The grantee is permitted to provide data for the column in new
rows that are inserted into the associated table.)

"UPDATE" (The grantee is permitted to update data in the column.)

"REFERENCES" (The grantee is permitted to refer to the column within a
constraint (for example, a unique, referential, or table check constraint).

%TBLCOL_PRIV_TABLE_CATALOG,
%TBLCOL_PRIV_TABLE_SCHEMA, and
%TBLCOL_PRIV_TABLE_NAME

 789

The catalog, schema, and table to which the privilege applies.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to
three driver-defined information types. You can use the lInfoType& values
%TBLCOL_PRIV_DRIVERDEF_10 through %TBLCOL_PRIV_DRIVERDEF_12
to access this information. If your ODBC driver supports them, the driver-
defined data will be returned. If not, $ESC (the "escape" character
CHR$(27)) will be returned. This allows your program to distinguish
between an unsupported field and a supported field which contains an empty
string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values, but it
can generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

'Display the name of the person who
'granted column privilege number 1
'for table 2, column 8:
PRINT SQL_TblColInfoStr(2,8,1,%TBLCOL_PRIV_GRANTOR)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Table Privileges and Column Privileges »p206

 790

SQL_TblCount

Summary

Indicates the number of tables »p85 (of all types) that a database contains.

Twin

SQL_TableCount »p747

Family

Table Info Family »p236

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_TblCount

Parameters

None.

Return Values

This function will return the total number of tables (tables, system tables, views, etc.)
that are contained by a database. If a database has not yet been opened, or if a
database contains no tables, the return value of this function will be zero (0).

Remarks

Virtually all databases contain tables, unless 1) no tables have yet been added to a
new database, or 2) all of the tables have been deleted from a database.

Keep in mind that this function returns the total number of tables in a database,
including tables, system tables, and views. Other types of tables can include "global
temporary", "local temporary", "alias", and "synonym". Databases can also contain
datasource-specific table types.

See SQL_TblInfoStr »p808(%TABLE_TYPE) for more information.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the table has 1 column". It can, however, generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

'Display the number of tables
'in the current database:
PRINT SQL_TblCount

Driver Issues None.
Speed Issues See Cached Information »p200.
See Also Tables, Rows, Columns, and Cells »p85

 791

SQL_TblFKeyCount

Summary

Returns the total number of columns that are used to define Foreign Keys »p205 for a
table.

Twin

SQL_TableForeignKeyCount »p748

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblFKeyCount(lTableNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

Return Values

If a valid lTableNumber& is used, this function will return the number of columns that
are used by the Foreign Keys »p205 that are associated with the specified table.

Remarks

A Foreign Key is a column (or a set of columns) in one table which matches the
Primary Key in another table.

This function returns a value which indicates the total number of columns that are
used for Foreign Keys. This is not necessarily the same as the total number of
Foreign Keys. For example, if a table has two foreign keys, each of which uses one
column, this function would return two (2). On the other hand, if a table has two
foreign keys, each of which requires two columns to create a unique key value, this
function would return four (4).

See Foreign Keys »p205 and Primary Keys »p203 for more information.

Also see SQL_TblFKeyInfo »p793 and SQL_TblFKeyInfoStr »p797.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "the table has 1 foreign key". It can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

PRINT SQL_TblFKeyCount

 792

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Foreign Keys »p205

 793

SQL_TblFKeyInfo

Summary

Provides information about a column that is used as a Foreign Key »p205, in numeric
form.

Twin

SQL_TableForeignKeyInfo »p749

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblFKeyInfo(lTableNumber&, _
 lKeyNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lKeyNumber&
The number of a Foreign Key, between one (1) and the number returned by
the SQL_TblFKeyCount »p791 function.

lInfoType&
The type of information being requested. See Remarks below for a list of
valid values.

Return Values

If valid parameters are used, this function will return the requested numeric
information. Otherwise, zero (0) will be returned.

Remarks

A Foreign Key is a column (or a set of columns) in one table that matches a Primary
Key in another table. The SQL_TblFKeyInfo function can be used to obtain
information about a column that is used in a Foreign Key.

See Foreign Keys »p205 and Primary Keys »p203 for more information.

Please note that not all of the information about a table's Foreign Keys is useful in
numeric form. For a list of lInfoType& values that can be used to obtain string
information about a table's Foreign Keys, see SQL_TblFKeyInfoStr »p797.

To obtain numeric information about a table's columns, use one of the following
lInfoType& values:

 794

%FKEY_ACCESS_RELATIONSHIP

This value is retrieved by SQL Tools only from Microsoft Access databases,
which do not support Foreign Keys in the normal (ODBC) way.

It is a bitmapped value that may contain one or more of the following flags.

%FKEY_UNIQUE
%FKEY_DONT_ENFORCE
%FKEY_INHERITED
%FKEY_LEFT
%FKEY_RIGHT

These flags are "leftovers", retrieved by SQL Tools during the process of
simulating normal ODBC data such as %FKEY_DELETE_RULE. They are
made available to your programs as a convenience, but the meaning of these
flags is beyond the scope of this document. Please consult the Microsoft
Access documentation related to the System Table called
MSysRelationships and the column grbit .

%FKEY_DEFERRABILITY

This lInfoType& will always have one of the following values:

%SQL_INITIALLY_DEFERRED
%SQL_INITIALLY_IMMEDIATE
%SQL_NOT_DEFERRABLE

%FKEY_DELETE_RULE

The action that is to be applied to the foreign key when the SQL operation is
DELETE.

In the following definitions, the referenced table is the table that has the
primary key, and the referencing table is the table that has the foreign key).

This lInfoType& can have one of the following values.

%SQL_CASCADE (When a row in the referenced table is deleted, all of the
matching rows in the referencing tables are also deleted.)

%SQL_NO_ACTION (The update is rejected if the deletion of a row in the
referenced table would cause a "dangling reference" in the referencing table,
i.e. if rows in the referencing table would have no counterparts in the
referenced table. This was called %SQL_RESTRICT in ODBC 2.0.)

%SQL_SET_NULL (When one or more rows in the referenced table are
deleted, each component of the foreign key of the referencing table is set to
Null in all matching rows of the referencing table.)

%SQL_SET_DEFAULT (When one or more rows in the referenced table are
deleted, each component of the foreign key of the referencing table is set to
the applicable default in all matching rows of the referencing table.

Zero (0) if this lInfoType& is not applicable to the Datasource.

 795

%FKEY_FOREIGN_COLUMN_NAME
%FKEY_FOREIGN_KEY_NAME
%FKEY_FOREIGN_TABLE_CATALOG
%FKEY_FOREIGN_TABLE_NAME
%FKEY_FOREIGN_TABLE_SCHEMA
%FKEY_PRIMARY_COLUMN_NAME
%FKEY_PRIMARY_KEY_NAME
%FKEY_PRIMARY_TABLE_CATALOG
%FKEY_PRIMARY_TABLE_NAME
%FKEY_PRIMARY_TABLE_SCHEMA

See SQL_TblFKeyInfoStr »p797.

%FKEY_SEQ

The column sequence number. If a Foreign Key use more than one column
from another table to produce a unique key value, the SQL_TblFKeyInfo
function will return more than one Foreign Key, each with a different column
name. This lInfoType& value can be used to determine the order in which
those column names are assembled to create the unique key.

%FKEY_UPDATE_RULE

The action that is to be applied to the foreign key when the SQL operation is
UPDATE.

In the following definitions, the referenced table is the table that has the
primary key, and the referencing table is the table that has the foreign key).

This lInfoType& can have one of the following values.

%SQL_CASCADE (When the primary key of the referenced table is updated,
the foreign key of the referencing table is also updated.)

%SQL_NO_ACTION (The update is rejected if 1) an update of the primary key
of the referenced table would cause a "dangling reference" in the referencing
table (i.e. rows in the referencing table would have no counterparts in the
referenced table), or 2) an update of the foreign key of the referencing table
would introduce a value that does not exist as a value of the primary key of
the referenced table. This was called %SQL_RESTRICT action in ODBC 2.0.)

%SQL_SET_NULL (When one or more rows in the referenced table are
updated such that one or more components of the primary key are changed,
the components of the foreign key in the referencing table that correspond to
the changed components of the primary key are set to Null in all matching
rows of the referencing table.)

%SQL_SET_DEFAULT (When one or more rows in the referenced table are
updated such that one or more components of the primary key are changed,
the components of the foreign key in the referencing table that correspond to
the changed components of the primary key are set to the applicable default
values in all matching rows of the referencing table. Null will be returned if
this is not applicable to the datasource.)

 796

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to nine
driver-defined information types. You can use the lInfoType& values
%FKEY_DRIVERDEF_16 through %FKEY_DRIVERDEF_24 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value. It can, however, generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

See Foreign Keys »p205.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Table Column Info Family »p237

 797

SQL_TblFKeyInfoStr

Summary

Provides information about a column that is used as a Foreign Key »p205, in string
form.

Twin

SQL_TableForeignKeyInfoStr »p750

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_TblFKeyInfoStr(lTableNumber&, _
 lKeyNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lKeyNumber&
The number of a Foreign Key, between one (1) and the number returned by
the SQL_TblFKeyCount »p791 function.

lInfoType&
The type of information being requested. See Remarks below for a list of
valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, this function will return the requested string information.
Otherwise, an empty string will be returned.

Remarks

A Foreign Key is a column (or a set of columns) in a table that match a Primary Key
in another table. The SQL_TblFKeyInfoStr function can be used to obtain
information about a column that is used in a Foreign Key.

See Foreign Keys »p205 and Primary Keys »p203 for more information.

Please note that not all of the information about a table's Foreign Keys is useful in
string form. For a list of lInfoType& values that can be used to obtain numeric
information about a table's Foreign Keys, see SQL_TblFKeyInfo »p793.

To obtain string information about a table's columns, use one of the following

 798

lInfoType& values:

%FKEY_ACCESS_RELATIONSHIP,
%FKEY_DEFERRABILITY, and
%FKEY_DELETE_RULE

See SQL_TblFKeyInfo »p793.

%FKEY_FOREIGN_KEY_NAME

The name of the Foreign Key.

%FKEY_FOREIGN_TABLE_CATALOG,
%FKEY_FOREIGN_TABLE_SCHEMA,
%FKEY_FOREIGN_TABLE_NAME, and
%FKEY_FOREIGN_COLUMN_NAME

The catalog, schema, table, and column names of the Foreign Key.

%FKEY_PRIMARY_KEY_NAME

The name of the Primary Key.

%FKEY_PRIMARY_TABLE_CATALOG,
%FKEY_PRIMARY_TABLE_SCHEMA,
%FKEY_PRIMARY_TABLE_NAME, and
%FKEY_PRIMARY_COLUMN_NAME

The catalog, schema, table, and column names of the Primary Key »p203 (in
another table) to which the Foreign Key »p205 applies.

%FKEY_SEQ and
%FKEY_UPDATE_RULE

See SQL_TblFKeyInfo »p793.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to nine
driver-defined information types. You can use the lInfoType& values
%FKEY_DRIVERDEF_16 through %FKEY_DRIVERDEF_24 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

See Foreign Keys »p205.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

 799

Speed Issues

See Cached Information »p200.

See Also

Table Column Info Family »p237

 800

SQL_TblIndexCount

Summary

Returns the number of Indexes »p201 that a table has.

Twin

SQL_TableIndexCount »p751

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblIndexCount(lTableNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number that is returned by
the SQL_TblCount »p790 function.

Return Values

If a valid lTableNumber& is used, and if the database is open, this function will return
the number of Indexes »p201 that are associated with the table. Otherwise, this
function will return zero (0).

Remarks

An Index »p201 is a structure that is maintained by a database, in order to speed up
access to columns that have been indexed.

This function returns the number of Indexes that are associated with a table.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "this table has one index". It can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

See Indexes »p201.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information.

See Also Indexes »p201

 801

SQL_TblIndexInfo

Summary

Provides information about an Index »p201, in numeric form.

Twin

SQL_TableIndexInfo »p752

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblIndexInfo(lTableNumber&, _
 lIndexNumber&, _
 lInfoType&)

Parameters
lTableNumber&

The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lIndexNumber&
The number of an Index »p201, between one (1) and the number returned by
the SQL_TblIndexCount »p800 function.

lInfoType&
The type of information that is being requested. See Remarks below for a
complete list of valid values.

Return Values

If valid parameters are used, and if the database is open, this function will return the
requested information. Otherwise, zero (0) will be returned.

Remarks

An Index »p201 is a structure that is maintained by a database, in order to speed up
access to columns that have been indexed.

Please note that not all of the information about a table's Indexes is useful in numeric
form. For a list of lInfoType& values that can be used to obtain string information
about an Index, see SQL_TblIndexInfoStr »p804.

In order to obtain numeric information about an Index, the lInfoType& parameter must
be one of the following values:

%INDEX_ASC_OR_DESC
%INDEX_CATALOG
%INDEX_COLUMN_NAME
%INDEX_FILTER_CONDITION
%INDEX_NAME

See SQL_TblIndexInfoStr »p804.

 802

%INDEX_NON_UNIQUE

Indicates whether or not the index allows or prohibits duplicate values. This
lInfoType& will return %SQL_TRUE (1) if the index values are allowed to be
non-unique, or %FALSE (0) if the index values are required to be unique.

%INDEX_ORDINAL_POSITION

The column sequence number in the index, starting with 1.

%INDEX_PAGECOUNT

The number of pages that are used to store the index. Zero (0) is returned if
this information is not available from the datasource, or if it is not applicable
to the datasource.

%INDEX_QUALIFIER

See SQL_TblIndexInfoStr »p804.

%INDEX_ROWCOUNT

The number of unique values in the index. Zero (0) is returned if this
information is not available from the datasource. (This value is also known
as the "cardinality" of the index.)

%INDEX_SCHEMA
%INDEX_TABLE_NAME

See SQL_TblIndexInfoStr »p804.

%INDEX_TYPE

The Index type. This lInfoType& will return one of the following values:

%SQL_INDEX_ALL
%SQL_INDEX_CLUSTERED
%SQL_INDEX_HASHED
%SQL_INDEX_OTHER
%SQL_INDEX_BTREE
%SQL_INDEX_CONTENT

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to
three driver-defined information types. You can use the lInfoType& values
%INDEX_DRIVERDEF_14 through %INDEX_DRIVERDEF_16 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return

 803

value. It can, however, generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

See Indexes »p201.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Indexes »p201

 804

SQL_TblIndexInfoStr

Summary

Provides information about an Index »p201, in string form.

Twin

SQL_TableIndexInfoStr »p753

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_TblIndexInfoStr(lTableNumber&, _
 lIndexNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lIndexNumber&
The number of an Index »p201, between one (1) and the number returned by
the SQL_TblIndexCount »p800 function.

lInfoType&
The type of information that is being requested. See Remarks below for a
complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, and if the database is open, this function will return the
requested information. Otherwise, an empty string will be returned.

Remarks

An Index »p201 is a structure that is maintained by a database, in order to speed up
access to columns that have been indexed.

Please note that not all of the information about a table's Indexes is useful in string
form. For a list of lInfoType& values that can be used to obtain numeric information
about an Index, see SQL_TblIndexInfoStr »p804.

In order to obtain string information about an Index, the lInfoType& parameter must
be one of the following values:

 805

%INDEX_ASC_OR_DESC

The sort sequence for the column. This lInfoType& will return one of the
following values:

"A" (for Ascending)

"D" (for Descending)

An empty string will be returned if column sort sequence is not supported by
the Datasource.

%INDEX_CATALOG, %INDEX_SCHEMA, and %INDEX_TABLE_NAME

The catalog, schema, and table name of the table with which the index is
associated.

%INDEX_COLUMN_NAME

The Index column name.

If the column is based on an expression, such as SALARY + FRINGES ,
the expression is returned. If the expression cannot be determined by the
ODBC driver, an empty string is returned.

%INDEX_FILTER_CONDITION

If the index is a filtered index, this lInfoType& returns a string that contains
the filter condition, such as AGE > 100 . If the filter condition cannot be
determined, or if the index is not a filtered index, an empty string will be
returned

%INDEX_NAME

The name of the Index.

%INDEX_NON_UNIQUE
%INDEX_ORDINAL_POSITION
%INDEX_PAGECOUNT

See SQL_TblIndexInfo »p801.

%INDEX_QUALIFIER

A string value that contains the identifier which is used to qualify the index
name when you are performing a DROP INDEX operation. If this
lInfoType& returns a value, it must be used to qualify the index name in a
DROP INDEX statement. Otherwise the %INDEX_SCHEMA value should be
used.

%INDEX_ROWCOUNT
%INDEX_TYPE

See SQL_TblIndexInfo »p801.

 806

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to
three driver-defined information types. You can use the lInfoType& values
%INDEX_DRIVERDEF_14 through %INDEX_DRIVERDEF_16 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

See Indexes »p201.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information.

See Also

Indexes »p201

 807

SQL_TblInfo

This SQL Tools Version 2 function has been retired because all Table Info data is
string-based and can be retrieved with SQL_TblInfoStr »p808 and
SQL_TableInfoStr »p755, so there is no need for a numeric-based function.

 808

SQL_TblInfoStr
Summary

Provides information about a table »p85, in string form.

Twin

SQL_TableInfoStr »p755

Family

Table Info Family »p236

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_TblInfoStr(lTableNumber&, _
 lInfoType&)

Parameters
lTableNumber&

The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lInfoType&
The type of string information that is being requested. See Remarks below
for a complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, and if the database is open, this function will return the
requested information. Otherwise, it will return an empty string.

Remarks

In order to obtain string information about a table, the lInfoType& parameter must be
one of the following values:

%TABLE_CATALOG_NAME and %TABLE_SCHEMA_NAME

The catalog and schema names that are associated with the table.

%TABLE_NAME

The table's name.

%TABLE_REMARKS

An optional comment field.

%TABLE_TYPE

This lInfoType& will return a string like "TABLE", SYSTEM TABLE", "VIEW",

 809

"GLOBAL TEMPORARY", "LOCAL TEMPORARY", "ALIAS ", or "SYNONYM", or a
datasource-specific type name.

A "TABLE" is usually a "normal" database table that is completely accessible
to your program.

A "SYSTEM TABLE" is an "internal" database table that is created by a DBMS
program. For example, when you use Microsoft Access to create a "Form" or
a "Report", you are really creating a System Table which contains the
information that Access needs to build the form or table.

A "VIEW" is a "virtual table" that is created from the columns of one or more
"real" tables. Microsoft Access stores "Access Queries" as Views.

The other, less common table types cannot usually be accessed, so they are
not covered here.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to
three-defined information types. You can use the lInfoType& values
%TABLE_DRIVERDEF_22 through %TABLE_DRIVERDEF_24 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

PRINT SQL_TblInfoStr(1,%TABLE_NAME)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Tables, Rows, Columns, and Cells »p85

 810

SQL_TblNumber

Summary

Returns the table »p85 number that corresponds to a table name (and an optional table
type).

Twin

SQL_TableNumber »p756

Family

Table Info Family »p236

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_TblNumber(sTableName$, _
 sTableType$)

Parameters

sTableName$
A string that contains the name of a table, or an empty string.

sTableType$
A string that contains the type-name of a table, or an empty string. Common
table types include "TABLE", "SYSTEM TABLE", and "VIEW". For a
reasonably complete list, see SQL_TblInfoStr »p808(%TABLE_TYPE).

Return Values

If a table is found that matches the specified parameters, the table's number
(between one and the number returned by the SQL_TblCount function) will be
returned. Otherwise, negative one (-1) will be returned.

Remarks

This function is not case-sensitive. If a table named ADDRESSBOOK exists, it can be
found by using the sTableName$ parameter "ADDRESSBOOK", "addressbook ",
"AddressBook ", etc. If a table with the type "TABLE" exists, it can be found with the
sTableType$ parameter "TABLE", "table ", "Table ", etc. If you need to perform a
case-sensitive search, you should use the SQL_TblInfoStr »p808 function to
examine the table names/types directly.

If the sTableType$ parameter is an empty string, the first table number that matches
the sTableName$ parameter (if any) will be returned. Generally speaking, well-
designed databases do not use duplicate table names, so it is not usually necessary
to specify a table type.

If the sTableName$ parameter is an empty string, the first table number that matches
the sTableType$ parameter (if any) will be returned. (Keep in mind that databases
often contain more than one "TABLE", more than one "SYSTEM TABLE", etc. and this
function does not provide a method for retrieving subsequent matches.)

 811

If neither parameter is an empty string, the first (and presumably only) table number
that matches both parameters will be returned.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value such as "table number 1" . It can, however, generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

PRINT SQL_TblNumber("MYTABLE", "")

Driver Issues

None.

Speed Issues

See Cached Information »p200.

See Also

Tables, Rows, Columns, and Cells »p85

 812

SQL_TblPKeyCount

Summary

Returns the number of Primary Keys »p203 that are associated with a table.

Twin

SQL_TablePrimaryKeyCount »p757

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblPKeyCount(lTableNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

Return Values

If a valid lTableNumber& is used, and if the database is open, this function will return
the number of Primary Keys that the table has. Otherwise, it will return zero (0).

Remarks

A Primary Key »p203 is a column (or a set of columns) that uniquely identifies a row in
a table.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value such as "the table has 1 primary key". It can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example

'Display the number of Primary Keys
'that are associated with table #1.
PRINT SQL_TblPKeyCount(1)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also Unique Columns »p203

 813

SQL_TblPKeyInfo

Summary

Provides information about a Primary Key »p203, in numeric form.

Twin

SQL_TablePrimaryKeyInfo »p758

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblPKeyInfo(lTableNumber&, _
 lKeyNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lKeyNumber&
The number of a Primary Key, between one (1) and the number returned by
the SQL_TblPKeyCount »p812 function.

lInfoType&
The type of numeric information that is being requested. See Remarks
below for a complete list of valid values.

Return Values

If valid parameters are used, and if the database if open, this function will return the
requested information. Otherwise, zero (0) will be returned.

Remarks

A Primary Key is a column (or a set of columns) that uniquely identifies a row in a
table. See Primary Keys »p203 for more information.

Please note that not all of the information that is available about a table's Primary
Keys is useful in numeric form. For a list of lInfoType& values that can be used to
obtain string information about a table's Primary Keys, see SQL_TblPKeyInfoStr

»p815.

In order to obtain numeric information about a table's Primary Keys, the lInfoType&
parameter must have the following value:

%PKEY_SEQ

The Primary Key's column sequence number in key, starting with 1. If a
Primary Key is made up of two or more columns (in order to provide a unique

 814

value), this lInfoType& can be used to determine the order in which the
columns are assembled.

%PKEY_TABLE_CATALOG,
%PKEY_TABLE_SCHEMA,
%PKEY_TABLE_NAME,
%PKEY_COLUMN_NAME, and
%PKEY_KEY_NAME

See SQL_TblPKeyInfoStr »p815

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to two
driver-defined information types. You can use the lInfoType& values
%PKEY_DRIVERDEF_7 and %PKEY_DRIVERDEF_8 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value. It can, however, generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

SQL_TblPKeyCount »p812

 815

SQL_TblPKeyInfoStr

Summary

Provides information about a Primary Key »p203, in string form.

Twin

SQL_TablePrimaryKeyInfoStr »p759

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_TblPKeyInfoStr(lTableNumber&, _
 lKeyNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lKeyNumber&
The number of a Primary Key, between one (1) and the number returned by
the SQL_TblPKeyCount »p812 function.

lInfoType&
The type of string information that is being requested. See Remarks below
for a complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, and if the database if open, this function will return the
requested information. Otherwise, an empty string will be returned.

Remarks

A Primary Key is a column (or a set of columns) that uniquely identifies a row in a
table. See Primary Keys »p203 for more information.

Please note that not all of the information that is available about a table's Primary
Keys is useful in string form. For a list of lInfoType& values that can be used to
obtain numeric information about a table's Primary Keys, see SQL_TblPKeyInfo

»p813.

In order to obtain string information about a table's Primary Keys, the lInfoType&
parameter must be one of the following values:

 816

%PKEY_TABLE_CATALOG,
%PKEY_TABLE_SCHEMA, and
%PKEY_TABLE_NAME

The catalog, schema, and table names that are associated with the Primary
Key.

%PKEY_COLUMN_NAME

The column name of the Primary key.

%PKEY_KEY_NAME

The Primary Key's name.

%PKEY_SEQ See SQL_TblPKeyInfo »p813.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to two
driver-defined information types. You can use the lInfoType& values
%PKEY_DRIVERDEF_7 and %PKEY_DRIVERDEF_8 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Unique Columns »p203

 817

SQL_TblPrivCount

Summary

Provides the number of Table Privileges »p206 that a table has.

Twin

SQL_TablePrivilegeCount »p760

Family

Table Info Family »p236

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblPrivCount(lTableNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

Return Values

If the lTableNumber& parameter is valid, and if the database is open, this function will
return the number of Table Privileges that are associated with a table.

Remarks

A Table Privilege »p206 is an "access right" that is granted to a user, called the
Grantee, by another user, called the Grantor. For example, if Table Privileges have
been specified for a certain table like PAYROLL, a certain user may have a SELECT
privilege (the right to use the SELECT statement to retrieve data from the table) but
not an UPDATE privilege (the right to change the values in the table). Other users
might not have any rights to access the PAYROLL table in any way.

This function returns the total number of Table Privileges that have been defined for a
table.

See Table Privileges »p206 for more information. Also compare Column Privileges

»p206.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "this table has one Table Privilege". It can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

 818

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Table Info Family »p236

 819

SQL_TblPrivInfoStr

Summary

Provides information about a Table Privilege »p206, in string form.

Twin

SQL_TablePrivilegeInfoStr »p761

Family

Table Info Family »p236

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_TblPrivInfoStr(lTableNumber&, _
 lPrivilegeNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lPrivilegeNumber&
The number of a Table Privilege, between one (1) and the number returned
by the SQL_TblPrivCount »p817 function.

lInfoType&
The type of information that is being requested. See Remarks below for a
complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, and if the database is open, this function will return the
requested information. Otherwise, it will return an empty string.

Remarks

A Table Privilege »p206 is an "access right" that is granted to a user, called the
Grantee, by another user, called the Grantor. For example, if Table Privileges have
been specified for a certain table like PAYROLL, a certain user may have a SELECT
privilege (the right to use the SELECT statement to retrieve data from the table) but
not an UPDATE privilege (the right to change the values in the table). Other users
might not have any rights to access the PAYROLL table in any way.

See Table Privileges »p206 for more information. Also compare Column Privileges

»p206.

To obtain information about a Table Privilege, use one of the following lInfoType&
values:

 820

%TABLE_PRIV_GRANTEE

The name of the user to whom the privilege has been granted.

%TABLE_PRIV_GRANTOR

The name of the user that granted the privilege. If the value of
%TABLE_PRIV_GRANTEE (just above) is the owner of the table, the
%TABLE_PRIV_GRANTOR value will be "_SYSTEM".

%TABLE_PRIV_IS_GRANTABLE

Indicates whether or not the grantee is permitted to grant the privilege to
other users.

This lInfoType& will return "YES" or "NO", or an empty string if the grantability
is unknown or is not applicable to the Datasource.

%TABLE_PRIV_NAME

A name that was given to this privilege by SQL Tools.

%TABLE_PRIV_PRIVILEGE

Identifies the privilege that is granted. May be one of the following values, or
other values that are supported by the Datasource. Please note that the
quotation marks that are shown below are not part of the value that will be
returned by this lInfoType&.

"SELECT" (The grantee is permitted to retrieve data from the table)

"INSERT" (The grantee is permitted to insert new rows into the table.)

"UPDATE" (The grantee is permitted to update data in the table.)

"REFERENCES" (The grantee is permitted to refer to the table within a
constraint (for example, a unique, referential, or table-check constraint).

The scope of action that is given to the grantee by a given Table Privilege is
datasource-dependent. For example, an UPDATE privilege might permit the
grantee to update all of the columns in a table on one Datasource, but only
those columns for which the grantor has the UPDATE privilege on another
Datasource.

%TABLE_PRIV_TABLE_CATALOG, %TABLE_PRIV_TABLE_SCHEMA, and
%TABLE_PRIV_TABLE_NAME

The catalog, schema, and table name to which the privilege applies.

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to four
driver-defined information types. You can use the lInfoType& values
%TABLE_PRIV_DRIVERDEF_9 through %TABLE_PRIV_DRIVERDEF_12 to

 821

access this information. If your ODBC driver supports them, the driver-
defined data will be returned. If not, $ESC (the "escape" character
CHR$(27)) will be returned. This allows your program to distinguish
between an unsupported field and a supported field which contains an empty
string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None

See Also

Table Info Family »p236

 822

SQL_TblRowCount NEW

Summary

Returns the number of rows that a table contains.

Twin

SQL_TableRowCount »p762

Family

Table Info Family »p236

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblRowCount(lTableNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

Return Values

This function returns the number of rows that a table contains. If an error is detected,
negative one (-1) is returned. Zero (0) may be returned if the value is not available
from the datasource; see %STAT_ENSURE below.

Remarks

A table's row count is also known as the "cardinality" of the table. Unlike some table
information this is a dynamic value; if rows are added to a table while your program is
running, SQL_TblRowCount will return the updated value.

When SQL Tools requests a row count from the ODBC driver, it can ask for a certain
level of "confidence" about the values that are returned. The default confidence level
is %STAT_ENSURE, which tells the ODBC driver to retrieve the statistic
"unconditionally". You can also use %STAT_QUICK, which tells the driver to retrieve
the statistic only if it is readily available. In this case, the ODBC driver does not
ensure that the values are current, and zero (0) may be returned. To change the
confidence level for this function, use the SQL_SetOption »p681

(%OPT_STAT_ENSURE) function.

Diagnostics

This function can generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

lResult& = SQL_TblRowCount(1)

Driver Issues

 823

ODBC drivers that conform only to the X/Open standard and do not support ODBC
extensions will not be able to use %STAT_ENSURE, which is the default confidence
level. Applications that are written for drivers which use the X/Open standard will
always get %STAT_QUICK behavior from ODBC 3.x-compliant drivers.

Speed Issues

None.

See Also

SQL_TblStatInfo »p824

 824

SQL_TblStatInfo

Summary

Provides a Table Statistic, in numeric form.

Twin

SQL_TableStatisticInfo »p763

Family

Table Info Family »p236

Availability

SQL Tools Pro only (see »p29)

Warnings

Because Table Statistics can change very rapidly (as rows are added and deleted
from a table), this information is not cached »p200 by SQL Tools. The process that is
required to access Table Statistic information is relatively time-consuming, so using
this function repeatedly may cause your program to slow down significantly.

Also, ODBC drivers »p76 that conform only to the X/Open standard and do not support
ODBC extensions may not be able to use this function unless a particular SQL Tools
Option is set. See Remarks below for more information.

Syntax

lResult& = SQL_TblStatInfo(lTableNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lInfoType&
The type of information that is being requested. See Remarks below for a
complete list of valid values.

Return Values

If valid parameters are used, and if the database is open, and if the ODBC driver can
supply Table Statistics, this function will return the requested information. Otherwise,
it will return zero (0).

Remarks

A Statistic is an ODBC data structure that contains very basic information about a
table. Specifically, this term refers to a single structure that contains both 1) the
number of rows in a table, and 2) the number of pages that are used to store the
table.

You can use one of the following lInfoType& values to obtain Statistic information
about a table:

%TABLESTAT_PAGECOUNT

The number of pages that are used to store the table. Zero (0) may be

 825

returned if the value is not available from the datasource (see
%STAT_ENSURE below), or if "pages" are not applicable to the Datasource.

%TABLESTAT_ROWCOUNT

The number of rows that are currently in the table. Zero (0) may be returned
if the value is not available from the datasource; see %STAT_ENSURE below.
(The row count is also known as the "cardinality" of the table.)

When SQL Tools requests a statistic from the ODBC driver, it can ask for a certain
level of "confidence" about the values that are returned. The default confidence level
is %STAT_ENSURE, which tells the ODBC driver to retrieve the statistic
"unconditionally". You can also use %STAT_QUICK, which tells the driver to retrieve
the statistic only if it is readily available. In this case, the ODBC driver does not
ensure that the values are current, and zero (0) may be returned. To change the
confidence level for this function, use the SQL_SetOption »p681

(%OPT_STAT_ENSURE) function.

IMPORTANT NOTE: ODBC drivers that conform only to the X/Open standard and do
not support ODBC extensions will not be able to use %STAT_ENSURE, which is the
default confidence level. Applications that are written for drivers which use the
X/Open standard will always get %STAT_QUICK behavior from ODBC 3.x-compliant
drivers.

Diagnostics
This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "this table has one row". It can, however, generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Warnings and Remarks above.

See Also

Table Info Family »p236

 826

SQL_TblStatInfoStr NEW

Summary

Provides numeric table statistics in string form. More usefully, this function can return
Info/Attribute Labels »p193.

Twin

SQL_TableStatisticInfoStr »p764

Family

Table Info Family »p236

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_TblStatInfoStr(lTableNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lInfoType&
One of the equates listed in Remarks below.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

This function returns a string containing the requested information.

Remarks

For detailed information about Table Statistics, see SQL_TblStatInfo »p824.

lInfoType& must be one of the following:

%TABLE_STAT_ROW_COUNT

The number of rows that the table currently contains. This is the
same information returned by SQL_TblRowCount »p822.

%TABLE_STAT_PAGE_COUNT

The number of pages that the table currently contains. The definition
of "page" varies from DBMS to DBMS, but it is usually a rough
indicator of data volume.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It

 827

can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

sResult$ = SQL_TblStatInfoStr(1, %TABLE_STAT_ROW_CO UNT)

...or...

sResult$ = SQL_TblStatInfoStr(%INFO_LABEL,
%TABLE_STAT_ROW_COUNT)

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

None.

See Also

SQL_TblRowCount »p822

 828

SQL_TblUColCount

Summary

Returns the number of columns that are used to create a unique key »p203 for a table.

Twin

SQL_TableUniqueColumnCount »p765

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblUColCount(lTableNumber&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

Return Values

If a valid lTableNumber& is used, and if the database is open, this function will return
the number of columns that are used to create a unique key for the table.

Remarks

A Unique Column is a column that is used in the construction of a Unique Key. A
Unique Key can be used to identify a certain row of a database, without ambiguity.

For more information, see Unique Columns »p203.

This function returns the number of columns that you must use when constructing a
Unique Key for a table. (The names of the columns can be identified with the
SQL_TblUColInfoStr »p832 function.)

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value like "this table has one unique column". It can, however, generate ODBC Error
Messages »p181 and SQL Tools Error Messages.

Example See Unique Columns »p203.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues See Cached Information »p200.
See Also Table Column Info Family »p237

 829

SQL_TblUColInfo

Summary

Provides information about a Unique Column »p203, in numeric form.

Twin

SQL_TableUniqueColumnInfo »p766

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_TblUColInfo(lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Parameters
lTableNumber&

The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lColumnNumber&
The number of a unique column, between one (1) and the number returned
by the SQL_TblUColCount »p828 function (not the SQL_TblColCount »p774
function).

lInfoType&
The type of numeric information that is being requested. See Remarks
below for a complete list of valid values.

Return Values

If valid parameters are used, and if the database is open, this function will return the
requested information. Otherwise, zero (0) will be returned.

Remarks

A Unique Column is a column that is used in the construction of a Unique Key, which
is also called a Row ID. A Row ID can be used to identify a certain row of a
database, without ambiguity.

For more information, see Unique Columns »p203.

Please note that not all of the information about a table's Unique Columns is useful in
numeric form. For a list of lInfoType& values that can be used to obtain string
information about a Unique Column, see SQL_TblUColInfoStr »p832.

In order to obtain numeric information about an Index, the lInfoType& parameter must
be one of the following values:

%UCOL_BUFFER_LENGTH

The buffer size »p116 of the column.

 830

%UCOL_COLUMN_NAME
See SQL_TblUColInfoStr »p832.

%UCOL_COLUMN_SIZE

The display size »p119 of the column.

%UCOL_DATA_TYPE

The SQL data type »p87 of the column, such as %SQL_INTEGER or
%SQL_CHAR. (See SQL_TblUColInfoStr »p832 for the datasource-
dependent data type »p108 name, such as "COUNTER".)

%UCOL_DECIMAL_DIGITS

The decimal digits »p120 of the column.

%UCOL_PSEUDO_COLUMN

Indicates whether or not the column is a pseudo-column, such as an Oracle
ROWID column. One of the following values will be returned:

%SQL_PC_PSEUDO
%SQL_PC_NOT_PSEUDO
%SQL_PC_UNKNOWN

%UCOL_SCOPE

When SQL Tools requests Unique Column information for your program, it
uses the default "scope" of %SQL_SCOPE_SESSION (see below). Your
program can use the SQL_SetOption »p681(%OPT_UNIQUE_SCOPE)
function to change this default. The Unique Column information that is
returned by the ODBC driver is always of equal-or-greater scope than the
request. Since %SQL_SCOPE_SESSION is the greatest scope value, unless
you change the default scope, this lInfoType& will always return
%SQL_SCOPE_SESSION.

If you change the default scope by using SQL_SetOption , this lInfoType&
will return the actual scope of the Unique Column. In that case, this
lInfoType& can return any of the following values:

%SQL_SCOPE_CURROW (The Row ID is guaranteed to be valid only while
positioned on that row. A later SELECT... WHERE using the Row ID may
not return the row if it was updated or deleted by another transaction.)

%SQL_SCOPE_TRANSACTION (The Row ID is guaranteed to be valid for the
duration of the current transaction.)

%SQL_SCOPE_SESSION (The Row ID is guaranteed to be valid for the
duration of the session, i.e. across transaction boundaries.)

%UCOL_TYPE_NAME

See SQL_TblUColInfoStr »p832.

 831

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to four
driver-defined information types. You can use the lInfoType& values
%UCOL_DRIVERDEF_9 through %UCOL_DRIVERDEF_12 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because an Error Code like
%SQL_SUCCESS_WITH_INFO (value 1) could be confused with a legitimate return
value. It can, however, generate ODBC Error Messages »p181 and SQL Tools Error
Messages.

Example

None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information »p200.

See Also

Table Column Info Family »p237

 832

SQL_TblUColInfoStr

Summary

Provides information about a Unique Column »p203, in string form.

Twin

SQL_TableUniqueColumnInfoStr »p767

Family

Table Column Info Family »p237

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

sResult$ = SQL_TblUColInfoStr(lTableNumber&, _
 lColumnNumber&, _
 lInfoType&)

Parameters

lTableNumber&
The number of a table, between one (1) and the number returned by the
SQL_TblCount »p790 function.

lColumnNumber&
The number of a unique column, between one (1) and the number returned
by the SQL_TblUColCount »p828 function (not the SQL_TblColCount »p774
function).

lInfoType&
The type of string information that is being requested. See Remarks below
for a complete list of valid values.

For information about using %INFO_LABEL and %INFO_FORMAT see Info/Attribute
Labels »p193.

Return Values

If valid parameters are used, and if the database is open, this function will return the
requested information. Otherwise, an empty string is returned.

Remarks

A Unique Column is a column that is used in the construction of a Unique Key, which
is also called a Row ID. A Row ID can be used to identify a certain row of a
database, without ambiguity.

For more information, see Unique Columns »p203.

Please note that not all of the information about a table's Unique Columns is useful in
string form. For a list of lInfoType& values that can be used to obtain numeric
information about a Unique Column, see SQL_TblUColInfo »p829.

 833

In order to obtain string information about an Index, the lInfoType& parameter must
be one of the following values:

%UCOL_BUFFER_LENGTH See SQL_TblUColInfo »p829.

%UCOL_COLUMN_NAME

The column's name.

%UCOL_COLUMN_SIZE
%UCOL_DATA_TYPE
%UCOL_DECIMAL_DIGITS
%UCOL_PSEUDO_COLUMN
%UCOL_SCOPE

See SQL_TblUColInfo »p829.

%UCOL_TYPE_NAME

The datasource-dependent data type »p108 name, such as "INTEGER" or
"COUNTER".

DRIVER-DEFINED DATA

In addition to the standard ODBC values, SQL Tools also supports up to four
driver-defined information types. You can use the lInfoType& values
%UCOL_DRIVERDEF_9 through %UCOL_DRIVERDEF_12 to access this
information. If your ODBC driver supports them, the driver-defined data will
be returned. If not, $ESC (the "escape" character CHR$(27)) will be
returned. This allows your program to distinguish between an unsupported
field and a supported field which contains an empty string.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. It
can, however, generate ODBC Error Messages »p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

Speed Issues

See Cached Information.

See Also

Table Column Info Family »p237

 834

SQL_TextDate V2

This SQL Tools Version 2 function has been replaced by SQL_DateTimePartStr

»p315 in Version 3.

 835

SQL_TextDateTime V2

This SQL Tools Version 2 function has been replaced by SQL_DateTimePartStr

»p315 in Version 3.

 836

SQL_TextStr

Summary

This function can be used to convert a string to an all-text format, replacing non-
printable characters with printable strings.

Twin

None

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_TextStr(sString$)

Parameters

sText$
Any string. See Remarks for details.)

Return Values

These functions will return a copy of sString$ with the non-printable characters
replaced by the [hXX] notation, where XX is the two-digit Hex Value of the character.
See Remarks below for more information.

Remarks

Unless you change the default options that affect these functions (see below), they
will make a copy of the sString$ parameter, and replace any characters with ASCII
values below 32 (the space character) with the following notation:

[hXX]

The resulting string will then become the return value of the function.

Examples:

[h00] is CHR$(0) aka $NUL
[h0A] is CHR$(10) aka $LF or CHR$(&h0A)
[h0D] is CHR$(13) aka $CR or CHR$(&h0D)
A is CHR$(65)
z is CHR$(122)
[hFF] is CHR$(255)

You can change the range of characters that are considered to be non-printable by
using the SQL_SetOption »p681(%OPT_MIN_TEXTCHAR) and
SQL_SetOption(%OPT_MAX_TEXTCHAR) functions.

The SQL_BinaryStr »p268 function can be used to re-convert a text string into a

 837

string that contains all of the original characters.

Diagnostics

These functions will return a SQL Tools Error Message »p181 only if the
%OPT_MIN_TEXTCHAR value is larger than the %OPT_MAX_TEXTCHAR value.

Example

sString$ = "HELLO"+CHR$(10,13)+"WORLD"
PRINT sString$
PRINT "-----"
PRINT SQL_TextStr(sString$)

Results:

HELLO
WORLD

HELLO[h0D][h0A]WORLD

Driver Issues

None.

Speed Issues

None.

See Also

Utility Family »p249

 838

SQL_TextTime V2

This SQL Tools Version 2 function has been replaced by SQL_DateTimePartStr

»p315 in Version 3.

 839

SQL_Thread

Summary

Tells SQL Tools about your multithreaded »p224 program. Also used for the
Asynchronous Execution of SQL Statements »p125.

Twin

None.

Family

Configuration Family »p231

Availability
SQL Tools Pro only (see »p29)

Warning

See Multithreaded Programs »p224.

Not all ODBC Drivers support multi-threading.

Syntax

lResult& = SQL_Thread(lOperation&, _
 lThreadNumber&)

Parameters

lOperation&
One of the following constants: %THREAD_MAX, %THREAD_START, or
%THREAD_STOP. See Remarks below for details.

lThreadNumber&
Depending on the value of lOperation&, either a thread number, or the
maximum thread number that will be used.

Return Values

If the requested operation is successful, %SQL_SUCCESS will be returned. Otherwise,
a SQL Tools Error Code »p180 will be returned.

Remarks

For background information, see Multithreaded Programs »p224.

%THREAD_MAX

If lOperation& is %THREAD_MAX, then lThreadNumber& tells SQL Tools the
maximum thread number that your program will be using. The
%THREAD_MAX function can only be used by your program's primary thread
(thread zero), i.e. the thread that is created by the WINMAIN or PBMAIN
function. If you attempt to use %THREAD_MAX from a secondary thread (one
that was launched with THREAD CREATE), an Error Message will be
generated and the operation will not be performed.

The maximum thread number cannot be less than zero (0) or greater than the
value of this formula:

SQL_Option »p544(%OPT_MAX_DB_NUMBER) *
SQL_Option(%OPT_MAX_STMT_NUMBER)

 840

The %THREAD_MAX function may be used more than once by your program,
under the following conditions:

You may use %THREAD_MAX to increase the maximum thread number at any
time.

You may use %THREAD_MAX to decrease the maximum thread number, as
long as there are no threads currently running which have thread numbers
that are greater than the new maximum. For example, if thread number 5 is
running you may not specify a new maximum thread number that is less than
5. If you attempt to do so, the operation will be ignored and an Error
Message will be generated.

If your program does not use threads, it is not necessary to specify a
%THREAD_MAX value of zero (0).

%THREAD_START

If lOperation& is %THREAD_START, SQL Tools will create a new Error Stack

»p181 for thread number lThreadNumber&. The %THREAD_START function
can only be used from within a secondary thread, i.e. from within a thread
that has been launched with the THREAD CREATE statement. If your
program's primary thread (the thread that is started by WINMAIN or PBMAIN)
attempts to use %THREAD_START, an Error Message will be generated and
the operation will be ignored.

%THREAD_START must be used once and only once by each thread,
preferably as the first statement that is executed by a new thread. It must be
used before the new thread uses any other SQL Tools functions. (Threads
which do not use any SQL Tools functions at all should not use SQL_Thread
%THREAD_START.)

%THREAD_STOP

If lOperation& is %THREAD_STOP, SQL Tools will destroy the Error Stack for
thread number lThreadNumber&. The %THREAD_STOP function can only be
used from within a secondary thread, i.e. from within a thread that has been
launched with the THREAD CREATE statement. If your program's primary
thread (the thread that is started by WINMAIN or PBMAIN) attempts to use
%THREAD_STOP, an Error Message will be generated and the operation will
be ignored.

%THREAD_STOP must be used once and only once by each thread, preferably
as the last statement that is executed by a thread before it terminates. A
thread must not use any other SQL Tools function after a %THREAD_STOP.

Diagnostics

This function can return Error Codes »p180, and it can generate SQL Tools Error
Messages »p181.

Example

See Multithreaded Programs »p224.

 841

Driver Issues
Not all ODBC drivers support multithreading. See Multithreaded Programs »p224 for
more information.

Speed Issues

Using a %THREAD_MAX value that is significantly larger than necessary can, under
certain circumstances, slow down a program very slightly. This is especially true if
low-numbered threads are left unused.

See Also

 Multithreaded Programs »p224

 842

SQL_ToolsVersion

Summary

Returns the version number which is embedded in the SQL Tools Runtime File that
has been loaded by your program.

Twin

None.

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_ToolsVersion

Parameters

None.

Return Values

This function will return a positive number greater than 100 if SQL Tools Pro »p29 is
loaded, or a negative number less than -100 if SQL Tools Standard »p29 is loaded.

An absolute value of 300 represents SQL Tools Version 3.00 , an absolute value of
301 represents version 3.01 , and so on.

Remarks

If your program relies on features that are present only in SQL Tools Pro »p29, or if it
relies on a certain revision level of the Runtime Files being installed, you should use
this function to check the version number when your program is first started.

Keep in mind that the Runtime Files that you provided with your program may have
been overwritten by another application's installation program. Or an old version of
the SQL Tools Runtime Files may have been restored from a backup tape. Or more
than one SQL Tools Runtime File may exist (in different directories, of course) and
your program may be using the wrong one.

Diagnostics

None.

Example

PRINT SQL_ToolsVersion

Driver Issues None.
Speed Issues None.
See Also Utility Family »p249

 843

SQL_ToolsVersionStr NEW

Summary

Provides version, build date/time, and other data about SQL Tools.

Twin

None

Family

Utility Family »p249

Availability

Standard and Pro

Warning

None.

Syntax

sResult$ = SQL_ToolsVersionStr(lInfoType&)

Parameters

lInfoType&
One of the equates listed in Remarks below.

Return Values

This function returns a string that contains the requested information

Remarks

lInfoType& must be one of the following values:

%SQL_BUILD_DATE

The date on which the current SQL Tools DLL »p71 or PBLIB »p68 file
was compiled, in the form YYYY/MM/DD.

%SQL_BUILD_ID

A 16-character (or longer) string that Perfect Sync can use to identify
beta test versions, special builds, etc.

%SQL_BUILD_TIME

The time at which the current SQL Tools DLL »p71 or PBLIB »p68 file
was compiled, in the form HH:MM:SS.

%SQL_COPYRIGHT

A string like Copyright (C) 2011, Perfect Sync, Inc .

%SQL_TOOLS_CONTACT

An email address where SQL Tools technical support can be
obtained.

 844

%SQL_TOOLS_NAME

Either SQL Tools Standard or SQL Tools Pro .

%SQL_VERSION

A string version of the information provided by SQL_ToolsVersion

»p842.

Diagnostics

This function does not return Error Codes »p180 because it returns string values. If
you use an invalid lInfoType&, no error message is generated.

Example

'PB/CC
PRINT SQL_ToolsVersionStr(%SQL_BUILD_DATE)

...or...

'PB/Win
MSGBOX SQL_ToolsVersionStr(%SQL_BUILD_DATE)

Driver Issues

None.

Speed Issues

None.

See Also

SQL_ToolsVersion »p842

 845

SQL_Trace IMPROVED

Summary

Turns program tracing »p186 on and off, and selects various levels of tracing.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

See Speed Issues below.

Syntax

lResult& = SQL_Trace(lOnOff&, _
 OPTIONAL lFileNumber&)

Parameters
lOnOff&

One of the %TRACE_ values described in Remarks below.
OPTIONAL lFileNumber&

If you omit this parameter or use zero, SQL_Trace will automatically use
FREEFILE to choose a file number for the Trace File. If you specify a file
number with this parameter, SQL_Trace will use that number instead.

Return Values

This function normally returns %SQL_SUCCESS (zero). If you use an invalid value for
lOnOff&, %ERROR_BAD_PARAM_VALUE will be returned. If you have specified an
invalid Trace File name (see below) or if SQL Tools is unable to open the Trace File
for some other reason, an error between %ERROR_FIRST_RT_ERROR and
%ERROR_LAST_RT_ERROR will be returned. If your program calls this function when
the No Trace #LINK and Runtime files »p72 are being used,
%ERROR_CANNOT_BE_DONE will be returned.

Remarks

The Trace Mode »p186 creates a text file that records the use of SQL Tools functions,
for troubleshooting purposes. SQL Tools Functions are logged by name, and trace
file entries include all of the parameters that were passed to a function, all errors that
were detected, all return values, and certain other information that can be valuable
during troubleshooting.

The lOnOff& parameter must be one of the following:

%TRACE_ON activates the default Trace Mode.

A typical Trace File looks like this:

>SQL_Initialize|DB 2|STMT 2|COL 32|PARAM 3|ODBC 3|P OOL 0|VAL 0|RESV 0>
<SQL_SUCCESS<

>SQL_OpenDatabase|DB 1|CON$

 846

"\SQLTOOLS\SAMPLES\SQLTools_Example.DSN"|PROMPT 1>
<SQL_SUCCESS<

>SQL_Statement|DB 1|STMT 0|IMM|SQL: "SELECT * FROM ADDRESSBOOK">
<SQL_SUCCESS<

> indicates that a SQL Tools function has been called,
| separates the parameter values that were used, and
< indicates the value that was returned by the function.

If an Error Message »p179 is generated at any point, it will be shown in the
Trace File at the appropriate point.

Your program can add information to the Trace File by using the
SQL_TraceStr »p850 function.

%TRACE_OFF deactivates the Trace Mode.

%TRACE_RESET closes, deletes, and re-opens the trace file.

%TRACE_DETAILS activates the Detailed Trace Mode

A typical Trace File looks like this:

[71843.859] >SQL_Initialize|DB 2|STMT 2|COL 32|PARA M 3|ODBC 3|POOL
0|VAL 0|RESV 0>
[71843.859] | >SQL_ResetStatementMode|DB ALL|STM T ALL>
[71843.859] | | >SQL_ResetStatementMode|DB 1| STMT ALL>
[71843.859] | | | >SQL_ResetStatementMode| DB 1|STMT 1>
[71843.859] | | | <SQL_SUCCESS<
[71843.859] | | | >SQL_ResetStatementMode| DB 1|STMT 2>
[71843.859] | | | <SQL_SUCCESS<
[71843.859] | | <SQL_SUCCESS<
[71843.859] | | >SQL_ResetStatementMode|DB 2| STMT ALL>
[71843.859] | | | >SQL_ResetStatementMode| DB 2|STMT 1>
[71843.859] | | | <SQL_SUCCESS<
[71843.859] | | | >SQL_ResetStatementMode| DB 2|STMT 2>
[71843.859] | | | <SQL_SUCCESS<
[71843.859] | | <SQL_SUCCESS<
[71843.859] | <SQL_SUCCESS<
[71843.859] <SQL_SUCCESS<

[71843.859] >SQL_OpenDatabase|DB 1|CON$
"\SQLTOOLS\SAMPLES\SQLTools_Example"|PROMPT 1>
[71843.859] | >SQL_OpenDatabase1|DB 1>
[71843.859] | | |DB 1 is CLOSED
[71843.859] | <SQL_SUCCESS<
[71843.859] | Cursor Mode Set
[71843.859] | >SQL_OpenDatabase2|DB 1|CON$
"\SQLTOOLS\SAMPLES\SQLTools_Example.DSN"|PROMPT 1>
[71843.859] | | DSN File: \SQLTOOLS\SAMPLES\S QLTools_Example.DSN
[71843.875] | | CON$
DBQ=\SQLTools\Samples\SQLTools_Example.mdb;DefaultD ir=C:\SQLTools\Sampl
es;Driver={Microsoft Access Driver (*.mdb)};DriverI d=25;FIL=MS
Access;FILEDSN=\SQLTOOLS\SAMPLES\SQLTools_Example.D SN;ImplicitCommitSyn
c=Yes;MaxBufferSize=512;MaxScanRows=8;PageTimeout=5 ;SafeTransactions=0;
Threads=3;UID=admin;UserCommitSync=Yes;
[71843.875] | | Checking FetchScroll
[71843.875] | | FetchScroll OK
[71843.875] | | |DB 1 is now OPEN
[71843.875] | <SQL_SUCCESS<
[71843.875] <SQL_SUCCESS<

[71843.875] >SQL_Statement|DB 1|STMT 1|IMM|SQL: "SE LECT * from
ADDRESSBOOK">

 847

[71843.875] | |DB 1 is OPEN
[71843.875] | IMMEDIATE EXECUTION...
[71843.875] | >SQL_OpenStatement|DB 1|STMT 1>
[71843.875] | | |STMT 1 is currently CLOSED
[71843.875] | | |DB 1|STMT 1 is now OPEN
[71843.875] | <SQL_SUCCESS<
[71843.906] | >SQL_AutoBindColumn|DB 1|STMT 1|CO L ALL>
 ...and lots more...

Note that 1) a timestamp like [71843.906] has been added to each line, 2)
that if a SQL Tools function calls another SQL Tools function internally, the
function name, parameters, and results are shown indented from the main
call, and 3) certain additional information is shown.

For example, just above, when the main program called SQL_Statement ,
that function A) determined that the specified database number was open, B)
noted that a valid mode (IMMEDIATE execution) had been requested, and C)
called the SQL_OpenStatement function to begin the process of executing
the statement. The SQL_OpenStatement function then D) determined that
the specified statement number was not open, E) opened it, and F) returned
%SQL_SUCCESS to tell SQL_Statement that it had opened the statement
without error. SQL_Statement then called SQL_AutoBindColumn ... and
so on.

%TRACE_INTERNALS adds even more information to the Trace File.

[73250.718] >SQL_Statement|DB 1|STMT 1|IMM|SQL: "SE LECT * from
ADDRESSBOOK">
[73250.718] | |DB 1 is OPEN
[73250.718] | IMMEDIATE EXECUTION...
[73250.718] | @CIN
[73250.718] | >SQL_OpenStatement|DB 1|STMT 1>
[73250.718] | | |STMT 1 is currently CLOSED
[73250.718] | | apiAHSr=SQL_SUCCESS
[73250.718] | | apiSS1p=6,3
[73250.718] | | apiSS1r=SQL_SUCCESS
[73250.718] | | |DB 1|STMT 1 is now OPEN
[73250.718] | <SQL_SUCCESS<
[73250.718] | apiDIRr=SQL_SUCCESS
[73250.718] | >SQL_AutoBindColumn|DB 1|STMT 1|CO L ALL>

The blue highlighting will not actually appear in the Trace File.

Generally speaking, this level of detail is only used by Perfect Sync Tech
Support. Most of the additional information is very cryptic.

%TRACE_RAW is also known as "extreme tracing". Very large amounts of information,
including binary data, is added to the file. We strongly recommend that you use this
Trace Mode only under direction from Perfect Sync.

%TRACE_ODBC activates the ODBC Trace Mode »p187.

Whenever tracing is turned on, your program can optionally add information to the
trace file by using the SQL_TraceStr »p850 function. Using SQL_TraceStr while
tracing is turned off has no effect; no error message is generated.

When you examine a trace file you will probably notice that "abbreviated »p55"
functions (see) are always logged as "verbose »p55" functions. For example, if you

 848

use SQL_TblCount in your program you will see SQL_TableCount in the trace file:
This is done so that you can see exactly what your program is doing when it uses an
abbreviated function.

The name of the default Trace File is based on the name and location of your
program. For example if your program is C:\MyFolder\MyProgram.EXE the
default Trace File file would be C:\MyFolder\MyProgram.TRACE . You can
change the file name by using the SQL_SetOptionStr »p682

(%OPT_TRACE_FILE,sFilename$) function, where sFilename$ is the name and
optional drive/path of a file. If you change this value but do not specify a valid
filename, the SQL_Trace function will fail to activate the trace mode. If you change
the Trace File name while the Trace Mode is turned on, SQL Tools will automatically
close the current file and open the new one.

By default, the Trace Mode appends an existing trace file. You can instruct SQL
Tools to overwrite a trace file each time the Trace Mode is turned on, by using the
SQL_SetOption »p681(%OPT_TRACE_APPEND, 0) function. If your program
switches tracing on and off repeatedly, keep in mind that this option overwrites the old
trace file every time that tracing is switched on.

Diagnostics

None.

Example

See Remarks above.

Driver Issues

None.

Speed Issues

Because it involves the creation of a large text file, the use of the SQL Tools Trace
Mode can greatly slow down a program. One of our very small test programs took
7.26 seconds to execute when the Detailed Trace Mode was turned on, but less
than 0.05 seconds with tracing turned off. And the slowdown can be made much
worse if the ODBC Trace Mode »p187 is used at the same time, or if an existing Trace
File is being appended (which is the default behavior). Instead of activating the Trace
Mode at the very beginning of your program, we suggest that you attempt to isolate a
small section of code that is likely to be causing a problem, and turn the Trace Mode
on then off again as quickly as possible.

Also please note that SQL Tools often uses its own functions internally, as shown in
the examples, so it is possible for a single function to create a huge trace file. The
SQL Tools Info functions, in particular, can create very large volumes of text for a
simple function like SQL_TableCount .

See Also

Error/Trace Family »p248

 849

SQL_TraceSInt V2

This SQL Tools Version 2 function has been replaced by SQL_TraceStr »p850 in
Version 3. SQL_TraceStr can be used to add both strings and numbers to a trace
file.

 850

SQL_TraceStr

Note that the SQL Tools Version 2 SQL_TraceStr OLE function has been replaced
by SQL_TraceStr in Version 3.

Summary
These functions are used to add a string value to a Trace File »p186.

Twin

None.

Family

Error/Trace Family »p248

Availability

Standard and Pro

Warning

See SQL_Trace »p845.

Syntax

SQL_TraceStr sString$

Parameters

sString$
Any string.

Return Values

These functions always returns %SQL_SUCCESS, so it is safe to ignore their return
values.

Remarks

When the trace mode »p186 is turned on with the SQL_Trace »p845 function, SQL Tools
creates a trace file which contains the names all of the SQL Tools functions that are
used, including the parameters that are passed to them, the values that they return,
and any errors that are detected. It's possible, however, that it will still be difficult to
troubleshoot a problem because you can't "see" the variables in your program.

You can add strings like "PROBLEM HERE?" (or anything else) to the trace file by
using the SQL_TraceStr function. If the trace mode is turned on when the function
is executed, the string will be added to the trace file.

The SQL_TraceStr function automatically uses the SQL_TextStr »p836 function to
convert the sString$ parameter into a printable form, so you don't have to worry about
accidentally adding a character like CHR$(26) , which many editors recognize as an
end-of-file marker, to your trace file.

Diagnostics

None.

Example

SQL_TraceStr "X& VALUE =" + STR$(X&)

 851

Driver Issues

None.

Speed Issues

Using the Trace Mode can significantly slow down your program.

See Also

Error/Trace Family »p248

 852

SQL_UnbindCol

Summary

Unbinds »p158 one column (or all columns, or all Long columns) of a result set.

Twin

SQL_UnbindColumn »p854

Family

Result Column Binding Family »p245

Availability

Standard and Pro

Warning

You should not attempt to use this function with the Microsoft Visual FoxPro ODBC
driver. See Driver Issues below.

Syntax

lResult& = SQL_UnbindCol(lColumnNumber&)

Parameters

lColumnNumber&
The number of a result column, between one (1) and the number returned by
the SQL_ResColCount »p584 function. You can also use the value
%ALL_COLs or %LONG_COLs_ONLY. See Remarks below for more
information.

Return Values

This function will return %SQL_SUCCESS or %SQL_SUCCESS_WITH_INFO if the
requested unbind operation is successful, or an Error Code »p180 if it is not.

Remarks

See Result Column Binding »p145 for background information.

It is not usually necessary, but it is possible to un-bind a column of a result set, i.e. to
eliminate the relationship between a result column and its SQL Tools memory buffer.

If you use a number for lColumnNumber&, that column will be unbound. It the
column is not bound when the function is used, %ERROR_COL_NOT_BOUND will be
returned.

If you use %ALL_COLs, all currently-bound columns will be unbound. No Error Code
will be returned if some result columns are not bound when the function is used.

If you use %LONG_COLs_ONLY, all currently-bound %SQL_LONGVARCHAR,
%SQL_LONGVARBINARY, and %SQL_wLONGVARCHAR columns will be unbound. No
Error Code will be returned if some Long result columns are not bound when the
function is used.

It is not necessary for your programs to use the SQL_UnbindCol function to
"manually" unbind the columns of a result set before using the SQL_CloseStmt or
SQL_CloseDB function. SQL Tools automatically unbinds result columns as

 853

necessary.

Diagnostics

This function returns Error Codes »p180, and can generate ODBC Error Messages

»p181 and SQL Tools Error Messages.

Example

None.

Driver Issues

This function is supported by most but not all ODBC Drivers. The SQL_FuncAvail

»p446 function can be used to determine a driver's capabilities.

The Microsoft Visual FoxPro ODBC Driver has been observed refusing to unbind
individual result columns when the standard ODBC technique is used. SQL Tools
uses the standard technique, so the SQL_UnbindCol function may fail unexpectedly
when it is used with a FoxPro database. (The ODBC specification does not provide
an alternate technique for unbinding individual columns.) An error message that says
"Restricted data type attribute violation " is usually generated, with
SQL State »p897 07006 .

This FoxPro ODBC driver restriction is a serious problem only if your program needs
to unbind individual result columns. The Visual FoxPro ODBC driver is apparently not
capable of doing that. In all other circumstances, SQL Tools automatically uses a
"backup" technique that is guaranteed to unbind all of a statement's result columns at
the same time, so this error message can usually be safely ignored.

Speed Issues

It is very slightly faster to avoid binding a column than to bind it (using the
AutoAutoBind feature) and then to unbind it with this function.

See Also

Result Column Binding (Basic) »p145, Result Column Binding (Advanced) »p158

 854

SQL_UnbindColumn

Syntax

lResult& = SQL_UnbindColumn(lDatabaseNumber&, _
 lStatementNumber&, _
 lColumnNumber&)

Except for the lDatabaseNumber& and lStatementNumber& parameters,
SQL_UnbindColumn is identical to SQL_UnbindCol »p852. To avoid errors when
this document is updated, and to reduce the size of the Help Files, information that is
common to both functions is not duplicated here.

For more information about using lDatabaseNumber& and lStatementNumber& in the
various SQL Tools "verbose functions »p55", please see Using Database Numbers and
Statement Numbers »p197.

 855

SQL_UpdateBLOB NEW

Summary

Updates the contents of a Long Column »p167, i.e. a database column that can contain
data between zero (0) bytes and one gigabyte in length. The contents are usually not
in the form of human-readable text.

Twin

None.

Family

Statement Family »p240

Availability

SQL Tools Pro only (see »p29)

Warning

None.

Syntax

lResult& = SQL_UpdateBLOB(lDatabaseNumber&, _
 sTableName$, _
 sColumnName$, _
 sWhereClause$, _
 sValue$)

Parameters

lDatabaseNumber&
The number of a database. See Using Database Numbers and Statement
Numbers »p197.

sTableName$
The name of a table that exists in lDatabaseNumber&.

sColumnName$
The name of the column in sTableName$ that is to be updated.

sWhereClause$
A string containing a valid WHERE clause, to specify which row(s) in
sTableName$ should be updated. The keyword WHERE itself is optional.

sValue$
1) A string containing the data to be inserted into the specified row(s) or
2) The string FILE= followed immediately by the name of the file that
contains the data to be inserted into the specified row(s).

Return Values

This function returns %SQL_SUCCESS if the operation was successful, or a SQL
Tools Error Code »p179 if it failed.

Remarks

This function is used to update the data in Long Columns »p167, especially
%SQL_LONGVARBINARY »p105 or "BLOB" (Binary Large OBject) columns. Microsoft
Access refers to BLOBs as "OLE Objects".

This type of column is often used for images, sounds, documents, and executable
programs, Technically speaking the string does not have to be "long" and it does not

 856

have to contain non-text characters to be considered a BLOB. A BLOB can be
anything, but it is usually large and binary.

First, identify the database, table, and column that you want to update. Then
construct a WHERE clause that identifies the row(s) of the table that you want to
update. See Appendix A: SQL Statement Syntax »p862 for more information about
WHERE.

The actual data can be specified in either of two forms. Either 1) place the data in a
string variable and pass it to SQL_UpdateBLOB via the sValue$ parameter, or 2)
place the data in a disk file, and pass the name of the file via sValue$, prefixed with
FILE= . See Example below.

Diagnostics

This function returns Error Codes »p180 and can generate ODBC Error Messages »p181
and SQL Tools Error Messages.

Example

'Assuming that sValue$ contains the data to be save d...
lResult& = SQL_UpdateBLOB(1, "Customer","Photo","WH ERE CUSTID =
123", sValue$)

'Note that the WHERE keyword is optional.
lResult& = SQL_UpdateBLOB(1, "Customer","Photo","CU STID = 123",
sValue$)

'Or, if the data is in a disk file...
lResult& = SQL_UpdateBLOB(1, "Customer","Photo","CU STID = 123",
"FILE=C:\MyFolder\MyFile.JPG")

Driver Issues

Most but not all drivers support Long Columns. See Possible Driver Restrictions »p169

.

Speed Issues

Because very large amounts of data can be involved, this function may take several
seconds (or longer) to execute.

See Also

SQL_UpdateMemo »p857, SQL_ResColBLOB »p579

 857

SQL_UpdateMemo NEW

Summary

Updates the contents of a Long Column »p167, i.e. a database column that can contain
string data between zero (0) bytes and one gigabyte in length. The contents are
usually in the form of human-readable text.

Twin

None.

Family

Statement Family »p240

Availability

Standard and Pro

Warning

Because of the limitations of Long Columns, attempting to use this function for non-
text data can fail unpredictably. This is not a limitation of SQL Tools, it is a limitation
of %SQL_LONGVARCHAR columns.

Syntax

lResult& = SQL_UpdateMemo(lDatabaseNumber&, _
 sTableName$, _
 sColumnName$, _
 sWhereClause$, _
 sValue$)

Parameters

lDatabaseNumber&
The number of a database. See Using Database Numbers and Statement
Numbers »p197.

sTableName$
The name of a table that exists in lDatabaseNumber&.

sColumnName$
The name of the column in sTableName$ that is to be updated.

sWhereClause$
A string containing a valid WHERE clause, to specify which row(s) in
sTableName$ should be updated. The keyword WHERE itself is optional.

sValue$
1) A string containing the data to be inserted into the specified row(s) or
2) The string FILE= followed immediately by the name of the file that
contains the data to be inserted into the specified row(s).

Return Values

This function returns %SQL_SUCCESS if the operation was successful, or a SQL
Tools Error Code »p179 if it failed.

Remarks

This function is used to update the data in Long Columns »p167, especially when the
column is a %SQL_LONGVARCHAR »p90 or "Memo" column. This type of column is
usually used for free-form notes or other possibly-lengthy text. It can contain only text
("human readable") characters and a very limited selection of non-text characters,

 858

such as Carriage Returns, Line Feeds, and Tabs. The data is not required to be long;
Long Columns are simply capable of accepting long strings of data.

First, identify the database, table, and column that you want to update. Then
construct a WHERE clause that identifies the row(s) of the table that you want to
update. See Appendix A: SQL Statement Syntax »p862 for more information about
WHERE.

The actual data can be specified in either of two forms. Either 1) place the data in a
string variable and pass it to SQL_UpdateMemo via the sValue$ parameter, or 2)
place the data in a disk file, and pass the name of the file via sValue$, prefixed with
FILE= . See Example below.

Diagnostics

This function returns Error Codes »p180 and can generate ODBC Error Messages »p181
and SQL Tools Error Messages.

Example

'Assuming that sValue$ contains the data to be save d...
lResult& = SQL_UpdateMemo(1, "Customer","Notes","WH ERE CUSTID =
123", sValue$)

'Note that the WHERE keyword is optional.
lResult& = SQL_UpdateMemo(1, "Customer","Notes","CU STID = 123",
sValue$)

'Or, if the data is in a disk file...
lResult& = SQL_UpdateMemo(1, "Customer","Notes","CU STID = 123",
"FILE=C:\MyFolder\MyFile.TXT")

Driver Issues

Most but not all drivers support Long Columns. See Possible Driver Restrictions »p169

.

Speed Issues

Because very large amounts of data can be involved, this function may take several
seconds (or longer) to execute.

See Also

SQL_UpdateBLOB »p855, SQL_ResColMemo »p602

 859

SQL_UseDB

Summary

Specifies the Database Number »p197 that SQL Tools should use for all "abbreviated

»p55" functions.

Twin

None.

Family

Use Family »p233

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_UseDB(lDatabaseNumber&)

Parameters

lDatatbaseNumber&
A database number between one (1) and the lMaxDatabaseNumber& value
that was specified with the SQL_Initialize »p495 function.

Return Values

If a valid Database Number is specified, the previous Database Number (i.e. the one
that is being changed) will be returned. Otherwise, %ERROR_BAD_PARAM_VALUE will
be returned. If you are certain that only valid values will be used, it is safe to ignore
the return value of this function.

Remarks

Please see Using Database Numbers and Statement Numbers »p197 for a complete
discussion of this function.

Diagnostics

This function returns Error Codes »p180 and can generate SQL Tools Error Messages

»p181.

Example

SQL_UseDB 2

Driver Issues

None.

Speed Issues

None.

See Also

SQL_UseStmt »p861
SQL_UseDBStmt »p860

 860

SQL_UseDBStmt

Summary

Specifies the Database Number »p197 and Statement Number »p197 that SQL Tools
should use for all "abbreviated »p55" functions.

Twin

None.

Family

Use Family »p233

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_UseDBStmt(lDatabaseNumber&, _
 lStatementNumber&)

Parameters

See SQL_UseDB »p860 and SQL_UseStmt »p861 for complete information.

Return Values

If a valid parameters are specified, %SQL_SUCCESS will be returned. Otherwise,
%ERROR_BAD_PARAM_VALUE will be returned. If you are certain that only valid
values will be used, it is safe to ignore the return value of this function.

Remarks

This function is simply a combination of the SQL_UseDB »p859 and SQL_UseStmt

»p861 functions. Please refer to those Reference Guide entries for complete
information.

Diagnostics

This function returns Error Codes »p180 and can generate SQL Tools Error Messages

»p181.

Example

SQL_UseDBStmt 1,2

Driver Issues

None.

Speed Issues

None.

See Also

Using Database Numbers and Statement Numbers »p197

 861

SQL_UseStmt

Summary

Specifies the Statement Number »p197 that SQL Tools should use for all "abbreviated

»p55" functions.

Twin

None.

Family

Use Family »p233

Availability

Standard and Pro

Warning

None.

Syntax

lResult& = SQL_UseStmt(lStatementNumber&)

Parameters

lStatementNumber&
A statement number between one (1) and the lMaxDatabaseNumber& value
that was specified with the SQL_Initialize »p495 function. Under some
circumstances, you may use statement number zero (0). (See Statement
Zero Operation »p199.)

Return Values

If a valid Statement Number is specified, the previous Statement Number (i.e. the one
that is being changed) will be returned. Otherwise, %ERROR_BAD_PARAM_VALUE will
be returned. If you are certain that only valid values will be used, it is safe to ignore
the return value of this function.

Remarks

Please see Using Database Numbers and Statement Numbers »p197 for a complete
discussion of this function.

Diagnostics

This function returns Error Codes »p180 and can generate SQL Tools Error Messages

»p181.

Example

SQL_UseStmt 2

Driver Issues

None.

Speed Issues None.
See Also Abbreviated Functions »p55

 862

Appendix A: SQL Statement Syntax

VERY IMPORTANT NOTE: This Appendix is intended to d escribe only the minimum
SQL syntax that all ODBC drivers support. If you are writing an Inter operable
Application, you should limit yourself to the use o f this syntax, plus the additional
syntax (if any) that is common to all of the ODBC drivers that you will be using. For
complete information about the syntax that your ODB C driver accepts, you will need to
acquire additional, driver-specific reference mater ials.

VERY IMPORTANT NOTE: This Appendix is not intended to be a comprehensive SQL
tutorial. Many, many fine books have been written on this topic, and a detailed
discussion of the SQL language is well beyond the s cope of this document.

There are six basic SQL statements »p123. Before using any of them, please see Basic SQL
Syntax Rules »p863, which apply to all of the following statement types.

CREATE TABLE (see »p867) is used to add a new table to a database.

DROP TABLE (see »p868) is used to delete an existing table from a database.

INSERT INTO (see »p869) is used to add rows to a table.

DELETE FROM (see »p870) is used to delete rows from a table.

UPDATE (see »p871) is used to change values in existing rows.

SELECT (see »p872) is used to retrieve data from a database.

In addition, CALL (see »p875) can used to execute Stored Procedures that contain any of the
six basic statement types.

Also see Appendix C: ODBC Scalar and Aggregate (Set) Functions »p878.

You should note that other SQL statements may be supported by your ODBC driver, such as
ALTER TABLE, CREATE INDEX and DROP INDEX, CREATE VIEW and DROP
VIEW, and GRANT and REVOKE. But these statements are not part of the minimum ODBC
syntax, and some ODBC drivers may not support them, so they are not covered here.

You may also notice that certain relatively common syntax elements are not included here,
such as the SELECT statement's GROUP BY, HAVING, UNION and JOIN clauses.
Again, these keywords are not part of the minimum ODBC syntax, and some ODBC drivers
may not support them, so they are not covered here.

For complete information about the syntax that your ODBC driver accepts, you will
need to acquire additional, driver-specific referen ce materials.

 863

Basic SQL Syntax Rules

Whenever you use any SQL statement »p123, in addition to using the correct statement syntax
you must always remember to adhere to certain general rules.

Special Characters

Some variations of the SQL language use a semicolon (;) at the end of each SQL statement.
Semicolons are not a part of the ODBC specification for single statements, and we do not
recommend their use except when they are required to separate the individual statements in
a batch of SQL statements.

The * abbreviation (the "star" or "asterisk" character) can be used in some SQL statements,
to mean "all". For example, SELECT * FROM MYTABLE means "select all of the
columns in the table called MYTABLE". This practice is discouraged, however, because not all
ODBC drivers recognize it, and some drivers use the star character for other purposes.

PLEASE NOTE: The star character is used in many of the SELECT examples in this
document, to make them more concise and easier to understand. This should not be
interpreted as a "recommended practice".

If an identifier such as a column name or table name contains a space (or any other "special"
character), you must place the appropriate delimiters around the identifier. For example, if a
column has the name...

ZIP CODE

...with a space between the words, you must place the appropriate quotes around it, like this...

SELECT * FROM MYTABLE WHERE 'ZIP CODE' = 48070

Otherwise, if the statement looked like this...

SELECT * FROM MYTABLE WHERE ZIP CODE = 48070

...the ODBC driver might not be able to interpret the statement correctly. As a general rule, it
is considered to be bad practice to use spaces in identifier names. And don't use
underscores either! (See Wildcards below).

You might have noticed that a single quote (') was used instead of a double quote ("). You
should always use the quotation character that is returned by the SQL_DBInfoStr »p377

(%DB_IDENTIFIER_QUOTE_CHAR) function. The character can vary from driver to driver,
but is usually the single quote.

See Appendix M: Microsoft Excel »p923 for information about the unusual delimiters that Excel
requires.

It is very likely that you will also need to use "literal values" in your SQL statements. Consider
the following statement...

SELECT * FROM MYTABLE WHERE NAME = YOUR NAME HERE
AND COUNTER <> 0

 864

You must, of course, include the appropriate quotes around the string value, like this...

SELECT * FROM MYTABLE WHERE NAME = 'YOUR NAME HERE'
AND COUNTER <> 0

If you don't, the ODBC driver may reject the statement or look for a row where the NAME
column's value is the string "YOUR NAME HERE AND COUNTER <> 0".

You will probably also need to use literal values that actually contain the single quote
character. For example, consider this statement:

SELECT * FROM MYTABLE WHERE NAME = 'O'Malley'

If you use a statement like that, the ODBC driver will get confused about where the literal
string starts and stops. The standard solution for this is to use two single quotes, like this...

SELECT * FROM MYTABLE WHERE NAME = 'O''Malley'

... to tell the ODBC driver that that is a literal single-quote character, not a delimiter:

IMPORTANT NOTE: That's not a double-quote character (ASCII 34) that's two single quote
characters (ASCII 39).

(Certain Windows function -- and therefore certain SQL Tools functions -- actually require the
use of four single-quote characters to denote a literal character, but this is not one of them.
Using four would result in two literal characters being used, because each pair would be
interpreted as a literal character.)

The second single-quote character is only temporary. For example, if you use something like
'O''Malley' in an UPDATE statement, only one single-quote will actually be inserted
into your database.

PowerBASIC programmers can use the REPLACE function to perform this operation, but be
sure that you don't replace every single-quote in your SQL statement with two. Use two
single quotes only when a single quote needs to appear inside a string that is quoted with
single quotes.

Certain numeric values may need special delimiters as well. For example...

SELECT * FROM MYTABLE WHERE OFFSET = 12

If you intend "12" to be a decimal (base ten) value, then you do not need a delimiter. But if
you intend 12 to be a hex value (base sixteen, like the BASIC notation &h12), you would
need to add the appropriate prefix:

SELECT * FROM MYTABLE WHERE OFFSET = 0x12

The string "0x " (zero-x) is a common numeric prefix, but each data type can have its own
literal prefix and suffix. You can determine which delimiters to use for each column type by
using the SQL_DBDataTypeInfoStr »p334(%DTYPE_LITERAL_PREFIX) and
%DTYPE_LITERAL_SUFFIX functions.

You must also be careful when using certain characters in identifier names, such as these

 865

characters:

~ @ # $ % ^ & * _ - + = \ } { " ' ; : ? / > < ,

The SQL_DBInfoStr »p377(%DB_SPECIAL_CHARACTERS) function can be used to obtain a
string that contains the special characters that a database uses. (The string above was
generated by Microsoft Access 97. Extra spaces were added to make it more readable here.)

Certain characters (such as quotes and question marks) should never be used in identifier
names, and certain others have special meanings when they are used in identifier names.

Wildcard Characters

Most databases recognize certain "wildcard characters" or "search pattern" strings.

The % character (the percent sign) is often used as an "any string" wildcard, so if you used the
string X% for an identifier, it would be interpreted as "any identifier that starts with X". A SQL
statement like this...

SELECT * FROM MYTABLE WHERE MYCOLUMN = ABC%

...would mean "select all rows where the MYCOLUMN column contains a value that starts with
the letters ABC". Using %ABC would mean "ends with ABC", and %ABC% would mean
"contains ABC anywhere in the data". (Remember that % can be satisfied by an empty string,
so ABC could be the first or last characters, as well as characters in the middle.) The SQL
percent-sign wildcard is very similar to the DOS command-line star (*) wildcard.

The _ character (the underscore) is often used as an "any single character" wildcard, so if you
used the identifier MY_TABLE it would be recognized as "any identifier that starts with MY and
ends with TABLE, with one character in between". So if you happened to have tables called
MY1TABLE and MY2TABLE, the SQL statement would apply to both of them. Fortunately for
many less-than-careful programmers, it would also apply to a table called MY_TABLE, with a
literal underscore character. As a general rule, it is considered to be bad practice to use
underscores in identifier names. The SQL underscore wildcard is very similar to the DOS
command-line question-mark (?) wildcard.

The Escape Character

If you must use a special character in an identifier name, you can use a value called the
"search pattern escape string". This might be necessary, for example, if you are using a
database that somebody else designed, or if you are using an Excel database (see below).
You can determine the value of the escape string (which is usually a single character) by
using the SQL_DBInfoStr »p377(%DB_SEARCH_PATTERN_ESCAPE) function. If, for example
the backslash character (\) is returned, that means that you can use the backslash as an
escape character that means "the character that follows is a literal character". If you were to
use...

SELECT * FROM MY_TABLE

...it would mean the literal value "MY_TABLE" where the underscore is not treated as a
wildcard.

 866

(It is possible to globally disable the wildcard functions by using a database attribute called
"metadata ID", but doing so will interfere with the SQL Tools Info functions, which rely on the
default attribute setting.)

Date Delimiters

Some DBMSs, such as Microsoft Access, require the use of the number-sign (#) delimiter for
literal date/time values.

SELECT * FROM AddressBook WHERE BirthDate = #1950-
01-01#

It is not usually required, but we recommend the use of the "descending" date format (YYYY-
MM-DD) because it is unambiguous and is not affected by the runtime computer's Locale
settings.

Special Microsoft Excel Characters

See Appendix M: Microsoft Excel »p923 for information about the unusual delimiters that Excel
requires.

Special Words

There are also certain words that can never be used as column identifiers. For example,
imagine the confusion that would be caused if you named a table "SELECT"...

SELECT * FROM SELECT

You must avoid all of the words that are used by the SQL syntax that your ODBC driver
accepts. For a list of reserved words which all ODBC drivers recognize, see Appendix B »p876

. The SQL_DBInfoStr »p377(%DB_KEYWORDS) function can be used to obtain a list of words
that you must avoid. Here is the list that is returned by Microsoft Access 97:

ALPHANUMERIC, AUTOINCREMENT, BINARY, BYTE, COUNTER, CURRENCY,
DATABASE, DATABASENAME, DATETIME, DISALLOW, DISTINC TROW,
DOUBLEFLOAT, FLOAT4, FLOAT8, GENERAL, IEEEDOUBLE, I EEESINGLE,
IGNORE, INT, INTEGER1, INTEGER2, INTEGER4, LEVEL, L OGICAL,
LOGICAL1, LONG, LONGBINARY, LONGCHAR, LONGTEXT, MEM O, MONEY,
NOTE, NUMBER, OLEOBJECT, OPTION, OWNERACCESS, PARAMETERS,
PERCENT, PIVOT, SHORT, SINGLE, SINGLEFLOAT, SMALLIN T, STDEV,
STDEVP, STRING, TABLEID, TEXT, TOP, TRANSFORM, UNSI GNEDBYTE,
VALUES, VAR, VARBINARY, VARP, YESNO

Note that words like SELECT and UPDATE are not included on the list. Those words are part
of the "universal SQL syntax" (see Appendix B »p876) and may not be used as identifiers under
any circumstances, so the SQL_DBInfoStr »p377(%DB_KEYWORDS) does not bother to return
them.

 867

CREATE TABLE

VERY IMPORTANT NOTE: This Appendix is intended to describe only the minimum SQL
syntax that all ODBC drivers support. If you are writing an Interoperable Application, you
should limit yourself to the use of this syntax, plus the additional syntax (if any) that is
common to all of the ODBC drivers that you will be using. For complete information about the
syntax that your ODBC driver accepts, you will need to acquire additional reference materials.

CREATE TABLE is used to add a new table to a database.

Minimum Syntax:

CREATE TABLE table-name (column-name data-type
[,column-name data-type]...)

The table-name parameter is the name that will be used for the new table. You must then
specify a column-name and data-type value for at least one column. The square [brackets]
around the second set of parameters, and the ellipsis (...) indicate that additional columns
may be specified, separated by commas.

IMPORTANT NOTE: When you are creating a table, the data-type string must always be one
of the data type names that is returned by the SQL_DBDataTypeInfoStr »p334

(%DTYPE_NAME) function. The ODBC driver will reject all other values.

 868

DROP TABLE

VERY IMPORTANT NOTE: This Appendix is intended to describe only the minimum SQL
syntax that all ODBC drivers support. If you are writing an Interoperable Application, you
should limit yourself to the use of this syntax, plus the additional syntax (if any) that is
common to all of the ODBC drivers that you will be using. For complete information about the
syntax that your ODBC driver accepts, you will need to acquire additional reference materials.

DROP TABLE is used to delete an existing table from a database.

Minimum Syntax:

DROP TABLE table-name

The table-name parameter is the name of the table that is to be deleted.

WARNING: Once a table has been dropped it cannot be restored.

 869

INSERT INTO

VERY IMPORTANT NOTE: This Appendix is intended to describe only the minimum SQL
syntax that all ODBC drivers support. If you are writing an Interoperable Application, you
should limit yourself to the use of this syntax, plus the additional syntax (if any) that is
common to all of the ODBC drivers that you will be using. For complete information about the
syntax that your ODBC driver accepts, you will need to acquire additional reference materials.

INSERT INTO is used to add rows to a table.

Minimum Syntax:

INSERT INTO table [(column [, column]...)] VALUES
(value[, value]...)

The table parameter is the name of the table into which the row is to be inserted.

After the INTO keyword, you should use a list of one or more column names, and after the
VALUES keyword, a list with an equal number of values. In other words, the column name
immediately after INTO will be given the first value after the word VALUES, the second
column name after the word INTO will be given the second value after VALUES, and so on.

You may have noticed the square [brackets] around the column-identifier list. If you omit the
column list and simply use...

INSERT INTO table VALUES (value[, value]...)

...and if you are careful to specify the values in the "natural" order of the table, the statement
will be accepted. However this is usually considered to be bad practice because if the table's
layout is changed, it will break your program.

If a value is not assigned to a column, the column's default value (if any) will be used.

If a column does not have a default value, and if the column allows Null values »p171, and
either 1) the value list contains a blank entry for the column (two commas with no value in
between), or 2) a "natural order" value list does not contain an entry for the column because
the list is too short, or 3) a list of columns does not contain the name of the column, then the
Null value will be assigned to the column.

 870

DELETE FROM

VERY IMPORTANT NOTE: This Appendix is intended to describe only the minimum SQL
syntax that all ODBC drivers support. If you are writing an Interoperable Application, you
should limit yourself to the use of this syntax, plus the additional syntax (if any) that is
common to all of the ODBC drivers that you will be using. For complete information about the
syntax that your ODBC driver accepts, you will need to acquire additional reference materials.

DELETE FROM is used to delete rows from a table.

Minimum Syntax:

DELETE FROM table [WHERE search-condition]

The table parameter is the name of the table from which the row(s) should be deleted.

WARNING: If no WHERE clause is specified, all of the table's rows will be deleted.

If a WHERE clause is specified, only the rows that match the search-condition will be deleted.
For example...

DELETE FROM MYTABLE WHERE MYCOLUMN = 'DELETE ME' AND
OURCOLUMN <> 'SAVE ME'

 871

UPDATE

VERY IMPORTANT NOTE: This Appendix is intended to describe only the minimum SQL
syntax that all ODBC drivers support. If you are writing an Interoperable Application, you
should limit yourself to the use of this syntax, plus the additional syntax (if any) that is
common to all of the ODBC drivers that you will be using. For complete information about the
syntax that your ODBC driver accepts, you will need to acquire additional reference materials.

UPDATE is used to change the values in existing rows.

Minimum Syntax:

UPDATE table SET column = {expression|NULL} [,
column = {expression|NULL}]... [WHERE search-
condition]

The table parameter is the table which contains the rows that are to be updated. You must
specify at least one SET, where column is the name of the column to be updated and
expression is the value that the column should be given. If the column accepts Null values

»p171, in place of expression you may use the keyword NULL (without quotes).

As indicated by the square [brackets] and the ellipsis (...), you may optionally use more
than SET expression, in order to change more than one column's value. If you use more
than one, you should only use the word SET once, followed by a comma-separated list of
column = expression|NULL strings.

The optional WHERE clause can be used to specify the row(s) that should be updated. If it is
not used, all rows will be updated. If WHERE is used, you can specify a list of conditions to
specify a single row or a group of rows. For example...

UPDATE MYTABLE SET MYCOLUMN = 'OK' WHERE OURCOLUMN
= 'UNKNOWN' AND THEIRCOLUMN = '' AND YOURCOLUMN = 1 7

It is very common to use a single, unique column (or a small set of columns that make up a
Unique Key »p203) in the WHERE clause. For example...

UPDATE MYTABLE SET MYCOLUMN = 'OK' WHERE COUNTER =
12345

 872

SELECT

VERY IMPORTANT NOTE: This Appendix is intended to describe only the minimum SQL
syntax that all ODBC drivers support. If you are writing an Interoperable Application, you
should limit yourself to the use of this syntax, plus the additional syntax (if any) that is
common to all of the ODBC drivers that you will be using. For complete information about the
syntax that your ODBC driver accepts, you will need to acquire additional reference materials.

SELECT is used to retrieve data from a database. Unlike other SQL statements, the
SELECT statement produces a "result set" that contains zero or more rows of data.

Minimum syntax:

SELECT [DISTINCT] column-list FROM table-list [WHER E
search-condition] [ORDER BY sort-spec [, sort-spec]]

The shortest possible SELECT statement has this form:

SELECT column-list FROM table-list

The column-list parameter specifies the names of the columns that you want the result set to
include. After the SELECT keyword, you may optionally use the * (star) wildcard character
if you want the result set to contain all of the columns in the table. This practice is
discouraged because if the table's design is changed, it will probably break your program. It
is usually better to specify the exact list of columns that you want to be included in the result
set, in the order that you want them, separated by commas.

The table-list parameter specifies the names of the tables that contain the columns in column-
list. If more than one table is listed, their names should be separated by commas.

DISTINCT

The optional DISTINCT keyword is used to eliminate duplicate rows from a result set.

You can include the DISTINCT keyword after the word SELECT if you want the result set
to contain only "distinct" values. In other words, if a result set created by a SQL statement
without DISTINCT contained the following rows...

SMITH
JONES
PUBLIC
SMITH
SMITH
DOE
SMITH

...then adding the DISTINCT keyword would produce this:

SMITH
JONES
PUBLIC
DOE

 873

If you do not want a DISTINCT result set you may use the optional keyword ALL, but we
do not recommend it because 1) ALL is the default behavior so using the keyword doesn't
really do anything, and 2) using the ALL k eyword can cause confusion with the * (star)
wildcard, which stands for "all columns". The SQL statement SELECT ALL * FROM
MYTABLE could be read aloud as "select all...all from MYTABLE".

WHERE

The optional WHERE clause can be used to specify that only rows that contain certain values
should be included in the result set. (You can think of the column-list parameter as controlling
the "width" of the result set, and the WHERE clause as controlling the "height".) For
example...

SELECT MYCOLUMN, YOURCOLUMN FROM MYTABLE WHERE
MYCOLUMN <> YOURCOLUMN AND THEIRCOLUMN = 1

You can use eleven different types of comparisons in WHERE clauses (see below) but not all
data types support all types of comparisons. The exact types of comparisons that can be
performed on a given column are determined by the column's data type, and can be checked
with the SQL_DBDataTypeInfo »p330(%DTYPE_SEARCHABLE) function.

Another factor that must be considered is whether or not a WHERE comparison is case-
sensitive. Again, this is determined by the column's data type, and can be checked with the
SQL_DBDataTypeInfo »p330(%DTYPE_CASE_SENSITIVE) function.

Please note that you will usually be able to use the NOT operator when specifying WHERE
comparisons, but NOT is not part of the official ODBC minimum syntax.

Here are the eleven basic types of comparisons that you can use in WHERE clauses:

Relational: = <> < > => <=

BETWEEN Example: ...WHERE MYCOLUMN BETWEEN 1 AND 10

LIKE Example: ...WHERE LASTNAME LIKE 'Jo%' would return the rows
where the LASTNAME column contains values that start with "Jo", like Jones, Johnson, Joker,
and so on. The percent-sign (%) wildcard means "any string", and the underscore (_) wildcard
means "any single character". Some ODBC drivers may use alternate wildcard characters.
IMPORTANT NOTE: LIKE comparisons are usually the slowest types of WHERE clauses,
and the most resource-intensive.

IN Example: ...WHERE LASTNAME IN ('Smith','Jones','Public')
would return the rows where the LASTNAME column matched one of the values in the comma-
separated list.

NULL Example: ...WHERE MIDDLENAME = NULL

EXISTS This keyword is used to determine whether or not a particular row exists in a
table. It returns a True or False value, and it is generally used with AND and another

 874

condition.

ORDER BY

The optional ORDER BY clause can be used to sort the rows of the result set into a certain
order. One or more sort-spec parameters can be specified, separated by commas. A sort-
spec consists of either a column name or a result column number, and it can be followed by
an optional ASC or DESC keyword to specify an Ascending or Descending sort.

 875

CALL

If your ODBC driver supports Stored Procedures »p208, the call keyword is usually used to
execute them. (Not all drivers use call ; see IMPORTANT NOTE below.)

The basic ODBC syntax is:

[?=] call procname[([parameter][,[parameter]]...)]

The ?= at the beginning of the syntax represents an optional Bound Statement Output
Parameter. (If you use this option, you must use the SQL_BindParam »p269 function to bind
the placeholder to one of your program's variables.)

The call keyword (which must be in lower case letters) is followed by procname , which
is the name of the Stored Procedure.

If the Stored Procedure requires one or more parameters, they should follow the name of the
procedure. If there are two or more, they must be separated by commas. The standard ?
marker may be used if you wish to use a Bound Statement Input Parameter »p128. (In fact,
some ODBC drivers require that you use bound parameters with Stored Procedures.)

IMPORTANT NOTE: Some ODBC drivers require you to use a datasource-dependent syntax
to execute Stored Procedures. For example, Oracle databases require something like this...

sStmt$ = "BEGIN" + _
 CHR$(13) + _
 " procname(param, param, etc.);" + _
 CHR$(13) + _
 "END;"

SQL_Stmt %IMMEDIATE, sStmt$

Other DBMSs require the use of the words EXECUTE or RUN.

Some ODBC drivers also require a database-dependent syntax to create a Stored Procedure.
For example, Microsoft Access requires a statement like this:

CREATE PROC DeleteStuff AS DELETE FROM AddressBook WHERE
ZipCode = 98765

You should consult your database and/or ODBC driver documentation for the Stored
Procedure syntax that your driver requires. Because the syntax for Stored Procedures has
not been standardized, it is beyond the scope of this document.

 876

Appendix B: ODBC Reserved Words

The following words have special meaning to all ODBC drivers and should not be used as
identifiers (table names, column names, etc.). For additional words that a specific ODBC
driver reserves, use the SQL_DBInfoStr »p377(%DB_KEYWORDS) function.

ABSOLUTE, ACTION, ADA, ADD, ALL, ALLOCATE, ALTER, A ND, ANY,
ARE, AS, ASC, ASSERTION, AT, AUTHORIZATION, AVG

BEGIN, BETWEEN, BIT, BIT_LENGTH, BOTH, BY

CASCADE, CASCADED, CASE, CAST, CATALOG, CHAR, CHARA CTER,
CHARACTER_LENGTH, CHAR_LENGTH, CHECK, CLOSE, COALESCE, COLLATE,
COLLATION, COLUMN, COMMIT, CONNECT, CONNECTION, CONSTRAINT,
CONSTRAINTS, CONTINUE, CONVERT, CORRESPONDING, COUNT, CREATE,
CROSS, CURRENT, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP,
CURRENT_USER, CURSOR

DATE, DAY, DEALLOCATE, DEC, DECIMAL, DECLARE, DEFAU LT,
DEFERRABLE, DEFERRED, DELETE, DESC, DESCRIBE, DESCR IPTOR,
DIAGNOSTICS, DISCONNECT, DISTINCT, DOMAIN, DOUBLE, DROP

ELSE, END, END-EXEC, ESCAPE, EXCEPT, EXCEPTION, EXE C, EXECUTE,
EXISTS, EXTERNAL, EXTRACT, FALSE

FETCH, FIRST, FLOAT, FOR, FOREIGN, FORTRAN, FOUND, FROM, FULL

GET, GLOBAL, GO, GOTO, GRANT, GROUP

HAVING, HOUR

IDENTITY, IMMEDIATE, IN, INCLUDE, INDEX, INDICATOR, INITIALLY,
INNER, INPUT, INSENSITIVE, INSERT, INT, INTEGER, IN TERSECT,
INTERVAL, INTO, IS, ISOLATION

JOIN

KEY

LANGUAGE, LAST, LEADING, LEFT, LEVEL, LIKE, LOCAL, LOWER

MATCH, MAX, MIN, MINUTE, MODULE, MONTH

NAMES, NATIONAL, NATURAL, NCHAR, NEXT, NO, NONE, NO T, NULL,
NULLIF, NUMERIC

OCTET_LENGTH, OF, ON, ONLY, OPEN, OPTION, OR, ORDER , OUTER,
OUTPUT, OVERLAPS

PAD, PARTIAL, PASCAL, POSITION, PRECISION, PREPARE, PRESERVE,
PRIMARY, PRIOR, PRIVILEGES, PROCEDURE, PUBLIC

READ, REAL, REFERENCES, RELATIVE, RESTRICT, REVOKE, RIGHT,
ROLLBACK, ROWS

 877

SCHEMA, SCROLL, SECOND, SECTION, SELECT, SESSION, S ESSION_USER,
SET, SIZE, SMALLINT, SOME, SPACE, SQL, SQLCA, SQLCO DE,
SQLERROR, SQLSTATE, SQLWARNING, SUBSTRING, SUM, SYSTEM_USER

TABLE, TEMPORARY, THEN, TIME, TIMESTAMP, TIMEZONE_H OUR,
TIMEZONE_MINUTE, TO, TRAILING, TRANSACTION, TRANSLA TE,
TRANSLATION, TRIM, TRUE

UNION, UNIQUE, UNKNOWN, UPDATE, UPPER, USAGE, USER, USING

VALUE, VALUES, VARCHAR, VARYING, VIEW

WHEN, WHENEVER, WHERE, WITH, WORK, WRITE

YEAR

ZONE

 878

Appendix C: ODBC Scalar And Aggregate (Set) Functio ns

Depending on the ODBC version (2.0 or 3.x) that they support, various ODBC drivers support
many different built-in functions.

IMPORTANT NOTE: These are functions that can be used in SQL statements. They are not
SQL Tools functions that you can use in BASIC source code.

A scalar function operates much like a BASIC function. For example, the LCASE string
function can be used in a SQL statement to convert a string to lower case, and the ROUND
function can be used to round a numeric value. (BASIC programmers should note that the
parameters that the various functions require are not necessarily the same as the functions
that you're used to, and the some functions have different names. Instead of INSTR, for
instance, you will have to use the LOCATE string function in SQL statements.)

An aggregate function is very different from a string or numeric scalar function. It is a function
that can be used in a SQL statement to force it to return a single value that represents the
entire result set. For example, the AVG function can be used in a SQL statement to return a
single value that represents the average value in a particular column of a result set.

The various ODBC functions are divided into categories based on their types, and the
parameters that they require, so you may need to check two or more different lists to find the
function that you are looking for.

Aggregate Functions »p879

String Functions »p881

Numeric Functions »p884

Time/Date/Interval Functions »p886

System Functions »p889

Explicit Data Type Conversion »p890

 879

ODBC Aggregate Functions

You can determine which aggregate functions are supported by your ODBC driver 1)
experimentally, or 2) by examining the return value of SQL_DBInfo »p338

(%DB_AGGREGATE_FUNCTIONS).

AVG()

Returns the average of all of the values in a numeric column, i.e. the sum of all of the
values, divided by the number of values. Rows with Null values »p171 are ignored
completely. They are not added to the sum, and they are not counted in the number
of values. (This function cannot be used with string columns.)

Example:

SELECT AVG(SALARY) FROM PAYROLL

...would produce a single-row result set containing a number that represents the
average SALARY value in the PAYROLL table.

Example with subquery:

SELECT NAME FROM PAYROLL WHERE SALARY > (SELECT
AVG(SALARY) FROM PAYROLL)

The SELECT AVG... statement would be executed first, and an average salary
value would be obtained. Then the main statement would be executed using that
value, and a result set would be produced that contained the NAME values of all
employees that have a SALARY value greater than the average.

COUNT()

Returns the number of rows in a result set.

Example:

SELECT COUNT(*) FROM EMPLOYEES WHERE AGE > 18

...would produce a single-row result set containing a numeric value that indicates the
number of rows in the EMPLOYEES table where the AGE column has a value greater
than 18 .

MAX()

Returns the maximum value in a column of a result set.

Example:

SELECT MAX(AGE) FROM EMPLOYEES

...would return the largest value in the AGE column of the EMPLOYEES table, i.e. the
age of the oldest employee (or employees).

 880

Example with subquery:

SELECT NAME FROM EMPLOYEES WHERE AGE = (SELECT
MAX(AGE) FROM EMPLOYEES)

The SELECT AGE... subquery would be executed first, and the age of the oldest
employee(s) would be determined. Then the main query would be executed using
that value, and a result set containing the NAME value of all of the employees with that
age value would be produced.

MIN()

Works just like MAX() , except that it produces a minimum value instead of a
maximum value.

Example:

SELECT MIN(NAME) FROM EMPLOYEES

...would produce a single-row result set that contained the "minimum name" in the
EMPLOYEES table, i.e. the name with the lowest alphabetical-sorting value.

SUM()

Returns the sum of the values in a numeric column. (This function cannot be used
with string columns.)

Example:

SELECT SUM(SALARY) FROM PAYROLL

...would produce a single-row result set containing the sum of the values in the
SALARY column of the PAYROLL table, i.e. the "total payroll" value.

 881

ODBC String Functions
You can determine which string functions are supported by your ODBC driver 1)
experimentally, or 2) by examining the return value of SQL_DBInfo »p338

(%DB_STRING_FUNCTIONS) and SQL_DBInfo(%DB_SQL92_STRING_FUNCTIONS).

ASCII(string_exp)

Returns the ASCII code value of the leftmost character of string_exp as an integer.

BIT_LENGTH(string_exp)

ODBC 3.x+ ONLY : Returns the length of string_exp in bits.

CHAR(code)

Returns the character that has the ASCII code value specified by code . The value of
code must be between 0 and 255 ; otherwise, the return value is datasource-
dependent.

CHAR_LENGTH(string_exp) and
CHARACTER_LENGTH (string_exp)

ODBC 3.x+ ONLY : If string_exp is of a character data type, these functions both
return the length of string_exp in characters. Otherwise, they return the length in
bytes of the string expression (i.e. the smallest integer that is not less than the
number of bits divided by 8). Also see LENGTH below.

CONCAT(string_exp1, string_exp2)

Returns a character string that is the result of adding string_exp2 to the end of
string_exp1 . If Null values »p171 are involved, the resulting string is driver-
dependent. See SQL_DBInfo »p338(%DB_CONCAT_NULL_BEHAVIOR) for more
information.

DIFFERENCE(string_exp1, string_exp2)

 Returns an integer value that indicates the difference between the SOUNDEX values
for string_exp1 and string_exp2 . See SOUNDEX below.

INSERT(string_exp1, start, length, string_exp2)

Returns a character string where length characters have been deleted from
string_exp1 beginning at start , and where string_exp2 has been inserted
into string_exp1 , beginning at start.

LCASE(string_exp)

Returns a copy of string_exp with all uppercase characters converted to
lowercase.

LEFT(string_exp, count)

Returns the left-most count characters of string_exp .

 882

LENGTH(string_exp)

Returns the number of characters in string_exp , excluding trailing blanks. Also
see CHAR_LENGTH above.

LOCATE(string_exp1, string_exp2 [, start])

Returns the starting position of the first occurrence of string_exp1 within
string_exp2 . The search begins with the first character of string_exp2 unless
the optional start argument is specified. If start is specified, the search begins
with the specified character position. If string_exp1 is not found within
string_exp2 , the value zero (0) is returned.

If an ODBC driver is only capable of using the LOCATE function with the
string_exp1 , string_exp2 , and start parameters, the SQL_DBInfo »p338

(%DB_STRING_FUNCTIONS) function will return %SQL_FN_STR_LOCATE.

If an ODBC driver cannot use the start parameter, %SQL_FN_STR_LOCATE_2 will
be returned.

If an ODBC driver is capable of using the LOCATE function with or without the start
parameter, both %SQL_FN_STR_LOCATE and %SQL_FN_STR_LOCATE_2 will be
returned.

LTRIM(string_exp)

Returns the characters of string_exp, with leading blanks removed.

OCTET_LENGTH(string_exp)

ODBC 3.x+ ONLY : Returns the length of string_exp in bytes. The result is the
smallest integer not less than the number of bits divided by 8.

POSITION(character_exp1 IN character_exp2)

ODBC 3.x+ ONLY : Returns the position of character_exp1 in the
character_exp1 .

REPEAT(string_exp, count)

Returns a character string that is composed of string_exp repeated count
times.

REPLACE(string_exp1, string_exp2, string_exp3)

Searches string_exp1 for occurrences of string_exp2 , and replaces them with
string_exp3 .

RIGHT(string_exp, count)

Returns the right-most count characters of string_exp .

RTRIM(string_exp)

Returns string_exp with trailing blanks removed.

 883

SOUNDEX(string_exp)

Returns a datasource-dependent string that represents the sound of the words in
string_exp . For example, SQL Server returns a 4-digit SOUNDEX code; Oracle
returns a phonetic representation of each word.

SPACE(count)

Returns a string consisting of count spaces.

SUBSTRING(string_exp, start, length)

Returns a string that is derived from string_exp beginning at the character position
specified by start , for length characters.

UCASE(string_exp)

Returns a copy of string_exp with all lowercase characters converted to
uppercase.

 884

ODBC Numeric Functions

ABS(numeric_exp)

Returns the absolute value of numeric_exp .

ACOS(float_exp)

Returns the arccosine of float_exp as an angle (in radians).

ASIN(float_exp)

Returns the arcsine of float_exp as an angle (in radians).

ATAN(float_exp)

Returns the arctangent of float_exp as an angle (in radians).

ATAN2(float_exp1, float_exp2)

Returns the arctangent of the x and y coordinates, specified by float_exp1 and
float_exp2 , as an angle (in radians).

CEILING(numeric_exp)

Returns the smallest integer greater than or equal to numeric_exp .

COS(float_exp)

Returns the cosine of float_exp , where float_exp is an angle (in radians).

COT(float_exp)

Returns the cotangent of float_exp , where float_exp i s an angle (in radians).

DEGREES(numeric_exp)

Returns the number of degrees converted from numeric_exp radians.

EXP(float_exp)

Returns the exponential value of float_exp .

FLOOR(numeric_exp)

Returns the largest integer less than or equal to numeric_exp .

LOG(float_exp)

Returns the natural logarithm of float_exp .

LOG10(float_exp)

Returns the base 10 logarithm of float_exp .

 885

MOD(integer_exp1, integer_exp2)

Returns the remainder (modulus) of integer_exp1 divided by integer_exp2 .

PI()

Returns the constant value of pi as a floating point value.

POWER(numeric_exp, integer_exp)

Returns the value of numeric_exp to the power of integer_exp .

RADIANS(numeric_exp)

Returns the number of radians in numeric_exp degrees.

RAND([integer_exp])

Returns a random floating point value, using the optional integer_exp as the seed
value.

ROUND(numeric_exp, integer_exp)

Returns numeric_exp rounded to integer_exp places right of the decimal point.
If integer_exp is negative, numeric_exp is rounded to integer_exp places to
the left of the decimal point.

SIGN(numeric_exp)

Returns the sign of numeric_exp . If numeric_exp is less than zero, negative
one (-1) will be returned. If numeric_exp equals zero, 0 will be returned. If
numeric_exp is greater than zero, positive one (1) will be returned.

SIN(float_exp)

Returns the sine of float_exp , where float_exp is an angle (in radians).

SQRT(float_exp)

Returns the square root of float_exp .

TAN(float_exp)

Returns the tangent of float_exp , where float_exp is an angle (in radians).

TRUNCATE(numeric_exp, integer_exp)

Returns numeric_exp truncated to integer_exp places right of the decimal point.
If integer_exp is negative, numeric_exp is truncated to integer_exp places to
the left of the decimal point.

 886

ODBC Time/Date/Interval Functions

CURRENT_DATE

ODBC 3.x+ only : Returns the current date.

CURRENT_TIME[(precision)]

ODBC 3.x+ ONLY : Returns the current local time. The precision argument
determines the precision of the fractional seconds of the returned value.

CURRENT_TIMESTAMP[(precision)]

ODBC 3.x+ ONLY : Returns the current local date and local time as a timestamp
value. The precision argument determines the precision of the fractional seconds
of the timestamp.

CURDATE()

Returns the current date.

CURTIME()

Returns the current local time.

DAYNAME(date_exp)

Returns a character string containing the datasource-specific day-name for the day
portion of date_exp . For example, Sunday through Saturday for a Datasource
that uses English, or Domingo through Sabado for a Datasource that uses Spanish.

DAYOFMONTH(date_exp)

Returns the day of the month based on the month field in date_exp as an integer
value in the range of 1 to 31 .

DAYOFWEEK(date_exp)

Returns the day of the week based on the week field in date_exp as an integer
value in the range of 1 to 7, where 1 represents Sunday.

DAYOFYEAR(date_exp)

Returns the day of the year based on the year field in date_exp as an integer value
in the range of 1 to 366 .

EXTRACT(extract-field FROM extract-source)

ODBC 3.x+ ONLY : Returns the extract-field portion of the extract-source
value. The extract-source argument is a datetime or interval expression. The
extract-field argument can be one of the following keywords:YEAR, MONTH,
DAY, HOUR, MINUTE, or SECOND.

 887

The precision of the value returned by EXTRACT is driver-defined. The scale is 0
unless SECOND is specified, in which case the scale is not less than the fractional
seconds precision of the extract-source field.

HOUR(time_exp)

Returns the hour based on the hour field in time_exp as an integer value in the
range of 0 to 23 .

MINUTE(time_exp)

Returns the minute based on the minute field in time_exp as an integer value in the
range of 0 to 59 .

MONTH(date_exp)

Returns the month based on the month field in date_exp as an integer value in the
range of 1 to 12 .

MONTHNAME(date_exp)

Returns a character string containing the datasource-specific month-name for the
month portion of date_exp. (For example, January through December for a
Datasource that uses English, or Enero through Diciembre for a Datasource
that uses Spanish.)

NOW()

Returns the current date and time as a timestamp value.

QUARTER(date_exp)

Returns the quarter in date_exp as an integer value in the range of 1 to 4, where 1
represents January 1 through March 31.

SECOND(time_exp)

Returns the second based on the seconds field in time_exp as an integer value in
the range of 0 to 59 .

TIMESTAMPADD(interval, timestamp_exp1, timestamp_ex p2) and
TIMESTAMPDIFF(interval, timestamp_exp1, timestamp_e xp2)

Returns the timestamp calculated by adding or subtracting integer_exp intervals
of type interval to timestamp_exp . Valid values of interval are the following
keywords...

SQL_FN_TSI_FRAC_SECOND, SQL_FN_TSI_SECOND, SQL_FN_TSI_MINUTE,
SQL_FN_TSI_HOUR, SQL_FN_TSI_DAY, SQL_FN_TSI_WEEK,
SQL_FN_TSI_MONTH, SQL_FN_TSI_QUARTER, SQL_FN_TSI_YEAR

If timestamp_exp is a time value and interval specifies days, weeks, months,
quarters, or years, the date portion of timestamp_exp is set to the current date
before calculating the resulting timestamp.

 888

If timestamp_exp is a date value and interval specifies fractional seconds,
seconds, minutes, or hours, the time portion of timestamp_exp is set to 0 before
calculating the resulting timestamp.

You can determine which intervals are supported by a database by using the
SQL_DBInfo »p338(%DB_TIMEDATE_ADD_INTERVALS) function.

WEEK(date_exp)

Returns the week of the year based on the week field in date_exp as an integer
value in the range of 1 to 53 .

YEAR(date_exp)

Returns the year based on the year field in date_exp as an integer value. The
range is datasource-dependent.

 889

ODBC System Functions

DATABASE()

 Returns the name of the database.

IFNULL(exp, value)

If exp is null, value is returned. If exp is not null, exp is returned. The data type
of valu e must be compatible with the data type of exp .

USER()

Returns the user name.

 890

Explicit Data Type Conversion

The syntax of the CONVERT function, which is used for all data-type conversions, is:

CONVERT(value_exp, data_type)

The data_type parameter must be a valid SQL data type, such as %SQL_INTEGER
or %SQL_CHAR.

The ODBC driver will reject any conversion which, although legal in the ODBC
syntax, is not supported by the Datasource. You can use the various SQL_DBInfo

»p338(%DB_CONVERT_) functions to determine whether or not a particular conversion
is supported by a database.

 891

Appendix D: SQL Tools Error Codes

An Error Code »p180 is a numeric value that correspond to a type of error.

In addition to the ODBC Error Codes »p895 that can be generated by your ODBC driver, SQL
Tools can generate its own set of Error Codes. Here is an alphabetical list of all of the SQL
Tools Error Codes, and their general meanings. The exact meaning of an Error Code is
determined by the function that returns it.

(If you're curious why the various numeric values are so large, read the last portion of this
Appendix.)

PLEASE NOTE THAT THESE ERROR CODES ARE LISTED IN ALPHABETICAL ORDER,
NOT NUMERIC ORDER.

%ERROR_ADVISORY (value 999000049)

If this error message is generated by a Get or Info function (SQL_GetSomething
or SQL_SomethingInfo , etc.) it means that the database and/or ODBC driver does
not support the requested Info type, and SQL Tools was not able to use an alternative
method to obtain it.

In other cases %ERROR_ADVISORY is very similar to the ODBC Error Code »p895
%SQL_SUCCESS_WITH_INFO. It usually means that SQL Tools was able to perform
the requested function, but that you may need to know about (and act upon) a certain
detail.

If this message is generated by the SQL_OpenDatabase function , it means that
the SQL_OpenDatabase »p533 function determined that your ODBC driver cannot
perform "Fetch Scroll" operations, so your use of SQL_Fetch »p435 will be limited to
%NEXT_ROW operations.

If this message is generated by the SQL_OpenStatement function , it means that
one of the statement attributes (modes) that your program attempted to set was
rejected by the ODBC driver. This condition will almost always be accompanied by
an Error Message from the ODBC driver, describing the exact error.

If this message is generated by the SQL_StatementMode function , it means that
your program used the function to set a statement mode while a statement was open.
This message is intended to remind you that mode changes do not take effect until a
statement is opened, so the changes will not take effect until the current statement is
closed.

If this message is generated by the SQL_Diagnostic function , it means that the
database or statement for which you requested diagnostic information is no longer
open, or that you used an incorrect database number or statement number. In effect,
this message means "no diagnostic information is available", which may or may not
mean that diagnostic information was lost because a database or statement was
closed before this function was used.

If this message is generated by the SQL_Bookmark function , it means that the
function did everything that it was supposed to do, but it was not able to retrieve a
bookmark. Many different things can cause this "general failure"; please see
Bookmarks »p154 for more information.

 892

%ERROR_BAD_PARAM_VALUE (value 999000030)

Many different SQL Tools functions can return this Error Code. It simply means that
a parameter with an invalid value was passed to the function.

%ERROR_CANNOT_BE_DONE (value 999000048)

Your program attempted to do something that is not possible, such as use the
SQL_Initialize »p495 function to re-initialize SQL Tools, or change the name of the
SQL Tools Trace File while the Trace Mode »p186 was turned on.

If you are using SQL Tools Standard and you attempt to use a function that is
available only in SQL Tools Pro »p29, %ERROR_CANNOT_BE_DONE will be generated.
Pro functions that return a numeric value will return zero (0) and functions that return
a string will return an empty string ("").

Another common reason for this Error Message is the use of a SQL Tools Info
function that is not supported by the ODBC driver. For example, if you attempt to use
one of the SQL_TablePrivilege functions with the Microsoft Access 97 ODBC
driver, you will receive this error because the driver does not support privilege
functions. You can avoid these errors by using the SQL_FuncAvail »p446 function
before attempting to use an Info function that you are not certain is supported.

%ERROR_COL_NOT_BOUND (value 999000038)

Your program attempted to access a column that has not been bound, using a
function which requires a bound column. For example, if you use the SQL_Init »p494
function and (thereby) use the default lMaxColumnNumber& value of 32, and if a
table contains more than 32 columns, SQL Tools will be unable to bind all of the
columns in your result set. (The solution is to either 1) reduce the number of columns
that are produced by your SQL statement, or 2) use SQL_Initialize »p495 instead
of SQL_Init , and use a sufficiently large value for lMaxColumnNumber&.) Another
example: If you attempt to use the SQL_UnbindCol »p852 function twice on the same
column, the second use of the function will return this Error Code because the first
use will unbind the column, and the second will not be able to unbind it.

%ERROR_DB_NOT_CLOSED (value 999000032)

Your program attempted to open a database number that was already open, and the
%OPT_AUTOCLOSE_DB option was disabled.

%ERROR_DB_NOT_OPEN (value 999000031)

Your program attempted to use a database number that was not open.

%ERROR_FEATURE_NOT_AVAILABLE (value 999000001)

Your program attempted to use a SQL Tools Pro feature when only SQL Tools
Standard was available to your program. See What's the difference between SQL
Tools Standard and Pro? »p29.

%ERROR_FIRST_RT_ERROR (value 999001000) to %ERROR_LAST_RT_ERROR
(value 999001999)

A runtime (RT) error occurred inside SQL Tools. You can obtain a BASIC Runtime

 893

Error Code by subtracting %ERROR_FIRST_RT_ERROR from the Error Code value.
For example, if you specify an invalid directory name for the SQL Tools Trace File
and then attempt to turn the Trace Mode on, you will receive Error Code 999001076 ,
which is is equal to %ERROR_FIRST_RT_ERROR plus the BASIC Error Code 76 (Path
Not Found).

%ERROR_INVALID_FILENAME (value 999000040)

You specified a file that does not exist or that contains invalid characters. In some
cases this may include the wildcards * and ?. For example if while attempting to
open a database using %PROMPT_TYPE_NOPROMPT you specify a file name that
contains a wildcard, SQL Tools would be unable to display a dialog to resolve the
wildcard so the file name would be considered invalid.

%ERROR_LIBRARY_NOT_AUTHORIZED (value 999000000)

This Error Code is returned by the SQL_Init »p494 and SQL_Initialize »p495
functions if you attempt to use them before you have used the SQL_Authorize

»p263 function. See Four Critical Steps For Every SQL Tools Program »p61 for more
information.

%ERROR_STMT_NOT_CLOSED (value 999000035)

Your program attempted to open a statement number that was already open, and the
%OPT_AUTOCLOSE_STMT option was disabled.

%ERROR_STMT_NOT_OPEN (value 999000034)

Your program attempted to use a statement number that was not open, and the
%OPT_AUTOOPEN_STMT option was disabled.

%ERROR_STMT_NOT_PREPARED (value 999000036)

1) Your program attempted to use SQL_Stmt(%EXECUTE) before it used
SQL_Stmt(%PREPARE) to prepare a statement, or 2) it used
SQL_Stmt(%PREPARE) but then closed the statement before using
SQL_Stmt(%EXECUTE). This is very similar to an %ERROR_STMT_NOT_OPEN Error
Code.

%ERROR_TOO_MANY (value 999000047)

A SQL Tools function encountered a number that was too large for it to handle, such
as a situation where more that 16,384 tables are found by the SQL_TblCount »p790
function, or more than 16,384 datasources are found by the
SQL_DataSourceCount function. Because many different SQL Tools functions use
the various "get info: »p250" functions (internally), this error code can be returned by a
wide variety of functions. If you encounter this error, you may need to use a different
value for SQL_SetOption »p681(%OPT_MAX_ITEM_NUMBER).

%ERROR_UNKNOWN (value 999999999)

A SQL Tools function encountered an error that it could not identify. This can happen
when Windows or the ODBC subsystem reports an error but does not provide any
details.

 894

If you are using Microsoft Access and %ERROR_UNKNOWN is accompanied by a
message that includes the name of a table that starts with MSys and either the phrase
"no read permission " or "no read definitions permission " it means that
you asked SQL Tools to retrieve information about a table, but the table is not set up
to allow that information to be read. See Appendix L: Microsoft Access »p919 under
"Hidden Tables" for more information.

%ERROR_USER_CANCEL (value 999000045)

An operation failed because the user selected a Cancel button. For example, the
SQL_OpenDB function can fail if it displays a dialog box to allow the user to select a
database, and the user selects the Cancel button.

A Frequently Asked Question:

Whoa! Why are these Error Code numbers so LARGE?

The Answer:

Microsoft made us do it.

Well, they didn't actually write us a letter or anything. They just made rules for 32-bit
Windows programs that require the use of certain number ranges. Basically, Microsoft has
reserved all of the "reasonable" numbers for itself, so that Windows can report a wide variety
of error numbers when it has problems.

There are well over 4,000,000,000 (4 billion) possible Error Codes. Microsoft has reserved
50% of those for non-Microsoft use. Any Error Code that has Bit 29 set is defined as an
"Application-Defined Error Code", and if Bit 29 is not set, it's a Microsoft Error Code.

The lowest-value range of numbers that has Bit 29 set is...

536,870,912 to 1,073,721,824

SQL Tools could have easily used the numbers that start with 1,000,000,000 so that they'd be
easy to read, but we figured that you'd rather use that range for your programs, since it's the
"best" range of number that the Microsoft rules have to offer.

So we chose the range 999,000,000 to 999,999,999. All SQL Tools Error Codes -- in fact the
Error Codes from all Perfect Sync software development products -- fall into that range.

If a SQL Tools function reports an Error Code that is not in that range, you can count on the
fact that it came from an ODBC driver (or that Windows reported a Windows Error) and that
SQL Tools is simply "passing the number along".

 895

Appendix E: ODBC Error Codes

In addition to the SQL Tools Error Codes »p891 (see) that can be generated by SQL Tools
function, your ODBC driver can generate its own set of Error Codes. Here is a list of all of the
ODBC Error Codes, and their general meanings. The exact meaning of an Error Code is
determined by the function that returns it.

%SQL_SUCCESS (value 0)

This Error Code means "zero errors". It is returned by functions that do not encounter
any errors.

%SQL_SUCCESS_WITH_INFO (value 1)

"Success With Info" means that the requested operation was performed, but that a
condition was detected that your program may or may not need to address.

For example, if you use the SQL_Fetch function to retrieve a row of data from a
result set, and if one of the columns contains data that is too long to fit in the buffer
that is provided, a %SQL_SUCCESS_WITH_INFO message will be generated. The
Error Text that is associated with this error will contain a string like "Data right-
truncated ". In other words, the Fetch operation was successful and the data in the
buffer is valid, but it is not complete.

That's typical of a %SQL_SUCCESS_WITH_INFO message. They all mean "It
worked, but..."

%SQL_STILL_EXECUTING (value 2)

This value, which can be returned by the SQL_AsyncStatus »p254 function,
indicates that an asynchronous »p125 SQL statement has not yet finished executing.

%SQL_ERROR (value negative 1)

This is the Error Code that corresponds to a generic "something went wrong and the
function failed" condition. The Error Text that is associated with the error will contain
specific information about the failure.

%SQL_INVALID_HANDLE (value negative 2)

This Error Code indicates that an invalid handle value was passed to an ODBC
function. Unless your program is using ODBC handles directly (via the SQL_h
functions), this Error Code indicates a serious error inside SQL Tools. Please contact
Perfect Sync Technical Support if this Error Code is reported and your program is not
using the SQL_h functions.

%SQL_NEED_DATA (value 99)

This Error Code indicates that more data is needed, such as when parameter data is
required before a SQL statement can be processed.

%SQL_NO_DATA (value 100)

This Error Code is returned by the SQL_Fetch and SQL_FetchRel functions when

 896

they fail because there was no data (or no more data) to be retrieved from a result
set. This is a perfectly normal condition and does not represent a serious error (at
least in most cases).

 897

Appendix F: SQL States (ODBC Error Messages)

A "SQL State" value is a five-character string that corresponds to a specific condition. Most
SQL States represent error conditions, but some are simply "advisory" messages that are
associated with the %SQL_SUCCESS_WITH_INFO Error Code »p895.

While Error Text strings can vary from ODBC driver to ODBC driver, SQL State strings are
supposed to be highly consistent. But these numbers and strings are not strictly required by
the ODBC specification, and not all ODBC drivers use them in this way. ODBC drivers are
free to define their own SQL States, so if your program returns a SQL State value that is not
on the list below, you should consult your driver and/or DBMS documentation.

SQL Tools generates SQL State strings that start with the # symbol, to help you distinguish
between SQL Tools Error Messages and ODBC Error Messages. (The # prefix can be
changed with the SQL_SetOption »p681(%OPT_SQLSTATE_PREFIX) function.

Here is an alphabetical list of fairly common SQL State strings, and their basic meanings. If a
description says X or Y, then the ODBC documentation lists two different descriptions. If a
description says "ODBC 2.0 terminology: see 3.x State", that means that the SQL State value
has been "mapped" to a new value in ODBC 3.x.

01000

General warning. This SQL State is usually associated with a
%SQL_SUCCESS_WITH_INFO Error Code »p180.

01001

Cursor operation conflict. A positioned update or delete operation was performed,
and either 1) no rows or 2) more than one row was affected. See Positioned
Operations »p219.

01002

Disconnect error. An error occurred during the SQL_CloseDB »p279 process, but the
database-disconnect operation was successful.

01003

NULL value eliminated in set function. A SQL statement contained an Aggregate
Function »p879 (such as AVG or MAX, but not COUNT), and Null values »p171 were
eliminated before the function was applied.

01004

String data, right truncated. The right-most character(s) of a string value were cut off
by the ODBC driver, usually because a memory buffer was not large enough to hold
the entire value. Also see 22001. If a fetch operation generates this error, you may
need to use the SQL_ResColMemo »p602 or SQL_ResColBLOB »p579 function to
retrieve the data from one or more columns.

01006

Privilege not revoked. A SQL statement contained a REVOKE statement, but the

 898

user did not have the specified privilege.

01007

Privilege not granted. A SQL statement contained a GRANT statement, but the user
could not be granted the specified privilege.

01S00

Invalid connection string attribute. The SQL_OpenDB »p536 function detected that a
connection string (or DSN file) contained an invalid keyword, or a keyword without a
value, but the driver was able to connect to the data source.

01S01

Error in row. An error occurred while fetching one or more rows from the database.

01S02

Option value changed. An invalid value (or a valid value which conflicted with
another value) was submitted to the ODBC driver, and it automatically substituted a
valid, non-conflicting value.

01S03

ODBC 2.0 terminology: see 3.x State 01001

01S04

ODBC 2.0 terminology: see 3.x State 01001

01S06

Attempt to fetch before result set returned first rowset. The rowset requested with
SQL_Fetch »p435 or SQL_FetchRel »p441 overlapped the start of the result set, and
one of the following four things was true: 1) %PREV_ROW was used, the current
position was beyond the first row, and the number of the current row was less than or
equal to the rowset size, or 2) %PREV_ROW was used, the current position was
beyond the end of the result set, and the rowset size was greater than the result set
size, or 3) a Relative Fetch »p157 with a negative offset was performed, and the
absolute value of the offset was less than or equal to the rowset size or 4) a fetch-by-
row-number was performed, the row number was negative, and the absolute value of
the row number was greater than the result set size but less than or equal to the
rowset size. Please refer to the Microsoft ODBC Software Developer Kit »p915 for
more information.

01S07

Fractional truncation. The fractional part of a value (such as a %SQL_DECIMAL »p99,
%SQL_NUMERIC »p99, or %SQL_TIMESTAMP »p100 value) was truncated.

01S08

Error saving File DSN. A connection string »p910 contained the SAVEFILE keyword,
but the file was not saved. (The Microsoft ODBC Software Developer Kit »p915 says

 899

"the FILEDSN keyword", but we believe that to be incorrect.)

01S09

Invalid keyword. A connection string »p910 contained SAVEFILE but not DRIVER or
FILEDSN.

07002 (two variations)

COUNT field incorrect. A SQL statement contained one or more bound parameters

»p128, and the SQL_BindParam »p269 function was not used correctly. For example,
this error could be generated if a statement contained one "?" placeholder but
SQL_BindParam was used to bind two parameters.

Too few parameters: Expected x. Microsoft Access generates this confusing error
message with the SQL State 07002 if you use a nonexistent column name in a
SELECT statement.

07005

Prepared statement not a cursor-specification. A SQL statement did not return a
result set, so there were no columns for the SQL_ResColInfoStr »p597 or
SQL_ResColInfo »p593 function to provide information about.

07006

Restricted data type attribute violation. Two incompatible data types were specified
for an ODBC operation. For example, this error might be generated if you attempted
to bind a bookmark »p154 column to a data buffer with a SQL Data Type »p87 that was
not compatible with bookmarks. (Also see SQL_UnbindCol »p852 Driver Issues .)

07009

Invalid descriptor index. An invalid column number or parameter number was used.
For example, you may have used a column number that is larger than the number of
columns in a result set, or you may have specified column zero »p156 when the
%STMT_ATTR_USE_BOOKMARKS attribute was not set to the correct value.

07S01

Invalid use of default parameter. A parameter value which was set with
SQL_BindParam »p269 was %SQL_DEFAULT_PARAM, and the corresponding
parameter 1) did not have a default value or 2) was not a parameter for an ODBC
procedure invocation. See the Microsoft ODBC Software Developer Kit »p915 for more
information.

08001

Client unable to establish connection. The ODBC driver was unable to establish a
connection with the data source.

08002

Connection name in use. You attempted to set the %DB_ATTR_ODBC_CURSORS
attribute, but the driver was already fully connected to the data source. See

 900

SQL_OpenDatabase1 »p534.

08003

Connection does not exist. A SQL Tools function used a database handle that was
not open. Please report this problem to Perfect Sync Technical Support.

08004

Server rejected the connection. The datasource rejected the requested connection.

08007

Connection failure during transaction. A database connection failed during the
execution of the SQL_EndTrans »p402 function, and it can't be determined whether or
not the requested %TRANS_COMMIT or %TRANS_ROLLBACK occurred before the
failure.

08S01

Communication link failure. The communication link between the driver and the
datasource failed before a SQL Tools function finished the requested operation.

21S01

Insert value list does not match column list. The number of parameters in an
INSERT statement did not match the number of columns in the table that was
named in the statement.

21S02

Degree of derived table does not match column list. Either 1) a %BULK_UPDATE or
%SET_UPDATE operation was requested, but no columns were updatable because all
columns were unbound, read-only, or the value of the Indicator was %SQL_IGNORE,
or 2) a SQL statement contained a CREATE VIEW statement and the number of
names that were specified was not the same degree as the derived table defined by
the query specification, or 3) a SQL statement contained a CREATE VIEW
statement and the unqualified column list (the number of columns specified for the
view in the column-identifier arguments of the SQL statement) contained more names
than the number of columns in the derived table defined by the query-specification
argument of the SQL statement.

22001

String data, right truncated The right-most character(s) of a string value were cut off
by the ODBC driver, usually because a memory buffer was not large enough to hold
the entire value. Also see 01004. If a fetch operation generates this error, you may
need to use the SQL_ResColMemo »p602 or SQL_ResColBLOB »p579 function to
retrieve the data from one or more columns.

22002

Indicator variable required but not supplied. An Indicator variable that was required
for an operation was set to a Null pointer value. This usually indicates the incorrect
use of a column-binding or parameter-binding function.

 901

22003

Numeric value out of range or ODBC 2.0 terminology. If the later, see 3.x State
HY019

22005

ODBC 2.0 terminology: see 3.x State 22018

22007

Invalid datetime format. A timestamp, time, or date value had an invalid format or an
illegal sub-value (such as an illegal seconds value like 99).

22008

Datetime field overflow or ODBC 2.0 terminology: If the later, see 3.x State 22007

22012

Division by zero.

22015

Interval field overflow. A Interval value contained an invalid value, or a valid value
that could not be converted to the requested data type for some other reason.

22018

Invalid character value for cast specification. An invalid literal value was used, based
on the value's data type.

22019

Invalid escape character. Escape characters must be exactly one character long.

22025

Invalid escape sequence. The character following an escape character was not a
percent sign (%) or an underscore (_).

22026

String data, length mismatch. A string length was specified for an operation, and too
few characters were supplied.

23000

Integrity constraint violation. A Null value »p171 was supplied for a column that was
defined as NOT NULL, or a duplicate value was supplied for a column that must
contain unique values, or some other integrity constraint was violated.

24000

Invalid cursor state or ODBC 2.0 terminology: If the later, see 3.x State 07005

 902

25000

Invalid transaction state. There was a transaction in progress when the
SQL_CloseDB »p279 function was used. When this happens, the transaction remains
active.

25S01

Transaction state unknown. One or more transactions failed, and the outcome is
unknown.

25S02

Transaction is still active. The ODBC driver was not able to guarantee that all work in
a global transaction could be completed, and the transaction is still active.

25S03

Transaction is rolled back. The ODBC driver was not able to guarantee that all work
in a global transaction could be completed, and the transaction active was rolled
back.

28000

Invalid authorization specification. The user that was identifier in a connection string,
or the authorization string, or both, violated restrictions defined by the Datasource

34000

Invalid cursor name. An invalid name was specified for a cursor (invalid characters,
too long, etc.), or a cursor name was used which did not correspond to an open
cursor.

37000

ODBC 2.0 terminology: see 3.x State 42000

3C000

Duplicate cursor name. The specified cursor name already exists. Cursor names
must be unique.

3D000

Invalid catalog name. An invalid catalog name was used.

3F000

Invalid schema name. An invalid schema name was used.

40001

Serialization failure. A transaction was rolled back because of a resource deadlock
with another transaction.

 903

40002

Integrity constraint violation. A %TRANS_COMMIT operation was requested, but the
transaction was rolled back because the commitment of changes caused a violation
of an integrity constraint.

40003

Statement completion unknown. A database connection failed during the execution
of a function, and the state of the transaction cannot be determined.

42000

Syntax error or access violation. An operation was not performed because of invalid
SQL statement syntax or a lack of the necessary permissions.

If you are using Microsoft Access and an error message with this SQL State is
generated by a SQL_Get function, see Appendix L: Microsoft Access »p919 under
"Hidden Tables".

42S01

Base table or view already exists. A SQL statement contained a CREATE TABLE
or CREATE VIEW statement, and the specified table or view already exists.

42S02

Base table or view not found. The specified table or view does not exist.

42S11

Index already exists. A SQL statement contained a CREATE INDEX statement
and the specified index already existed.

42S12

Index not found. The specified index does not exist.

42S21

Column already exists. A SQL statement contained an ALTER TABLE statement
and the column specified in the ADD clause is not unique, or it identifies a column
that already exists in the table.

42S22

Column not found. The specified column does not exist.

44000

WITH CHECK OPTION violation. A SQL statement contained an INSERT or
UPDATE statement which was supposed to be performed on a viewed table or a
table derived from the viewed table which was created by specifying WITH CHECK
OPTION, such that one or more rows affected by the statement will no longer be

 904

present in the viewed table.

70100

ODBC 2.0 terminology: see 3.x State HY018

HY000

General error. An error occurred for which no specific SQL State is defined.

HY001

Memory allocation error. The ODBC driver or Driver Manager was unable to allocate
memory for the requested operation.

HY003

Invalid application buffer type. A data type that is invalid, or is invalid for the
requested operation, was specified.

HY004

Invalid SQL data type. The data type that was specified is not a valid SQL Data Type
or a valid datasource-dependent data type.

HY007

Associated statement is not prepared. This SQL State is related to descriptors and
should never be reported by a SQL Tools application.

HY008

Operation canceled. SQL_StmtCancel »p720 was used to cancel an operation.

HY009

Invalid use of null pointer. A Null pointer was used in a situation where Null pointers
are not allowed.

HY010

Function sequence error. This error message means "steps were performed in the
wrong order". Since SQL Tools handles most sequence-oriented operations
automatically, this error should usually not be reported by SQL Tools programs.

HY011

Attribute cannot be set now. Certain database, statement, and environment attributes
can be set only before or after certain other operations have been performed. For
example, many database attributes must be set between SQL_OpenDatabase1 »p534
and SQL_OpenDatabase2 »p535. (These restrictions are often datasource-
dependent.)

HY012

Invalid transaction operation code. This SQL State should never be reported by SQL

 905

Tools programs.

HY013

Memory management error. This error usually relates to low-available-memory
conditions.

HY014

Limit on the number of handles exceeded. An ODBC-driver-defined limit was
reached, such as the maximum number of databases or statements that can be open
at the same time.

HY015

No cursor name available. A cursor name was requested for a statement that did not
have an open cursor.

HY016

Cannot modify an implementation row descriptor. This SQL State is related to
descriptors and should never be reported by a SQL Tools application.

HY017

Invalid use of an automatically allocated descriptor handle. This SQL State is related
to descriptors and should never be reported by a SQL Tools application.

HY018

Server declined cancel request. The server refused to perform a SQL_StmtCancel

»p720 operation.

HY019

Non-character and non-binary data sent in pieces. The SQL_LongParam »p503
function was used incorrectly, to send data that was not in a character (string) or
binary data format.

HY020

Attempt to concatenate a null value. The SQL_LongParam »p503 function was used to
send data in pieces, and one of the pieces was a Null value.

HY021

Inconsistent descriptor information. This SQL State is related to descriptors and
should never be reported by a SQL Tools application.

HY024

Invalid attribute value. An invalid attribute value was specified.

HY090

Invalid string or buffer length. An invalid string length or buffer length (such as zero, a

 906

negative number, or a value that is invalid for a certain circumstance) was specified.

HY091

Invalid descriptor field identifier. This SQL State is related to descriptors and should
never be reported by a SQL Tools application.

HY092

Invalid attribute/option identifier. This is roughly equivalent to a SQL Tools
%ERROR_BAD_PARAM_VALUE message. It means that an invalid value was specified
for an ODBC function, and SQL Tools wasn't able to detect the error.

HY095

Function type out of range. An invalid parameter was used for the SQL_FuncAvail

»p446 function.

HY096

Invalid information type. An invalid parameter was used for the SQL_DBInfoStr

»p377 or SQL_DBInfo »p338 function.

HY097

Column type out of range. This error should never be reported by a SQL Tools
program.

HY098

Scope type out of range. This error should never be reported by a SQL Tools
program.

HY099

Nullable type out of range. This error should never be reported by a SQL Tools
program.

HY100

Uniqueness option type out of range. This error should never be reported by a SQL
Tools program.

HY101

Accuracy option type out of range. This error should never be reported by a SQL
Tools program.

HY103

Invalid retrieval code. This error should never be reported by a SQL Tools program.

HY104

Invalid precision or scale value. The value specified for the Column Size or Decimal
Digits was outside the range of values supported by the data source for a column of

 907

the SQL data type that was specified.

HY105

Invalid parameter type. This error should never be reported by a SQL Tools program.

HY106

Fetch type out of range. This error should never be reported by a SQL Tools
program.

HY107

Row value out of range. An invalid row value was specified.

HY109

Invalid cursor position. The requested operation could not be performed at the
current cursor location.

HY110

Invalid driver completion. This error should never be reported by a SQL Tools
program.

HY111

Invalid bookmark value. An invalid bookmark was used.

HYC00

Optional feature not implemented. This error message indicates that your ODBC
driver does not support the requested operation.

HYT00

Timeout expired.

HYT01

Connection timeout expired.

IM001

Driver does not support this function.

IM002

Datasource name not found and no default driver specified.

IM003

Specified driver could not be loaded.

IM004

Driver's SQLAllocHandle on %SQL_HANDLE_ENV failed

 908

IM005

Driver's SQLAllocHandle on %SQL_HANDLE_DBC failed

IM006

Driver's SQLSetConnectAttr failed.

IM007

No Datasource or driver specified; dialog prohibited.

IM008

Dialog failed.

IM009

Unable to load translation DLL.

IM010

Datasource name too long.

IM011

Driver name too long.

IM012

DRIVER keyword syntax error.

IM013

Trace file error.

IM014

Invalid name of File DSN.

IM015

Corrupt file Datasource.

#0000 to #9999

SQL States that begin with # correspond to SQL Tools Error Codes »p895, not ODBC
errors. For example, SQL State #0030 indicates Error Code 999000030, which is
%ERROR_BAD_PARAM_VALUE.

S0001 -- ODBC 2.0 terminology: see 3.x State 42S01
S0002 -- ODBC 2.0 terminology: see 3.x State 42S02
S0011 -- ODBC 2.0 terminology: see 3.x State 42S11
S0012 -- ODBC 2.0 terminology: see 3.x State 42S12
S0021 -- ODBC 2.0 terminology: see 3.x State 42S21

 909

S0022 -- ODBC 2.0 terminology: see 3.x State 42S22
S0023 -- ODBC 2.0 terminology: see 3.x State 42S23
S1000 -- ODBC 2.0 terminology: see 3.x State HY000
S1001 -- ODBC 2.0 terminology: see 3.x State HY001
S1002 -- ODBC 2.0 terminology: see 3.x State 07009
S1003 -- ODBC 2.0 terminology: see 3.x State HY003
S1004 -- ODBC 2.0 terminology: see 3.x State HY004
S1008 -- ODBC 2.0 terminology: see 3.x State HY008
S1009 -- ODBC 2.0 terminology: see 3.x State HY009
S1009 -- ODBC 2.0 terminology: see 3.x State HY024
S1009 -- ODBC 2.0 terminology: see 3.x State HY092
S1010 -- ODBC 2.0 terminology: see 3.x State HY007 and HY010
S1011 -- ODBC 2.0 terminology: see 3.x State HY011
S1012 -- ODBC 2.0 terminology: see 3.x State HY012
S1090 -- ODBC 2.0 terminology: see 3.x State HY090
S1091 -- ODBC 2.0 terminology: see 3.x State HY091
S1092 -- ODBC 2.0 terminology: see 3.x State HY092
S1093 -- ODBC 2.0 terminology: see 3.x State 07009
S1096 -- ODBC 2.0 terminology: see 3.x State HY096
S1097 -- ODBC 2.0 terminology: see 3.x State HY097
S1098 -- ODBC 2.0 terminology: see 3.x State HY098
S1099 -- ODBC 2.0 terminology: see 3.x State HY099
S1100 -- ODBC 2.0 terminology: see 3.x State HY100
S1101 -- ODBC 2.0 terminology: see 3.x State HY101
S1103 -- ODBC 2.0 terminology: see 3.x State HY103
S1104 -- ODBC 2.0 terminology: see 3.x State HY104
S1105 -- ODBC 2.0 terminology: see 3.x State HY105
S1106 -- ODBC 2.0 terminology: see 3.x State HY106
S1107 -- ODBC 2.0 terminology: see 3.x State HY107
S1108 -- ODBC 2.0 terminology: see 3.x State HY108
S1109 -- ODBC 2.0 terminology: see 3.x State HY109
S1110 -- ODBC 2.0 terminology: see 3.x State HY110
S1111 -- ODBC 2.0 terminology: see 3.x State HY111
S1C00 -- ODBC 2.0 terminology: see 3.x State HYC00
S1T00 -- ODBC 2.0 terminology: see 3.x State HYT00

 910

Appendix G: Connection String Syntax

Connection strings are made up of keyword-value pairs. An equal-sign (=) is used to
separate keywords and values, and semicolons (;) are used to separate pairs.

Example Connection String:

DSN=SYSTEM1; UID=JOHNSMITH; PWD=HELLOWORLD

A connection string may contain any of the following ODBC-defined keywords: DSN,
FILEDSN, DRIVER, UID, PWD, and SAVEFILE . (See below for details.)

A connection string may also include any number of driver-defined keywords. Because the
standard DRIVER keyword does not use system information, an ODBC driver must define
enough keywords to allow it to connect to a datasource using only the information in the
connection string. Each ODBC driver defines which keywords it requires to connect to a
Datasource.

Standard Connection String Keywords

DSN=

The name of a Datasource as returned by the SQL_DataSourceInfoStr »p306
function, or by the "Datasources" dialog box that can be displayed by the
SQL_OpenDB »p536 function. The DSN= value cannot be an empty string, and should
not contain leading spaces.

FILEDSN=

The name of a .DSN file from which a connection string will be built for the
Datasource, i.e. a text file with the filename-extension DSN that contains a connection
string.

DRIVER=

The description of the driver as returned by the SQL_DriverInfoStr »p397 function.
Programs do not have to add { curly braces} around the attribute value after the
DRIVER keyword unless the attribute contains a semicolon (;), in which case the
braces are required.

UID=

A User ID. (The UID keyword is optional.)

PWD=

The password that corresponds to the User ID, or an empty string if there is no
password for the User ID. Examples: PWD=HELLO or PWD=;. (Note: In order to
keep them secret, the PWD keyword and value are never stored in a .DSN file.)

SAVEFILE=

The file name of a .DSN file in which the final connection string should be saved, if

 911

the connection is successful. The SAVEFILE keyword must be used in conjunction
with the DRIVER keyword or the FILEDSN keyword, or both. If this is not done, the
SQL_OpenDB »p536 function will generate a %SQL_SUCCESS_WITH_INFO Error
Message with SQL State 01S09 (Invalid keyword). If both SAVEFILE and DRIVER
are used, the SAVEFILE keyword must appear in the connection string before the
DRIVER keyword.

If any keywords are repeated in the connection string, the driver will use the value that is
associated with the first occurrence of the keyword.

If the DRIVER and DSN keywords are included in the same connection string, the one that
appears first will be used.

If the FILEDSN and DSN keywords are included in the same connection string, the one that
appears first will be used.

The FILEDSN and DRIVER keywords, on the other hand, can be used together.

If the FILEDSN keyword is used, the keywords that are specified in a .DSN file will be used to
create a connection string. If any keyword appears in a connection string with FILEDSN, then
the keyword's value in the connection string will be used in place of the value in the file.

The default directory for saving and loading a .DSN file is a combination of the path specified
by

1) The CommonFileDir registry entry in...

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\Curre ntVersion ,
and

2) the subdirectory ODBC\DataSources .

For example, if the CommonFileDir value in the registry was...

C:\Program Files\Common Files

...the default DSN directory would be...

C:\Program Files\Common Files\ODBC\Datasources

Keywords and Datasource names cannot contain the backslash (\) character. Keywords and
attribute values which contain the characters...

 [] { } () , ; ? * = ! @

... should be avoided.

 912

Appendix H: Logical True And False

VERY IMPORTANT NOTE: Most SQL Tools functions that return True/False values
return Logical True and Logical False according to the descriptions in this Appendix.
If you use SQL Tools True/False functions with %BAS_DWORD variables (which cannot
accept the Logical True value of negative one) then the functions will appear to
malfunction.

There are two different ways to look at the values of True and False.

The technical definition of False is Zero , and the technical definition of True is Nonzero . In
other words, all Microsoft API functions and virtually all programming languages recognize
zero as False and everything else as True.

Since computers use binary numbers -- ones and zeros -- it is fairly common to use zero for
False and one for True. This works fairly well when all you're trying to do is specify a simple
True/False value. For example, consider the following BASIC code...

False = 0
True = 1

DO
 lCount& = lCount& + 1
 IF lCount& = 100 THEN lComplete& = True
LOOP UNTIL lComplete& = True

This code is very straightforward. You could also use this code...

False = 0
True = 1

DO
 lCount& = lCount& + 1
 IF lCount& = 100 THEN lComplete& = True
LOOP UNTIL lComplete&

...to accomplish exactly the same thing, because the simple expression lComplete& would
be evaluated by BASIC and when the value was True (nonzero) the program would exit from
the loop. And you could even do this...

False = 0
True = 1

DO
 lCount& = lCount& + 1
 IF lCount& = 100 THEN lComplete& = True
LOOP WHILE lComplete& = False

... and it would work fine. But there is a significant problem with a True/False system that
uses one (1) for the True value. The following code will not perform the way you might
expect...

'"broken" code...
False = 0
True = 1

 913

DO
 lCount& = lCount& + 1
 IF lCount& = 100 THEN lComplete& = True
LOOP WHILE NOT lComplete&

This code looks like it should work, but there's a serious problem. Most computer languages
uses binary ("bitwise") operations for logical operators like AND, OR and NOT. The value
one (1) is evaluated as True -- remember that all nonzero values evaluate as True -- but
here's the problem: if you do this...

True = 1
PRINT NOT True

... you will not see zero, the value that you probably expected, you will see negative two.
Here's the reason. If you write out the value of one (1) in binary ones and zeros, you get
this...

0000000000000001 'fifteen zeros and a one

The NOT operator reverses all of the bits (see your BASIC language documentation), so NOT
1 yields this...

1111111111111110 'fifteen ones and a zero

...which evaluates to -2 . So, if you use one (1) for your True value, "NOT True"
evaluates to -2 , which is nonzero and therefore also evaluates as True.

In the "broken" example above, while lComplete& is zero, NOT lComplete& evaluates to a
nonzero value so the loop continues running. But if lComplete& is set to one (1) then NOT
lComplete& still evaluates to a nonzero value and the loop still continues running.

It is possible, fortunately, to use a value for True that works "logically" in virtually all cases.
Consider this...

The binary representation of False (always defined as zero) is sixteen zeros..

0000000000000000

If you do this...

False = 0
PRINT NOT False

...you will see that the value negative one (-1) is displayed. This is because the binary value
1111111111111111 , which is the same as NOT 0000000000000000 , evaluates to
negative one. (The reason that this bit pattern evaluates to -1 is pretty complicated, but if
you're interested you can read about it in your BASIC documentation. Take our word for it:
1111111111111111 evaluates to negative one in all computer languages that use "Signed
Integers", as BASIC does.)

So if you modified the "broken" example code above to use negative one for True instead of
one...

False = 0
True = -1

 914

DO
 lCount& = lCount& + 1
 IF lCount& = 100 THEN lComplete& = True
LOOP WHILE NOT lComplete&

...it would work "logically", and the program would exit from the loop when 100 was reached.

The bottom line is that the use of -1 for True can make your code easier to write and read.

There's one final "glitch" that you have to keep in mind, however. Negative one is (of course)
a negative number, and not all variable types can be used to store negative numbers. The
32-bit BASIC variable type "Long Integer" -- which is the fastest and most efficient BASIC
variable type -- can use negative numbers, so this is not usually a problem. But some
programs and some Windows API functions use 32-bit %BAS_DWORD variables, which are
unsigned variables and won't accept negative values, so you'll be forced to use +1 and avoid
NOT and other "bitwise" operations.

Suggested Reading

Look at the ISFALSE and ISTRUE functions in the PowerBASIC documentation, as well as
the NOT operator and the IF/THEN statement.

 915

Appendix I: Internet Resources

Perfect Sync maintains a web page that lists dozens of valuable online resources for SQL
Tools programmers. Because the information changes so often, and the links need to be
updated regularly, we no longer include it in this Help File.

http://PerfectSync.com/pp/DevTools/SQLTools/SQLToolsResources.php

 916

Appendix J: Using Bitmasked Values

A bitmasked value is an integer variable (such as a %SQL_INTEGER or %BAS_DWORD) that is
used to store two or more different values at the same time. Each of the value's bits has a
different meaning. For example, a 32-bit (4-byte) %BAS_DWORD or %BAS_LONG variable can
be used to store 32 different true/false flags.

PowerBASIC programmers can use the BIT function to examine a bitmasked value, to find
out the status (on or off) of any given certain bit.

But because it is usually just as easy (and fast) to use the bitwise AND operator, and because
older versions of PowerBASIC do not support BIT , we will focus on using AND.
(PowerBASIC users may wish to consult the PB documentation for more information about
BIT .)

Technically speaking, most bitmasked values are %BAS_DWORD variables, but because not
all computer languages support unsigned integers »p42 -- and because there is no difference
whatsoever in the "bit patterns" of %BAS_LONG and %BAS_DWORD variables -- we will use
%BAS_LONG variables for all of the examples below.

Let's assume that a %BAS_LONG variable called lResult& contains a bitmasked value, and
that several "bitmask identifier" constants are provided for the bitmask. This would be the
case if you were attempting to analyze the return value of a SQL Tools Info function that
returns a bitmasked value. The return value of the function would contain the bitmask, and
one or more constants would be described in this document.

Here's a specific example. The SQL_DBInfo »p338 function (SQL Database Info, Unsigned
Integer) can be used to obtain a value called %DB_NUMERIC_FUNCTIONS which describes
the built-in numeric functions that are supported by a database. Here are four of the twenty-
four different constants that are provided in the Reference Guide for
%DB_NUMERIC_FUNCTIONS:

%SQL_FN_NUM_ABS
%SQL_FN_NUM_COS
%SQL_FN_NUM_PI
%SQL_FN_NUM_SIN

To find out whether or not a database supports the ABS (absolute value) function, you would
open the database with SQL_OpenDB »p536 and then use this code:

'get the bitmasked value:
lResult& = SQL_DBInfo(%DB_NUMERIC_FUNCTIONS)

'check the %SQL_FN_NUM_ABS bit:
IF (lResult& AND %SQL_FN_NUM_ABS) THEN
 'The ABS function IS supported
ELSE
 'The ABS function is NOT supported
END IF

You could also use %SQL_FN_NUM_COS in place of %SQL_FN_NUM_ABS to find out whether or
not the COS (cosine) function was supported, and so on.

 917

IMPORTANT NOTE: If you do not use the parentheses around the AND test, like this...

IF (lResult& AND %SQL_FN_NUM_ABS) THEN

...the test may not be performed correctly. Different computer languages use slightly different
notations to indicate that a bitwise comparison should be performed. Parentheses are the
most common notation, but you should consult your language's documentation to make sure.

PowerBASIC programmers: You must always use parentheses around the AND test to
tell PowerBASIC that you want to perform a "bitwise " operation. Without the
parentheses, PowerBASIC will use "short circuit eva luation" to speed up the operation,
and this will produce incorrect "bitwise" results. In fact, the line containing
%SQL_FN_NUM_ABS above will always return True if you forget the parentheses,
regardless of the value of lResult&.

 918

Appendix K: SQLSetEnvAttr

Certain Microsoft Error Messages »p181 refer to this low-level ODBC API function. For
example, it is common to receive the following Error Message after you use SQL_OpenDB
»p536 to open a database:

[Microsoft][ODBC Driver Manager] The driver doesn't support the
version of ODBC behavior that the application reque sted (see
SQLSetEnvAttr).

The SQL Tools equivalent of SQLSetEnvAttr is the SQL_SetEnvironAttrib »p679 but you
will find more useful information under SQL_Initialize »p495 and Error Messages After
Opening a Database »p82.

 919

Appendix L: Microsoft Access

Microsoft Access has evolved into a very powerful and stable DBMS over the years, and SQL
Tools Version 3 has been expanded to enhance its Access interface.

Access does not support some very important features through its ODBC interface, so in the
past they have not been available to SQL Tools programmers.

� Primary Key Info
� Foreign Key Info (Access "Relationships")
� Stored Procedures Info (Access "Queries", plus Reports and Forms)

SQL Tools Pro »p29 Version 3 can now retrieve all of that information; see Hidden Access
Tables below for important details about activating that capability.

In addition, Microsoft Access behaves oddly in several circumstances:

� Garbage characters in certain Info fields
� Nonstandard error messages for common operations
� Catalog fields are not supported by any Info function
� Duplicate Unique Columns reported

SQL Tools Version 3 (Standard and Pro) automatically compensates for all of those issues,
among others.

Microsoft Access 2007

Using an Access 2007 database with SQL Tools requires the installation of a package called
the Microsoft Office Access Database Engine 2007. The file AccessDatabaseEngine.exe
is available for download from microsoft.com . It also updates the ODBC drivers for Excel,
dBASE, and Plain Text databases.

General Access Tips

An Access "Relationship" is the same thing as a Foreign Key »p205.

Access "Memo" fields are not actually Long Data »p167 columns. They are limited by Access
to a maximum length of 64k characters. For longer data you must use the "OLE Object" data
type, which is a %SQL_LONGVARBINARY »p105 field.

If you attempt to use SQL Tools to open an Access database that is currently open in the
Access design environment, many operations will be locked out. SQL_Stmt »p716 and other
functions will return %ERROR_ADVISORY and the operation will fail. This error will often be
reported as having occurred in the SQL_OpenStatement »p541 function, which is called
internally by many different SQL Tools functions.

Microsoft supports the linking of Excel »p923 Spreadsheets in a way that makes them appear
to be Tables in an Access database. The only way to tell that an Access Table is really an
external Excel Spreadsheet is by the table type SYNONYM (instead of TABLE or SYSTEM
TABLE).

 920

Stored Procedures in Access

Access "Queries" are the equivalent of Stored Procedures »p208. Queries built in the Access
design environment produce simulated tables with the Table Type VIEW. They may appear
to be normal tables, and they can be read, but they cannot be updated and most Info
functions will not return useful information about them.

To create a true Stored Procedure with Access, you should execute a CREATE PROC
statement. For example to create a Procedure called DeleteStuff ...

CREATE PROC DeleteStuff as DELETE FROM AddressBook
WHERE ZipCode = 98765

Access Stored Procedures do not support bound statement parameters »p128. While
statement-based input parameters can be used, output parameters are not supported.

Access "Forms" and "Reports" are also a type of Stored Procedure, but they are not useful
outside the Access environment. SQL Tools users can generally ignore them.

If you rename an Access Query, Form, or Report, it may not appear in the Stored Procedures
list. This is a bug in certain versions of Access, not in SQL Tools.

Access Hidden Tables

Microsoft Access stores a lot of information in System Tables which are not normally visible to
external programs, or even to the Access interface itself.

To make those tables visible, and to thereby allow SQL Tools to extract Foreign Key and
Stored Procedure information from them, perform the following steps. (Primary Keys are
handled automatically by SQL Tools.)

Access 97 through 2003

• Open the target database using an equal or later version of Microsoft Access.
• Select Tools from the main Access pulldown menu.
• Select menu item: Options .
• A tabbed dialog will appear.
• Select the View tab.
• Locate the group of checkboxes labeled Show .
• Check the System Objects box.
• Click OK to close the dialog.

Access 2007

• Open the target database using Microsoft Access 2007.
• If you are using an Access 2007 *.MDB database (for example

MyDatabase.MDB), skip down to the step that begins Locate the Nav Pane .
Otherwise...

• Access 2007 *.ACCDB databases do not allow certain settings to be
changed directly, so you must temporarily save an ACCDB database as an
MDB database. To do that...

• Click the Office Button at the top-left of the screen
• Move the mouse over the Save As menu item until a popup appears

 921

• Select Access 2002-2003 from the popup
• Optional: Change the file name. Example: add TEMP_ to the beginning.
• Click Save.
• Locate the Nav Pane , which runs down the left side of the screen.
• Right-click in the blank area of the Nav Pane
• Select Navigation Options from the popup menu
• Locate the Display Options checkboxes near the bottom of the dialog
• Check the Show Hidden Objects box
• Check the Show System Objects box
• Click OK to close the dialog.

Now, when you examine the Access Tables list, all of the System Tables will be listed. Next...

If you want SQL Tools to be able to access Foreign Key information, perform the
following steps for the MSysRelationships table. If you want to be able to access
Stored Procedure information, perform these steps f or the MSysObjects table (not
MSysAccess Objects). You may, if you are curious about them, perform these steps for
other tables.

Access 97 through 2003

• Select Tools fro the main Access pulldown menu.
• Select Security , then User and Group Permissions
• In the Object Name list, select the desired MSys... table.
• Check the Read Data box
• Repeat for other tables as desired.
• Click OK to close the dialog.

Access 2007

• Click on Database Tools , which is located along the top of the Office Ribbon
• Below that, usually on the right end of the bar, locate the Administer group
• Select Users and Permissions
• Select User and Group Permissions
• In the list of tables, select the desired MSys... table
• Check the Read Data box
• Click the Apply button
• Repeat for other tables as desired.
• Click OK to close the dialog.
• If you performed the Save As step above, to save an ACCDB database as an

MDB database, you may want to repeat the Save As process but this time
save it as an Access 2007 database. The changes you just made will carry
over to the new ACCDB file. (Or you may choose to use the MDB file for your
project.)

Foreign Key and/or Stored Procedure information should now be accessible from your SQL
Tools programs.

Special Functions for Access Databases

The SQL Tools SQL_DataSourceModify »p308 function provides functions specifically
designed for Access Databases.

 922

Unsupported Functions

Microsoft Access does not support the following ODBC features in standard or nonstandard
ways, so SQL Tools is not able to provide or simulate them.

• Table Privileges
• Table Column Privileges
• Stored Procedure Column Info

 923

Appendix M: Microsoft Excel

Microsoft Excel is not a full-featured database, but it is often useful to be able to extract data
from a spreadsheet, or to create a spreadsheet from other data.

An Excel 97-2003 *.XLS file is equivalent to a database. Excel 2007 uses the extension
*.XLSX , among others.

An Excel "Worksheet" is equivalent to a table.

Microsoft Excel 2007

Using an Excel 2007 database with SQL Tools requires the installation of a package called
the Microsoft Office Access Database Engine 2007 . The file
AccessDatabaseEngine.exe is available for download from microsoft.com . It also
updates the ODBC drivers for Access »p919, dBASE, and Plain Text databases.

Identifier Names

Excel Table Names, Column Names, and other "identifiers" require unusual delimiters. You
must use the left-single-quote to surround identifiers in SQL Statements.

Normal single-quote: '

Left single-quote: `

For all other strings you must use the normal single-quote. For example...

SELECT * FROM `SHEET1$` WHERE `MYCOLUMN` = 'HELLO'

Under certain circumstances, Excel automatically adds normal single quotes around
identifiers For example if you name a worksheet Monthly Totals it might be reported by
SQL_TblInfoStr(%TABLE_NAME) »p808 as either Monthly Totals$ or 'Monthly
Totals$' . We have not been able to determine what causes Excel to do this. If it happens,
it may be necessary for you to use both types of quotes in a SQL Statement, like...

SELECT * FROM `'Monthly Totals$'` WHERE `PRODUCT` =
'Widgets'

Tables

An Excel "Worksheet" is equivalent to a table. Other things can appear to be separate tables,
such as a Print Area within a worksheet.

When accessed through SQL Tools, Table Names will usually have a $ suffix. Unless you
add, remove, or rename the worksheets, Excel files will contain three default tables called
Sheet1$, Sheet2$, and Sheet3$.

Empty tables are reported as having one column and one row.

The Table Type for an Excel worksheet is usually TABLE or SYSTEM TABLE. We

 924

recommend that you avoid using tables that are reported without the $ suffix if a nearly-
duplicate name exists, such as AddressBook and AddressBook$. In that case, use
AddressBook$.

Columns

Column Names are defined by the data in row 1. If data appears in a column but row 1 is
blank, Excel uses the default Column Names F1 , F2, F3, etc. If two columns have the same
name, Excel will add a number to the second column name.

A column's Data Type is defined by the type of data that is entered into the column. By
default, the Excel ODBC driver analyzes the first 8 rows of data (i.e. rows 2 through 9) to
determine the Data Type for the entire column.

Data Types

Excel "officially" supports only a small number of Data Types.

Excel Type SQL Data Type
---------- -------------
LOGICAL = %SQL_BIT
CURRENCY = %SQL_NUMERIC
NUMBER = %SQL_DOUBLE
VARCHAR = %SQL_VARCHAR
DATETIME = %SQL_TYPE_TIMESTAMP

However if an Excel column contains data that is longer than 255 characters, Excel will use
the %SQL_LONGVARCHAR data type. There is no corresponding Excel Type, i.e. Excel does
not give the data type a name even though it can use it.

Excel is also capable of storing BLOB (Binary Large OBject) data such as images and
sounds, but it incorrectly reports that columns containing BLOBs are the VARCHAR type with a
length of 255 characters, so SQL Tools is unable to retrieve them.

CSV Files for Excel

An easy way to create an Excel-compatible data file is to use the CSV (Comma Separated
Values) format, which Excel can open. A number of SQL Tools functions can create CSV
strings and files, such as SQL_ResSet »p623 and SQL_ResColString(%ALL_COLS) »p614.
The SQLT3_Dump.BAS sample program demonstrates the use of SQL_ResColString to
create Excel-compatible CSV files.

If your data contains date/time values, you may wish to set the following option so that
SQL_ResColString will produce Excel-compatible date/time strings:

SQL_SetOption »p681 %OPT_DEFAULT_DATETIME_FORMAT,
%PART_YYYY_MM_DD_HH_MM_SS

Other Notes

SQL Tools Pro also provides a numeric Date/Time format specifically for Excel spreadsheets.

 925

See SQL_DateTimePartStr(%PART_DATE_JULIAN_EXCEL) »p315. It is not usually
necessary to use that conversion function because the Excel ODBC driver recognizes most
normal date/time formatting.

If you embed an Excel spreadsheet in an Access »p919 database, and then use SQL Tools to
open the Access database, the spreadsheet will appear to be an Access table with the Table
Type SYNONYM.

Unsupported Functions

Excel spreadsheets do not support Indexes, Primary Keys, Foreign Keys, Unique Columns,
Auto Columns, Table Privileges, Column Privileges, or Stored Procedures.

 926

Appendix N through Appendix S: Reserved

These Appendix entries are reserved for future use.

 927

Appendix T: New Features in SQL Tools Version 3

(PRO) indicates features available only in SQL Tools Pro »p29.

� SQL Tools Version 3 is leaner than Version 2. In spite of all of the powerful new
features, the SQL Tools DLLs have grown by less than 7k* . Many SQL Tools
functions are measurably faster, too.

� Instead of using the SQL Tools DLL, you have the option of using PowerBASIC
Units ** and Libraries ** . This allows you to link SQL Tools directly into your
programs instead of distributing a separate DLL file. Even better, PowerBASIC will
link only the SQL Tools functions that your program actually needs, so the final result
will be much smaller. For example, the SQL_DUMP sample program and Pro DLL
require 201k* . Using the PBLIB version you can create a single, self-contained EXE
file of just 82k.

� The new SQL_ResultSet »p660 functions can be used to retrieve all of the rows of
a result set in a single operation . The result set can be returned to your program
as 1) a two-dimensional PowerBASIC string array; 2) a PARSE$-compatible CSV
(Comma Separated Values) string; 3) a CSV disk file; 4) a PowerArray Object** , 5) a
packed string or 6) a packed file. The "packed" options are compatible with
PowerBASIC's JOIN$ and PARSE functions.

� Retrieving values from individual Result Columns has been simplified too. The new
functions SQL_ResColString »p614 and SQL_ResColNumeric »p607 replace ten
Version 2 functions: SQL_ResColSInt , SQL_ResColUInt , SQL_ResColBInt ,
SQL_ResColDate , SQL_ResColTime , SQL_ResColDateTime ,
SQL_ResColDateTimePart , SQL_ResColFloat , SQL_ResColStr , and
SQL_ResColText .

o SQL_ResColNumeric and SQL_ResColString can return PowerBASIC

QUAD Integer values, which were not directly supported by Version 2.
o SQL_ResColNumeric automatically returns numbers for result columns that

contain strings, such as 9.87 for the string "09.87.654".
o SQL_ResColString automatically returns strings for all numeric values.

For example if SQL_ResColNumeric returns 1234, SQL_ResColString
will return "1234".

o SQL_ResColString supports %SQL_GUID (Globally Unique Identifier)
columns, which are compatible with the PowerBASIC GUID functions.

o For very unusual circumstances, the new SQL_ResColRaw »p610 (PRO) and
SQL_ResColBuffe r »p581 (PRO) functions can be used to obtain unprocessed
data. Examples include user-proprietary-format SQL_DECIMAL,
SQL_NUMERIC, and SQL_FLOAT columns which do not correspond to a
standard SQL data type; Signed Bytes; Unsigned Quad Integers; and virtually
any proprietary data format (as long as you know the format).

� The new SQL_ResColWString »p614 function has been added for Unicode (Wide)

String data.

� The new SQL_ResColMemo »p602 function makes retrieving Long String data much
easier. SQL_ResColBLOB »p579 (PRO) does the same thing for Binary Large OBjects,
making it simple to retrieve images, sounds, entire documents, and even
executable programs that are stored a database. A "Direct To File" option is

 928

available, so your program doesn't have to handle the cumbersome data directly; just
give SQL Tools the name of the disk file you want to create.

� The new SQL_UpdateMemo »p857 function greatly simplifies the process of storing
Long Strings in a database, and SQL_UpdateBLOB »p855 (PRO) stores Binary Large
Objects. A "Direct From File" option is available, so your program doesn't have to
handle the data directly. Supply the name of a disk file, and SQL Tools will store the
file in your database.

� The new SQL_DateTimePart »p314 and SQL_DateTimePartStr »p315 functions are
far more flexible than the old (Version 2) SQL_ResColDateTimePart function.

o They can be used to format virtually any date/time value, not just values from

Result Columns.
o They can be used to obtain many useful numeric values such as the Quarter,

the Day Of Year, and six varieties of Julian Dates including the Unix/Linux,
NASA, and Microsoft Excel »p923 standards (PRO).

o SQL_DateTimePartStr returns many different non-numeric values,
including Day/Month names and abbreviations, multi-number values such as
"12:34:56", and century names like "21st".

o Both functions are fully compatible with PowerBASIC's new PowerTime**
Object.

� Enhanced support for Microsoft Access databases. Access doesn't support

some important SQL features like Primary Keys (PRO), Foreign Keys (PRO), and
Stored Procedures (PRO) in the normal, ODBC-standard way, so SQL Tools Version 3
includes work-arounds for those missing features.

� All of the SQL_Info and SQL_Attrib functions now return label and formatting
strings as well as values. For example

o SQL_TblInfoStr(%INFO_LABEL, %TABLE_NAME) returns the label string

"TABLE_NAME"
o SQL_TblInfoStr(%INFO_FORMAT, %TABLE_NAME) returns "STR" to

indicate that the return value of %TABLE_NAME is a string.
o These features have been used internally to enhance the SQL Tools Trace

functions (see below) and they can be very useful in your programs too.
Check out the new SQL_INVENTORY.BAS sample program for an example.

� 100% of the SQL_Info functions now support Driver-Defined fields .

� SQL Statement Auditing is provided by the new SQL_Audit »p260 (PRO) and

SQL_AuditStr »p262 (PRO) functions. SQL Tools can now create Audit Files that
record all of the SQL Statements that your program executes, including workstation,
username, and date/time stamps. SQL Tools Error Messages are automatically
saved in the same file, and your programs can easily add additional information such
as the number of rows affected by each statement.

� The new SQL_DBMS »p384 function returns numeric values like %DBMS_MS_ACCESS
and %DBMS_MYSQL that identify the type of database that your program is using, and
the SQL_DBMSName »p386 function returns strings like "Microsoft Access (MS Corp)"
and "MySQL (Oracle)". Over 50 drivers are currently recognized.

� The SQL Tools Trace Files have been greatly enhanced. Six different levels of

 929

tracing are now available, and most of the numeric values in the Trace File are
translated into words (for example SQL_SUCCESS instead of 0). ODBC-level tracing,
while rarely necessary, has also been made easier to use.

� Several convenience features have been added to Version 3, like SQL_Fail »p433
(a complement to SQL_Okay); SQL_ToolsVersionStr »p843, SQL_DataTypeStr

»p320, SQL_CurrentTrace »p288, SQL_EnvironAttribStr »p407,
SQL_StatementAttribStr »p710, SQL_TblStatInfoStr »p826,
SQL_ParamInfoStr »p556 (PRO), SQL_CurrentThread »p287 (PRO) SQL_SaveFile

»p661 (PRO) (for creating BLOB files); and SQL_TableRowCount »p762 (PRO).

� Some SQL Tools functions have new parameters to make them more flexible. For
example, SQL_OpenDB »p536 now has a parameter that controls the Prompt Type.

� Many SQL Tools functions are now easier to use because they have OPTIONAL
parameters for rarely-used features. Other functions have OPTIONAL parameters for
the most commonly used operations, for example SQL_Fetch (with no parameter)
now does the same thing as SQL_Fetch %NEXT_ROW.

� Several frequently-used SQL Tools functions now have an OPTIONAL parameter
called sIgnoreErrors$ which makes it even easier to handle predictable errors »p183.

� Many function name have been simplified, and many equates have been renamed to
make them easier to remember. For example, all of the UInt and SInt suffixes
have been eliminated. But don't worry, SQL Tools Version 3 provides an extra
#INCLUDE »p67 file that recognizes all of the old names, so updating an existing
program to Version 3 is usually very simple.

� Like the newest PowerBASIC compilers, SQL Tools Version 3 has significantly
enhanced support for Unicode and the databases that use it.

� SQL Tools Version 3 can handle larger, more complex database applications than
Version 2.The Pro version can manage up to 1,024 concurrent statements -- perfect
for threaded, server/client, and web site applications -- and the Standard version can
have up to 4 concurrent statements. Version 2 was limited to 256 and 2, respectively.
(Your actual runtime capabilities are of course dependent on the runtime hardware,
available memory, etc.)

� The SQL Tools documentation is now provided in CHM, PDF, HLP, and online
formats. The docs have grown by almost 25% compared to Version 2, and
Appendices have been added for Microsoft Access »p919 and Excel »p923.

* Refers to the No Trace »p72 Pro DLL.
** Indicates PowerBASIC features that are available only when using PB/Win 10 or
PB/CC 6 and above.

See Also

Appendix U: Upgrading from SQL Tools Version 2 to Version 3 »p930
Appendix V: Other Changes in SQL Tools Version 3 »p931

 930

Appendix U: Upgrading From SQL Tools Version 2 to V ersion
3

Upgrading Your Existing Programs

1) The name of the SQL Tools declaration file has been changed. You must...

#INCLUDE "SQLT3.INC"

...in your program instead of SQLT_Pro.INC or SQLT_Std.INC . (You must also, of course,
add the appropriate path to the file name, like C:\SQLTOOLS\SQLT3.INC .) Note that the
same Version 3 declaration file is used by all SQL Tools Standard and Pro programs.

2) If you want to use the DLL version of SQL Tools v3, you must also inlcude one of these two
lines...

#INCLUDE "SQLT3StdDLL.INC" 'Standard
#INCLUDE "SQLT3ProDLL.INC" 'Pro

That's the easiest way to get started with Version 3: simply use a DLL as you did with Version
2. Note that the names of the DLLs have been changed, so you'll need to distribute
SQLT3PRO.DLL or SQLT3STD.DLL with your updated programs.

3) First the good news: Many different equates and functions, have been renamed to make
them more consistent and easier to remember. The bad news is that some old Version 2
equate and function names won't be recognized by Version 3. Back to good news: We have
included a file called SQLTv2-3.INC »p67 that allows you to use most of the old names
temporarily, while you update your programs. Simply...

#INCLUDE "SQLTv2-3.INC"

...in your program, along with the Version 3 INC files, and it will handle most of the
conversions.

Keep in mind as you work on your program that you should eventually eliminate the SQLTv2-
3.INC file and begin using the new equate and function names. This will make it much
easier for you to use the SQL Tools documentation, and if you need Technical Support from
Perfect Sync we may require that you submit source code using only the new names.

4) Depending on the functions that you use in your Version 2 programs, some manual code
changes may be necessary. Appendix V »p931 is a comprehensive list of things that have
been changed. Even if your Version 2 program compiles perfectly with Version 3, we
recommend that you review the list for minor changes that might affect your code.

 931

Appendix V: Other Changes in SQL Tools Version 3

If you encounter changes that are not documented he re, please contact Perfect Sync
Technical Support »p25 and we'll make sure that they are covered in future versions of
this document.

SQL_Initialize »p495

• The last parameter of SQL_Initialize is no longer used for hExeInstance. If you

need to set the hExeInstance (for example, to tell SQL Tools to use icons in an EXE
or DLL file) use...

SQL_SetOption %OPT_h_EXE_INSTANCE, hExeInstance

SQL_ResColString »p614(%ALL_COLs)

• The maximum number of characters per column has been increased from 32 to 64. If

you prefer the old behavior, use

SQL_SetOption %OPT_ALLCOL_MAXFIELD, 32

• When you use the %ALL_COLs option, SQL Tools Version 3 presents nonprintable

characters as text. It now uses this notation...

[h00]Printable Text[h0D][h0A]

...where the number after the h is the 2-digit Hex Value of the character. Version 2
used this notation...

[CHR$(0)]Printable Text[CHR$(13)][CHR$(10)]

SQL_LimitTextLength »p501

� The default length-limit has been increased from 32 to 64, If you prefer the old

behavior -- or any other value -- use the new lMaxLength& parameter.

SQL_ErrorIgnore »p418

� This function now returns a numeric value instead of a string. If your program needs

to track the contents of the Ignore list as it is changed, it should maintain an internal
variable.

SQL_MsgBox »p514

� This function no longer displays a SQL Tools icon by default.

SQL_InfoImport »p492, SQL_InfoExport »p490

� The files and strings that were used by Version 2 are not compatible with Version 3.

You should re-build any existing Info files before using them for the first time.

� The default file name for these functions has been changed from MyTable.DBI to
Database.Info .

 932

SQL_Trace »p845, SQL_BinaryStr »p268, SQL_TextStr »p836

� The "nonprintable character" change (see just above) also affects Trace Files.

• The SQL Trace »p186 functions no longer append an existing Trace File by default,

they delete the old file first. If you prefer the Version 2 behavior, use...

SQL_SetOption %OPT_TRACE_APPEND, %TRUE.

� The %TRACE_SINGLE option is no longer supported. You must explicitly turn tracing

on and off.

� The %OPT_TRACE_INDENT option is no longer supported. Indentation is automatic.

� The %OPT_TRACE_TIMES option is no longer supported. Times are added
automatically when certain trace modes are used.

Error Messages

� The text that is associated with various error messages can no longer be changed.

Version 2 options from %OPT_ERR999000030 to %OPT_ERR999000049 are now
ignored.

� %ERROR_CANT_BE_DONE has been renamed %ERROR_CANNOT_BE_DONE.

Date/Time Formatting

� The Version 2 SQL_ResColDateTimePart function has been replaced by a much

more flexible system. If your program uses SQL_ResColDateTimePart you will
definitely need to re-write the code. Date/Time values should now be retrieved with
the SQL_ResColNumeric »p607 function and extracted/formatted with
SQL_DateTimePart »p314 and SQL_DateTimePartStr »p315.

Various Equates

� The following Version 2 equates are not supported by Version 3. They are either no

longer necessary because a function is now performed automatically, or a different
system must be used.

%OPT_MAX_CONN_STRING_LEN
%OPT_LONGRES_COLTYPE
%OPT_OLE_STRING_PARAMS
%OPT_DATE_FLAGS
%OPT_DATE_LOCALE
%OPT_TABLE_NAME
%OPT_TIME_FLAGS
%OPT_TIME_LOCALE
%TABLE_STATISTIC_COUNT
%DB_INFO_VOLUME

Name Changes

� Many different functions and equates have new, more logical and consistent names

in Version 3. Please refer to the SQLTv2-3.INC »p67 file for a complete list.

 933

Appendix Y: Using SQL_Test.EXE

SQL_Test.EXE is a very small (12k) program that can be used to determine whether or not
ODBC Drivers have been installed on a computer before your main program starts up.

If you have ever started a SQL Tools program on a computer where ODBC Drivers were not
installed, then you have seen the Windows Error Message...

The dynamic link library ODBC32.DLL could not be fo und in the specified path..

...followed by a very long, complex-looking list of directories. To the average user, that
message is very unfriendly and intimidating, but it is difficult to avoid because Windows
automatically displays it whenever it can't find a DLL, such as those used by the ODBC
system.

The SQL_Test.EXE program can be used to eliminate that ugly message, and to display a
message that you write, to explain to your users (presumably in plain, non-technical
language) what they need to do. For example you could tell them to contact you, or to
download and install the Microsoft MDAC package. (See Installing ODBC Drivers »p47 for
more information.)

If your main program is called MyProg.EXE you would start it this way (using a Windows
shortcut or a Batch File)...

SQL_Test MyProg.EXE

The SQL_Test program will start up and automatically figure out whether or not a key
ODBC file called ODBC32.DLL is present on the system. (Note that SQL_Test doesn't
check for a specific ODBC Driver, it simply checks to see if the "ODBC subsystem" has been
installed.)

If SQL_Test determines that the ODBC subsystem has been installed, it will remain
invisible and automatically launch MyProg.EXE . It will look as though your application had
been launched directly.

If SQL_Test determines that the ODBC subsystem has not been installed, it will display a
Message Box instead of launching your program. Here is the default message:

This program cannot operate unless ODBC DRIVERS are
installed on your computer. Contact the author of
this software for instructions for obtaining and
installing the necessary drivers.

It's very easy to change what the message box says, by placing a copy of the
\SQLTOOLS\SQL_Test.TXT file (note the TXT extension) in the same directory as
SQL_Test.EXE , and editing the file.

Here are the original contents of the SQL_Test.TXT file:

Message Box Title Goes Here
ODBC DRIVERS HAVE NOT BEEN INSTALLED.

Your message text starts on the second line of the file
and can fill several lines. The only limit is the maximum

 934

size of the standard Windows Message Box.

See the SQL Tools Help File for more information.

The first line of the SQL_Test.TXT file determines the text that will be displayed in the
Message Box's caption or "title bar.

The rest of the file will be displayed in the main message area of the Message Box.

Using SQL_Test in the Quiet Mode

If you launch SQL_Test like this:

SQL_Test QUIET

...it will not, as you might expect, attempt to launch a program called QUIET. The keyword
QUIET tells SQL_Test that it should not attempt to launch a program or display a message
box, it should set an ERRORLEVEL to indicate whether or not the ODBC subsystem has
been installed, and then exit immediately.

If SQL_Test QUIET determines that the ODBC subsystem has been installed, it will return
an ERRORLEVEL of zero (0).

If SQL_Test QUIET determines that the ODBC subsystem has not been installed, it will
return an ERRORLEVEL of one (1).

The ERRORLEVEL value can be used to control how Batch Files (*.BAT files) operate.

A discussion of ERRORLEVELs and Batch Files is beyond the scope of this document. If you
do not already know how to use them, we suggest that you consult the Windows
documentation or a DOS manual (since Windows Batch Files are very similar to DOS Batch
Files).

 935

Appendix Z: Topics Not Covered

The following ODBC/SQL topics are supported by SQL Tools but are not thoroughly covered
in this version of this document. We recommend that you consult the Microsoft ODBC
Software Developer Kit »p915 for information about these topics:

Connection Pooling

DDL (Data Definition Language) Statements

Outer Joins

Interoperable Application Guidelines

The Microsoft ODBC Software Developer Kit »p915 is an excellent source of information for
SQL and ODBC programmers.

 936

A Simple Program, Step By Step

This section of this document will walk you through the basic steps that SQL Tools programs
usually perform. Your programs, of course, will probably be much more complex than these
simple examples.

When it is presented in electronic form, all of the pages of this document are linked together
so that you can use the >> button (or link) to move from one page to the next.

 937

Quick and Dirty: The SQL_DUMP Program

The goal of this simple program is to scan one entire SQL database table, and to create a text
file that contains all of the data from the table. This is often called an "export" or "dump"
operation.

The SQLTools_Example.MDB file, which is a Microsoft Access 2000 database, is provided
with SQL Tools. If Microsoft Access is installed on your computer, you can use it to examine
the sample database; if it's not, you can use the SQL_Inventory sample program. You will
see a table called AddressBook with twelve columns called ID , FirstName ,
MiddleName , LastName , Address , City , State , Country , ZipCode , BirthDate ,
Notes , and Image .

IMPORTANT NOTE: All of the sample programs assume that you installed SQL Tools in the
default \SQLTOOLS\ directory. If you installed SQL Tools somewhere else, then you will be
required to change both the sample source code files and the sample DSN files that are
provided. For example, to compile and run the SQL_Dump program, you must change the
\SQLTOOLS\ paths in the SQL_Dump.BAS source code file and inside the
SQLTools_Example.DSN file. Specifically, these lines would need to be changed in the
DSN file:

DefaultDir=\SQLTOOLS
DBQ=\SQLTOOLS\Samples\SQLTools_Example.mdb

Failing to change the DSN file will result in a program that displays Error Messages when it is
run.

Step 1 »p938

 938

SQL_DUMP Step 1: Link SQL Tools to Your Program

This section describes the process of creating a SQL Tools program from scratch, using
PowerBASIC. If you are adding SQL Tools to an existing PowerBASIC program, the steps
are basically the same. To make things easier, we recommend that you cut and paste the
source code that is provided in the skeleton program (see below) into your existing program.

The first few steps below are covered in more detail in Four Critical Steps For Every SQL
Tools Program »p61.

The easiest way to start writing a SQL Tools program with PowerBASIC is to use the
"skeleton" file that is provided here:

\SQLTOOLS\SAMPLES\SQL_SKELETON.BAS

It contains all of the basic elements that you'll need to get started. This is what the source
code should look like, assuming that you have already followed the instructions in Installing
SQL Tools »p44, and that you are using the PBLIB »p68 version of SQL Tools Pro »p29. Most
source code comments have been removed to save space.

 939

'=================== SQLT3_Skeleton.BAS

#COMPILER PBWIN, PBCC

#INCLUDE "\SQLTOOLS\SQLT3.INC"
#LINK "\SQLTOOLS\SQLT3Pro.PBLIB"

FUNCTION PBMAIN AS LONG
 SQL_Authorize %MY_SQLT_AUTHCODE
 SQL_Init
 FUNCTION = MyProgram
 SQL_Shutdown
END FUNCTION

FUNCTION MyProgram AS LONG
 'YOUR CODE GOES HERE.
END FUNCTION

'============ end of SQLT3_Skeleton.BAS

Let's start out by modifying the skeleton to use our sample program's name, SQL_DUMP.

'========================= SQL_DUMP.BAS

#COMPILER PBWIN, PBCC

#INCLUDE "\SQLTOOLS\SQLT3.INC"
#LINK "\SQLTOOLS\SQLT3Pro.PBLIB"

FUNCTION PBMAIN AS LONG
 SQL_Authorize %MY_SQLT_AUTHCODE
 SQL_Init
 FUNCTION = MyProgram
 SQL_Shutdown
END FUNCTION

FUNCTION MyProgram AS LONG
 'YOUR CODE GOES HERE.
END FUNCTION

'================== end of SQL_DUMP.BAS

IMPORTANT NOTE: You should always start with a copy of the skeleton program, so that the
original skeleton will always be available when you want to start a new project. So at this
point you should use File > Save As... to save the skeleton under a different file name. SQL
Tools comes with a sample program called SQLT3_DUMP.BAS; which is similar to the final
step of this tutorial, so be careful not to use that name. The rest of this section will assume
that you saved the file as:

\SQLTOOLS\SAMPLES\SQL_DUMP.BAS

STEP 2: Open the Database »p940

 940

SQL_DUMP Step 2: Open the Database

Opening a database with SQL Tools is similar to using the PowerBASIC OPEN statement to
open a disk file that you want to access. It prepares the file for use, and assigns a number to
it. For example...

OPEN "C:\MYDIR\MYFILE.TXT" FOR INPUT AS #1

... tells PowerBASIC to prepare the specified file and to use the file number 1 for all future
operations (such as Line Input #1 , etc.).

Similarly, the SQL_OpenDB »p536 (Open Database) function is used to tell SQL Tools that you
want to open a database. For the purposes of this example we will use a very specific type of
file, called a DSN file, like this:

SQL_OpenDB "filename.DSN"

Instead of filename, of course, you will need to specify the name of a real DSN file. (By the
way, the number 1 is used automatically, so you will not usually need to specify it. See
Database Numbers »p197 for more information about using different numbers.)

A DSN »p79 or "DataSource Name" file is not a database. It is a text file that contains
information about a database, such as where it is located, the ODBC driver »p76 that is
required to access it, and so on.

In this example, to keep things simple, we are going to use an existing DSN file called...

\SQLTOOLS\SAMPLES\SQLTools_Example.DSN.

This file is supplied with SQL Tools so that you can actually compile and run the SQL_DUMP
program exactly as it is described here.

Here (in red) is the actual syntax for opening the sample database...

 '========================= SQL_DUMP.BAS

#COMPILER PBWIN, PBCC

#INCLUDE "\SQLTOOLS\SQLT3.INC"
#LINK "\SQLTOOLS\SQLT3Pro.PBLIB"

FUNCTION PBMAIN AS LONG
 SQL_Authorize %MY_SQLT_AUTHCODE
 SQL_Init
 FUNCTION = MyProgram
 SQL_Shutdown
END FUNCTION

FUNCTION MyProgram AS LONG

 SQL_OpenDB "\SQLTOOLS\SAMPLES\SQLTools_Example .DSN"

END FUNCTION

'================== end of SQL_DUMP.BAS

 941

If you were to compile and run this program, it would open the example database and then
exit immediately.

STEP 3: Tell the Database Which Data We Want »p942

 942

SQL_DUMP Step 3: Tell the Database Which Data We Wa nt

The closest PowerBASIC equivalent to this step would be the SEEK statement, which tells a
PowerBASIC program to jump to a particular location in a file. But SEEK has to be performed
line-by-line, and using it would require your program to know the locations of all of the lines of
data that you want to retrieve.

SQL Statements make data retrieval much easier than that. Here is the syntax for telling SQL
Tools to retrieve all of the data from the AddressBook table in the SQL_Dump database...

SQL_Stmt %IMMEDIATE, " SELECT * FROM ADDRESSBOOK"

You'll find that the abbreviation Stmt is used extensively by SQL Tools. It stands for
Statement.

The SQL_Stmt »p716 function can be used in many, many different ways. In this example, the
%IMMEDIATE parameter tells it that we want the results right away, and the SELECT *
FROM ADDRESSBOOK parameter tells it that we want * (all) of the columns FROM the
table called ADDRESSBOOK.

FUNCTION MyProgram AS LONG

 SQL_OpenDB "\SQLTOOLS\SAMPLES\SQLTools_Example .DSN"
 SQL_Stmt %IMMEDIATE, "SELECT * FROM ADDRESSB OOK"

END FUNCTION

For more information about the different kinds of SQL Statements that you can use, see
Appendix A: SQL Statement Syntax »p862.

STEP 4: Retrieve the Data »p943

 943

SQL_DUMP Step 4: Retrieve the Data

Retrieving a row of data from a database is similar to using the PowerBASIC LINE INPUT #
statement on a disk file. It gets data from the database and places it in variables that your
program can use. For example, this...

LINE INPUT #1, sOneLine$

...would get one line of data from a disk file that was opened as #1 , and place the data in the
string variable called sOneLine$. (To understand the variable-naming convention that is
used in this Help File, see Conventions »p41.)

The equivalent SQL Tools syntax would be...

SQL_Fetch %NEXT_ROW

The SQL_Fetch »p435 function can be used in several different ways. Using the %NEXT_ROW
parameter tells it to get the next row from the database. (Of course when the database is
freshly opened, %NEXT_ROW means the same thing as %FIRST_ROW.) Other functions like
%PREV_ROW and %LAST_ROW are also available.

In this case the parameter is optional. If you omit it, SQL_Fetch automatically uses
%NEXT_ROW.

FUNCTION MyProgram AS LONG

 SQL_OpenDB "\SQLTOOLS\SAMPLES\SQLTools_Example .DSN"
 SQL_Stmt %IMMEDIATE, "SELECT * FROM ADDRESSB OOK"
 SQL_Fetch

END FUNCTION

You probably noticed that no variable name like sOneLine$ was specified. That's because
each row »p85 of data is automatically broken down into columns »p85 by SQL Tools, and each
column can be accessed individually. More about that in a minute.

STEP 5: Detect the End of the Data »p944

 944

SQL_DUMP Step 5: Detect the End of the Data

Normally, a PowerBASIC program would use the LINE INOUT # statement in a loop with
the EOF (End Of File) function, like this...

DO
 IF EOF(1) THEN EXIT LOOP
 LINE INPUT #1, sOneLine$
 'do something with the data
LOOP

The equivalent SQL Tools function is called SQL_EOD »p409, which stands for End Of Data.
You use it like this...

DO
 SQL_Fetch
 IF SQL_EOD THEN EXIT LOOP
LOOP

You must keep in mind that there is a very important difference between EOF and SQL_EOD.
The PowerBASIC EOF function returns a True (nonzero) value when there are no more lines
to be read. The SQL_EOD function returns a True value only after the SQL_Fetch function
has failed to read a row of data.. That's a very important distinction if you write code that is
structured like this:

DO UNTIL EOF(1)
 LINE INPUT #1, sOneLine$
 'do something with the data
LOOP

That code will execute the way you would expect it to. It will read lines of data from the file
until the end-of-file is encountered. Most importantly, the LINE INPUT # will always return a
line of data and the program will always be able to do something with the data in
sOneLine$.

However this SQL Tools code...

DO UNTIL SQL_EOD
 SQL_Fetch
 'do something with the data
LOOP

...will not work in the same way. Remember, the SQL_EOD function will not return a True
value until after a SQL_Fetch has failed. That loop would eventually fetch the last row of
data and process it. But then SQL_EOD would still return False (because a fetch has not yet
failed) so the program would not exit from the loop, and the final SQL_Fetch operation
would fail. At that point there would be no data for the program to "do something" with. Only
then, after the fetch had failed and invalid data had been processed, would the program exit
from the DO/LOOP. So...

Here is the correct way to structure a SQL Tools "read until end of data" loop:

 945

DO
 SQL_Fetch
 IF SQL_EOD THEN EXIT LOOP
 'do something with the data
LOOP

You must fetch a row, check for SQL_EOD, and then process the data.

Please note that this is standard SQL behavior. It is not a limitation of SQL Tools. ODBC
drivers do not have a "look ahead" function that works like the PowerBASIC EOF function.

(Incidentally, when a file is opened FOR BINARY with PowerBASIC, the EOF function
works exactly the same way as the SQL_EOD function. EOF does not return a True value
until after a binary-read operation has failed.)

Here is the addition that should be made to the example program:

FUNCTION MyProgram AS LONG

 SQL_OpenDB "\SQLTOOLS\SAMPLES\SQLTools_Example .DSN"
 SQL_Stmt %IMMEDIATE, "SELECT * FROM ADDRESSB OOK"

 DO
 SQL_Fetch
 IF SQL_EOD THEN EXIT LOOP
 'do something with the data
 LOOP

END FUNCTION

STEP 6: Use the Data »p946

 946

SQL_DUMP Step 6: Use the Data

In a PowerBASIC program, in order to use the data from a text file, you would probably do
something like this...

'Open an input file...
OPEN "C:\MYDIR\OLDFILE.TXT" FOR INPUT AS #1
'Open an output file...
OPEN "C:\MYDIR\NEWFILE.TXT" FOR OUTPUT AS #2

DO
 'Read a line from the input file...
 LINE INPUT #1, sOneLine$
 'Put that line in the output file...
 PRINT #2, sOneLine$
 'Check for end of file...
 IF EOF(1) THEN EXIT LOOP
LOOP

CLOSE #1
CLOSE #2

In a SQL Tools program, if you want to use something like PRINT #2 to save all of the data
from all of the columns in a table, the easiest method is to use the SQL_ResColString
function.

FUNCTION MyProgram AS LONG

 OPEN "\SQLTOOLS\SAMPLES\SQL_DUMP.TXT" FOR OUTPU T AS #2

 SQL_OpenDB "\SQLTOOLS\SAMPLES\SQLTools_Example .DSN"
 SQL_Stmt %IMMEDIATE, "SELECT * FROM ADDRESSB OOK"

 DO
 SQL_Fetch
 IF SQL_EOD THEN EXIT LOOP
 PRINT #2, SQL_ResColString(%ALL_COLS)
 LOOP

 CLOSE #2

END FUNCTION

The SQL_ResColString function can take data in virtually any form (string, numeric, binary,
etc.) and convert it to human-readable text that can be used with the PRINT # statement, or
with any other function that requires a text string (PRINT, MSGBOX, etc.)

The %ALL_COLS parameter tells SQL_ResColString to automatically count the number
of columns that a result set »p144 contains, and to processes all of them. It also comma-quote
delimits the data from all of the columns, and it limits the length of each column to a
"reasonable" length, so it may not be practical for every program. But for quick and dirty
programs like SQL_Dump it can be very useful.

A much more flexible way to retrieve the data is column-by-column, using the

 947

SQL_ResColString »p614 and SQL_ResColNumeric »p607 functions, among others. But
that is beyond the scope of this simple example program.

STEP 7: Compile and Run »p948

 948

SQL_DUMP Step 7: Compile and Run

Here is the basic SQL Tools program that we have just written:

'========================= SQL_DUMP.BAS

#COMPILER PBWIN, PBCC

#INCLUDE "\SQLTOOLS\SQLT3.INC"
#LINK "\SQLTOOLS\SQLT3Pro.PBLIB"

FUNCTION PBMAIN AS LONG
 SQL_Authorize %MY_SQLT_AUTHCODE
 SQL_Init
 FUNCTION = MyProgram
 SQL_Shutdown
END FUNCTION

FUNCTION MyProgram AS LONG

 OPEN "\SQLTOOLS\SAMPLES\SQL_DUMP.TXT" FOR OUTPU T AS #2

 SQL_OpenDB "\SQLTOOLS\SAMPLES\SQLTools_Example .DSN"
 SQL_Stmt %IMMEDIATE, "SELECT * FROM ADDRESSB OOK"

 DO
 SQL_Fetch
 IF SQL_EOD THEN EXIT LOOP
 PRINT #2, SQL_ResColString(%ALL_COLS)
 LOOP

 CLOSE #2

END FUNCTION

'================== end of SQL_DUMP.BAS

All you have to do is compile this program using one of the PowerBASIC For Windows
compilers.
When you run it, the \SQLTOOLS\SQL_DUMP.TXT file will be created and it will contain the
following data. Some lengthy data has been replace with (etc) to make it more readable
here...

"1","John","Q.","Public","123 Main St","Anytown","N Y","US","12345", (etc)
"2","Jane","[NULL]","Doe","456 First Blvd","Janesto wn","OH","US","45678", (etc)
"3","Bob","Emil","Smith","789 Second Ave","Buffalo" ,"MO","US","78901", (etc)
"4","Mary","Louise","Jones","4 Deebee Row","Jonesto wn","TX","US","76543", (etc)
"5","Stan","[NULL]","Philips","#10 Ville Road","Nox ville","MI","US","48000", (etc)
"6","José","[NULL]","Golpe","77 Calle del Azteca"," Morelia","MI","MX","[NULL]", (etc)
"7","Norman","Francis","Bates","1 Psycho Path","Now heresville","WI","US","54321",
(etc)
"8","Tres","Dos","Uno","321 Spanish Way","Cape Cana veral","FL","US","32100",(etc)

BUT WAIT! That's a working program, but there is one more very important step that you
need to consider...

STEP 8: Add Error Checking »p949

 949

SQL_DUMP Step 8: Add Error Checking

If you are writing a very simple "utility" program, then simple code like the program in Step 7
will probably be sufficient. But if you need to write a more robust program -- one that can
react appropriately when something goes wrong -- you will need to add (at least) a few more
lines of code.

The key to adding error-checking is to figure out exactly where errors might occur. For
example, if your program will always be run on your development computer, it is probably
safe to ignore the return value of the SQL_Init function. Very little can go wrong as long
as the system is configured properly. But if you are writing an "industrial strength" program
that will run on many different systems, you might want to change the PBMAIN function like
this...

FUNCTION PBMAIN AS LONG
 SQL_Authorize %MY_SQLT_AUTHCODE
 IF SQL_Init = %SQL_SUCCESS THEN
 FUNCTION = MyProgram
 ELSE
 SQL_MsgBox "SQL TOOLS INIT FAILURE", %MSGBO X_OK
 END IF
 SQL_Shutdown
END FUNCTION

As we said, the SQL_Init function is quite reliable. A much more important place to add
error checking is the DO/LOOP block.

As an experiment, you can purposely "break" the SQL_Dump program by changing the
SQL_Stmt line like this:

SQL_Stmt %IMMEDIATE, "SELECT * FROM NoSuchTable"

DO
 SQL_Fetch
 IF SQL_EOD THEN EXIT LOOP
 PRINT #2,SQL_ResColString(%ALL_COLs)
LOOP

If you re-compile and run the program, it will never exit from the DO/LOOP block and will
completely "lock up". That's because the SQL_EOD function will never return a True value.

SQL_EOD means "End Of Data" and that has a very specific meaning. It means that
SQL_Fetch failed because the last row of data has been read from a result set. But the
broken program will not reach the End Of Data point -- it will never read any data at all -- and
SQL_EOD will not return True if SQL_Fetch fails for some other reason, such as an error
condition.

So it would be a very good idea to add some error checking code here too:

 950

DO
 SQL_Fetch
 IF SQL_EOD THEN EXIT LOOP
 IF SQL_ErrorPending THEN
 'Handle error here (display message,
 'create error-log file, etc.)
 EXIT FUNCTION 'to avoid locking up the sys tem
 END IF
 PRINT #2, SQL_ResColString(%ALL_COLs)
LOOP

Here's another, more compact way to handle the same situation, by checking the return value
of the SQL_Fetch function...

DO
 IF SQL_Fetch <> %SQL_SUCCESS THEN
 'Either End Of Data or an Error, so...
 EXIT LOOP
 END IF
 PRINT #2, SQL_ResColString(%ALL_COLs)
LOOP

One more thing... The SQL_Fetch function can return either %SQL_SUCCESS or
%SQL_SUCCESS_WITH_INFO when it works properly, so here is an even better error check
which uses the SQL_Okay »p529 function to check for either form of success:

DO
 IF SQL_Okay(SQL_Fetch) = %FALSE THEN
 'Either End Of Data or an Error, so...
 EXIT LOOP
 END IF
 PRINT #2,SQL_ResColString(%ALL_COLs)
LOOP

...and this code uses SQL_Fail »p433 to accomplish the same thing...

DO
 IF SQL_Fail(SQL_Fetch) THEN
 'Either End Of Data or an Error, so...
 EXIT LOOP
 END IF
 PRINT #2,SQL_ResColString(%ALL_COLs)
LOOP

It would also be very important to check for errors from the SQL_OpenDB function, which
might fail because a database is missing or corrupt. Remember too that your PowerBASIC
OPEN and PRINT # statements should be checked for errors as well (using pure
PowerBASIC code not SQL Tools functions).

There are lots of different ways in which a program can fail, and lots of different ways to
handle the failures. You should familiarize yourself with all of the SQL Tools functions that
start with SQL_Error , and read the section of this document titled Error Handling in SQL
Tools Programs »p179. It contains a lot of information about the various Error Handling
techniques that are available to you.

 951

The important thing is to try to anticipate the thi ngs that could possibly go wrong with
your program, and to add code to handle those failu res. To create a truly reliable
program, you should examine the return value of eve ry SQL Tools function and/or
check the SQL_ErrorPending »p422 function after any SQL Tools function is used.

Suggested reading:

Error Handling in SQL Tools Programs »p179.

Miscellaneous Error Handling Techniques »p185

 952

[End of SQL Tools PDF documentation]

